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ABSTRACT

Motivation: Circadian rhythms are prevalent in most organisms.
Identification of circadian-regulated genes is a crucial step in
discovering underlying pathways and processes that are clock-
controlled. Such genes are largely detected by searching periodic
patterns in microarray data. However, temporal gene expression
profiles usually have a short time-series with low sampling frequency
and high levels of noise. This makes circadian rhythmic analysis of
temporal microarray data very challenging.
Results: We propose an algorithm named ARSER, which combines
time domain and frequency domain analysis for extracting and
characterizing rhythmic expression profiles from temporal microarray
data. ARSER employs autoregressive spectral estimation to predict
an expression profile’s periodicity from the frequency spectrum and
then models the rhythmic patterns by using a harmonic regression
model to fit the time-series. ARSER describes the rhythmic patterns
by four parameters: period, phase, amplitude and mean level, and
measures the multiple testing significance by false discovery rate
q-value. When tested on well defined periodic and non-periodic short
time-series data, ARSER was superior to two existing and widely-
used methods, COSOPT and Fisher’s G-test, during identification of
sinusoidal and non-sinusoidal periodic patterns in short, noisy and
non-stationary time-series. Finally, analysis of Arabidopsis microarray
data using ARSER led to identification of a novel set of previously
undetected non-sinusoidal periodic transcripts, which may lead to
new insights into molecular mechanisms of circadian rhythms.
Availability: ARSER is implemented by Python and R. All source
codes are available from http://bioinformatics.cau.edu.cn/ARSER
Contact: zhensu@cau.edu.cn

1 INTRODUCTION
Circadian rhythm is one of the most well-studied periodic processes
in living organisms. DNA microarray technologies have often
been applied in circadian rhythm studies (Duffield, 2003). Thus,
we can monitor the mRNA expression of the whole-genome
level, which is an effective way to simultaneously identify many
hundreds or thousands of periodic transcripts. The matter to be
addressed is which genes are rhythmically expressed based on their
gene expression profiles. This can be classified as a periodicity
identification problem. However, there are computational challenges
when dealing with this issue: sparse determination of sampling rate,
and short periods of data collection for microarray experiments
(Bar-Joseph, 2004). Circadian microarray experiments are usually
designed to collect data every 4 h over a course of 48 h, generating
expression profiles with 12 or 13 time-points (Yamada and Ueda,
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2007). There are two main factors that limit the number of data points
that can be feasibly obtained: budget constraints and dampening
of the circadian rhythm (Ceriani et al., 2002). Such short time-
series data render many methods of classical time-series analysis
inappropriate, since they generally require much larger samples to
generate statistically significant results.

A variety of algorithms have been developed and applied to
microarray time-series analysis; Chudova et al. (2009) indicated that
the existing technologies fall into two major categories: time-domain
and frequency-domain analyses. Typical time-domain methods rely
on sinusoid-based pattern matching technology, while frequency-
domain methods are based on spectral analysis methods. Of the
time-domain methods, COSOPT (Straume, 2004) is a well-known
algorithm frequently used to analyze circadian microarray data in
Arabidopsis (Edwards et al., 2006), Drosophila (Ceriani et al.,
2002) and mammalian systems (Panda et al., 2002). COSOPT
measures the goodness-of-fit between experimental data and a
series of cosine curves of varying phases and period lengths.
The advantages of pattern-matching methods are simplicity and
computational efficiency, while they are not effective at finding
periodic signals that are not perfectly sinusoidal (Chudova et al.,
2009).

Of the frequency-domain methods, Fisher’s G-test was proposed
to detect periodic gene expression profiles by Wichert et al.
(2004) and has been used to analyze circadian microarray data
of Arabidopsis (Blasing et al., 2005) and mammalian systems
(Hughes et al., 2009; Ptitsyn et al., 2006). Fisher’s G-test searches
periodicity by computing the periodogram of experimental data and
tests the significance of the dominant frequency using Fisher’s G-
statistic; however, it is limited by low frequency resolution for
short time-series generated by circadian microarray experiments,
which means it is often not adequate to resolve the periodicity
of interest (Langmead et al., 2003). Time-domain and frequency-
domain methods are two different ways to analyze the time-
series, each with advantages and disadvantages. Frequency-domain
methods are noise-tolerant and model-independent but their results
are difficult for biologists to understand. Time-domain methods can
give comprehensive and easily-understood descriptions for rhythms
but are noise-sensitive and model-dependent (e.g. sinusoid).

Considering the above limitations, we propose an algorithm
named ARSER that combines time-domain and frequency-domain
analyses to identify periodic transcripts in large-scale time-course
gene expression profiles. ARSER employs autoregressive (AR)
spectral analysis (Takalo et al., 2005) to estimate the period length
of a circadian rhythm from the frequency spectrum. It is well-suited
to analyze short time-series since it can generate smooth and high-
resolution spectra from gene expression profiles. It is related (but
not identical) to a method called maximum entropy spectral analysis,
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which has been applied to the analysis of micorarray data (Langmead
et al., 2002).

After the frequency-domain analysis, ARSER takes harmonic
regression (Warner, 1998) to model the circadian rhythms extracted
from gene expression profiles. Harmonic regression models fully
describe the rhythms using four parameters: period (duration of one
complete cycle), the mean level (the mid-value of the time-series),
the amplitude (half the distance from the peak to the trough of the
fitted cosine, indicating the predictable rise and fall around the mean
level) and the phase (the location in time of the peak of the curve).

The joint strategy overcomes the shortcomings of separate time-
domain or frequency-domain analyses. ARSER uses AR spectral
analysis to find the circadian rhythms and a harmonic regression
model to characterize and statistically validate them. When tested
on multiple synthetic datasets, ARSER is robust to noise, quickly
and exactly estimates periodicity and gives comprehensive and
statistically significant results in analysis of short time-series.

This article is organized as follows. Section 2 describes the
mathematical and implemental details of the ARSER algorithm.
Section 3 compares the performance of ARSER with COSOPT and
Fisher’s G-test by testing on different simulation datasets. Numerical
experiments are designed by varying noise intensity and period
length, including random background models and identifying non-
sinusoidal periodic patterns. Finally, ARSER was used to analyze
Arabidopsis microarray data and obtained a novel set of rhythmic
transcripts, many of which showed non-sinusoidal periodic patterns.
Section 4 summarizes the methodology.

2 METHODS

2.1 Overview
Our methodology to detect circadian rhythms in gene expression profiles
consists of three procedures: data pre-processing, period detection and
harmonic regression modeling (Fig. 1A). First, ARSER performs a data
preprocessing strategy called detrending that removes any linear trend from
the time-series so that we can obtain a stationary process to search for cycles.
Detrending is carried out by ordinary least squares (OLS). Second, ARSER
determines the periods of the time-series within the range of circadian period
length (20–28 h) (Piccione and Caola, 2002). The method to estimate periods
is carried out by AR spectral analysis, which calculates the power spectral

density of the time-series in the frequency domain. If there are cycles of
circadian period length in the time-series, the AR spectral density curve will
show peaks at each associated frequency (Fig. 1B). With the periods obtained
from AR spectral analysis, ARSER employs harmonic regression to model
the cyclic components in the time-series. Harmonic analysis provides the
estimates of three parameters (amplitude, phase and mean) that describe the
rhythmic patterns. Finally, when analyzing microarray data, false discovery
rate q-values are calculated for multiple comparisons.

2.2 Period detection
As circadian rhythm has approximately (but never exactly) 24 h periodicity
(Harmer, 2009), the first matter to be addressed is to measure the length of
actual period for each gene expression profile.

ARSER estimates the period by AR spectral estimation, which is a high-
resolution spectral analysis technique comparing with the classical fast
Fourier transform periodogram. Given an equally sampled time-series {xt}
with the sampling interval �, AR spectral estimation first applies an AR
model of order p, abbreviated AR(p), to fit the time-series using the following
equation:

xt =
p∑

i=1

αixt−i +εt (1)

where εt is white noise and αi are model parameters (or AR coefficients)
with αp �=0 for an order p process. Güler et al. (2001) and Spyers-Ashby
et al. (1998) reported that AR coefficients are generally estimated by three
methods: the Yule–Walker method, maximum likelihood estimation and the
Burg algorithm. ARSER implements the AR model-fitting by setting order
p=24/� and computing the AR coefficients using all three methods.

After AR modeling, AR spectral analysis estimates the spectrum, with
model parameters instead of original data, using the following equation:

px(ω)= σ2
ε

|1+∑p
k=1αke−iωk |2 0≤ω<π (2)

where σ2
ε is the variance of white noise; αk are parameters defined in

Equation (1). If periodic signals are present in the time-series, then the
spectrum derived from Equation (2) will show peaks at dominant frequencies.
However, at high frequencies the noise signals may also show peaks known
as pseudo-periods.

ARSER obtains the period by using the following step-by-step
procedure:

(1) Remove the linear trend in time-series {xt}, denoting the detrended
time-series as {ẋt}.

A

B

Fig. 1. The diagram of our methodology (named ARSER) and a case study. (A) Analysis flowchart. First, data pre-processing by linear trend removal
(detrending), then period detection by searching peaks from the AR spectrum. With the periods derived from the AR spectrum, harmonic regression is carried
out to model circadian rhythms by fitting the detrended time-series with trigonometric functions. Finally,ARSER describes the periodicity by several parameters:
period, phase, amplitude, statistical significance and so on. (B) An example of rhythmicity analysis by ARSER. The synthetic time-series is generated by
the following equation: f (t)=500e−0.01·t +140e−0.01·t ·cos( 2π

24 t)+ε, where t ∈[0,96] with 4 h intervals and ε is white noise following (µ=0,σ =40) normal
distribution.
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(2) Smooth {ẋt} by a fourth-order Savitzky–Golay algorithm (Savitzky
and Golay, 1964). This is a low-pass filter that can efficiently remove
pseudo-peaks in a spectrum caused by noise. The smoothed time-
series is denoted as {ẍt}.

(3) Calculate the AR spectrum of {ẍt} by Equation (2), and select all
periods {τ̈i}∈[20,28] that show peaks in the spectrum.

(4) Calculate the AR spectrum of detrended time-series {ẋt} by
Equation (2), and select all periods {τ̇i}∈[20,28] that show peaks
in the spectrum.

(5) The periods {τ̇i} and {τ̈i} are chosen as input to the harmonic
regression analysis for {ẋt} by Equation (3).

(6) The optimum periods in {xt} are determined by Akaike’s information
criterion (Akaike, 1974) among the regression models generated in
step 5.

2.3 Rhythm modeling and gene selection
The next matter to be addressed is how to model the rhythmic patterns in
the time-series of gene expression. ARSER employs the harmonic regression
model to represent the cycle trends, which involves fitting sinusoidal models
to a time-series using the following equation:

xt =µ+
n∑

i=1

βi cos(2πfit+φi)+εt (3)

where xt is the observed value at time t; µ is the mean level of the time-
series; βi is the amplitude of the waveform; φi is the phase, or location of
peaks relative to time zero; εt are residuals that are unrelated to the fitted
cycles; and t are the sampling time-points.

The fi term in Equation (3) are the dominant frequencies in the circadian
range derived by Equation (2). The periods (τi) of the time-series equal
(1/fi)·�, where � is the sampling interval. Since periods are predetermined
by AR spectral analysis, Equation (3) can be reduced to an even simpler
multiple linear regression model:

xt =µ+
n∑

i=1

{pi cos(2πfit)+qi sin(2πfit)}+εt (4)

where pi =βi cosφi, qi =−βi sinφi. The unknown parameters pi, qi and µ

can be estimated by OLS method. Then the amplitude βi and phase φi are

obtained by βi =
√

p2
i +q2

i and tanφi =−qi/pi.
By applying a harmonic regression model, rhythmicity in a time-series

is fully described by four parameters: period, phase, amplitude and mean
level. Tests of statistical significance are also essential to distinguish between
real rhythms and random oscillations. In a harmonic regression model, an
F-test is employed to assess the significance of pi and qi coefficients, and so
statistically validates the rhythmicity.

When analyzing microarray expression data, tens of thousands of genes
will be estimated simultaneously, so the problem of multiple testing must
be considered. We employed the method of Storey and Tibshirani (2003).
Briefly, by examining the distribution of P-values from the given dataset,
an estimate of the proportion that are truly non-rhythmic can be derived.
The P-value for each transcript can be converted to a more stringent q-value
which represents the false discovery rate. In our study, we consider genes
with q < 0.05 to be rhythmically expressed.

2.4 Generating simulation data
We provide a comprehensive testing strategy to test and compare the
performance of ARSER with COSOPT and Fisher’s G-test. Our simulation
datasets consist of periodic and non-periodic time-series data. The periodic
time-series was generated by two models based on the methods proposed by
Robeva et al. (2008). One is classified as a stationary model, defined by

xt =SNR ·2cos

(
2π

τ
t−φ

)
+εt (5)

where SNR is signal-to-noise ratio; τ is period; φ is phase; and εt is (µ=
0,σ =1) normally distributed noise terms. Another model classified as a
non-stationary is defined by

xt =500·e−0.01t +SNR ·100·e−0.01t ·cos(
2π

τ
t−φ)+εt (6)

where εt is (µ=0,σ =50) normally distributed noise; the mean level and
amplitude exponentially decay over time. The periodic datasets used in our
numerical experiments were generated by assigning different values to τ, φ

and SNR. Compared with the stationary model, the non-stationary model is
more likely to approximate the circadian rhythm (Refinetti, 2004).

The non-periodic time-series was generated from (µ=0,σ =1) normally
distributed white noise and AR processes of order one, AR(1), as suggested
by Futschik and Herzel (2008).

3 RESULTS AND DISCUSSION
ARSER was applied to both simulated and real microarray data.
A series of numerical experiments were designed to test and compare
the performance of ARSER with COSOPT and Fisher’s G-test. The
tasks were to (i) precisely estimate periodicity, (ii) separate periodic
from non-periodic signals and (iii) identify non-sinusoidal periodic
patterns.

3.1 Robustness to noise
In the first experiment, we compared the robustness of three
algorithms to noise. We generated 10 000 stationary [derived from
Equation (5)] and 10 000 non-stationary periodic signals [derived
from Equation (6)] by the following steps: (i) taking τ by 0.1-h
sampling interval in [20h,28h), (ii) at each period, taking φ by
2π/25 sampling interval in [0,2π) and (iii) at each period and phase,
taking SNR of 5:1, 4:1, 3:1, 2:1 and 1:1. Each time-series possessed
12 data points, within 0–44 h at 4 h sampling intervals, which was
the same as the majority of published circadian microarray datasets.

There were 2000 periodic time-series under each SNR. We also
generated 2000 (µ=0,σ =1) normally distributed random signals.
Then we applied ARSER, COSOPT and Fisher’s G-test to identify
periodic signals from the positive (periodic) and negative (random)
samples and measured their performance of periodicity prediction
under different SNRs by Matthew’s correlation coefficient (MCC)
(Fig. 2A and B). The MCC is in essence a correlation coefficient
between the observed and predicted binary classifications, with
values between −1 and +1. MCC = +1 represents a perfect
prediction, 0 an average random prediction and −1 an inverse
prediction (Baldi et al., 2000).

Of the three methods, ARSER performed best at any noise-level
for both stationary and non-stationary time-series, suggesting it was
a robust periodicity detection algorithm.

3.2 Correctness for predicting wavelength
The task of precisely estimating periodicity included two parts:
identification of truly periodic signals and the measurement of actual
wavelength. The former case was verified for the three algorithms
in the robustness experiment, and we continued to investigate the
latter one.

According to the predictions in the robustness experiment, we
calculated the differences for each periodic signal in its actual
period and predicted value by each algorithm. The distributions
of prediction errors for the three algorithms (Fig. 3) showed that
ARSER and COSOPT were more accurate (errors with zero means
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and small variations) in predicting the period length compared with
Fisher’s G-test (errors of large variation). This indicates ARSER
and COSOPT are high-resolution detecting algorithms and can
accurately estimate the wavelength of circadian rhythms.

3.3 Periodicity detection with random background
models

To verify our algorithm, our second task was to separate periodic
from non-periodic signals, which measured the sensitivity and
specificity in the predictions.

Fig. 2. Accuracy of ARSER, COSOPT and Fisher’s G-test at identifying
(A) stationary and (B) non-stationary periodic signals under decreasing
signal-to-noise ratio. For each group of periodic signals, there are
1:1 negative sample data generated by (µ=0,σ =1) white noise. The
performance is measured by MCC. As noise intensity increased, ARSER
(blue) performed robustly with noise in both situations, while COSOPT
(red) and Fisher’s G-test (yellow) performed badly for stationary periodic
signals with high-level noise and even worse for non-stationary ones. They
all scored the signals as periodic using the threshold of 0.05 for FDR
q-value for ARSER and Fisher’s G-test, or by pMMC-β for COSOPT.
pMMC-β measures the probability for multiple testing, similarly to the FDR
q-value.

The periodic signals generated in the robustness experiment
contained 10 000 stationary and 10 000 non-stationary time-series.
The non-periodic signals were generated by white noise and
AR(1) models with 10 000 samples in each case. Then we created
four testing datasets by combining (i) stationary periodic signals
with white noise signals, (ii) non-stationary periodic signals with
white noise signals, (iii) stationary periodic signals with AR(1)-
based random signals and (iv) non-stationary periodic signals with
AR(1)-based random signals.

Since predictions were periodic or non-periodic, a well-suited
binary classification, we applied receiver operating characteristic
(ROC) curves (Fawcett, 2006) to compare the performances of the
three algorithms on the four datasets (Fig. 4A–D). Performances
were measured by the area under the ROC curve criterion, with the
larger the area the better the method. ROC analysis showed that
ARSER outperformed COSOPT and Fisher’s G-test in all cases.

3.4 Detection of non-sinusoidal periodic waveforms
The last numerical experiment was to apply the three
algorithms to detect non-sinusoidal periodic patterns. The
testing dataset was downloaded from the HAYSTACK web site
(http://haystack.cgrb.oregonstate.edu/). This dataset included
five cycling patterns based on diurnal and circadian time-course
studies: rigid, spike, sine and two box-like patterns (Michael et al.,
2008). Each periodic pattern contained 24 samples with the phase
shifted from 0 to 23 h by 1 h intervals. A total of 120 time-series
were contained in the dataset, which possessed 12 time-points
that represent two circadian cycles obtained at 4 h sampling
intervals. We also added 120 (µ=0,σ =1) white-noise signals as
negative data.

ARSER performed the best of the three algorithms (Fig. 5), and
identified more spike and box-like periodic pattern profiles while
maintaining a very low false positive rate.

3.5 Analysis of Arabidopsis circadian expression data
Our methodology for identifying periodicity of short time-series
worked successfully on synthetic datasets. We applied ARSER
to analyze a real microarray dataset generated from the work of

Fig. 3. Distribution of the differences between the predicted wavelength (using three algorithms) and the actual wavelength of stationary periodic signals
(yellow) and non-stationary periodic signals (blue). Log transformation for the difference (�τ) was carried out using ln(1+|�τ|). The errors of wavelength
prediction by ARSER and COSOPT were low and close to zero, while those for Fisher’s G-test were high and in a wide range.
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Fig. 4. ROC curves for identifying periodic signals from four datasets
of (A) 10 000 stationary periodic signals and 10 000 white noise signals,
(B) 10 000 non-stationary periodic signals and 10 000 white noise signals,
(C) 10 000 stationary periodic signals and 10 000 AR(1)-based random
signals, and (D) 10 000 non-stationary periodic signals and 10 000 AR(1)-
based random signals. Greater area under the ROC curve indicates better
performance of the algorithm. ARSER gave the fewest false positives and
false negatives compared with COSOPT and Fisher’s G-test in all cases.

Fig. 5. Comparison of detecting multiple periodic waveforms. (A) Number
of samples from five periodic waveforms and random signals (cyan)
identified by three detecting algorithms. The testing dataset are composed
of 120 periodic time-series with 24 samples for each periodic pattern
and 120 (µ=0,σ =1) white-noise samples. (B) The waveforms include
sinusoidal (red) and non-sinusoidal: rigid waves (yellow), box1 waves (blue),
box2 waves (magenta) and spike waves (green). The dataset and periodic
patterns were generated by HAYSTACK tool (Michael et al., 2008).

Edwards et al. (2006) in the study of the Arabidopsis circadian
system. The data (available from http://millar.bio.ed.ac.uk/data.htm)
are expression profiles of 13 data points, representing 48 h of
observation obtained at 4 h sampling intervals. In the original study,
the authors used COSOPT to identify cyclic genes. Of all 22 810
genes represented on the array, 3504 genes were considered rhythmic
at the significance threshold pMMC-β < 0.05.

Fig. 6. Area-proportional Venn diagram addresses the predictive power
of three algorithms for identifying Arabidopsis circadian-regulated genes.
The microarray data were originally analyzed by COSOPT in the study of
Edwards et al. (2006), and scored 3504 genes as rhythmic (pMMC-β < 0.05).
A total of 4929 genes were identified by ARSER (FDR q < 0.05), while
only 536 were found by Fisher’s G-test (FDR q < 0.05). Venn diagram was
generated by BioVenn tool (Hulsen et al., 2008).

We re-analyzed this microarray data usingARSER and Fisher’s G-
test, both of which scored rhythmic transcripts by FDR q < 0.05, and
compared their predictions with those of COSOPT (Fig. 6). ARSER
identified 96% of the cycling transcripts identified by COSOPT,
suggesting our methodology efficiently reproduced the original
results, while Fisher’s G-test merely identified only 15%, implying
it may not efficiently analyze this circadian expression data.

In addition, a novel set of 1549 transcripts were uniquely
identified as rhythmic by ARSER. To examine these newly found
genes more closely, we employed principal component analysis
(Wall et al., 2003) to visualize the dominant expression patterns from
their profiles. The first two principal components accounted for 70%
of the variance (Fig. 7A) and were cyclic with spike-like patterns
(Fig. 7B and C). These plots revealed a rhythmic component with
a period of ∼24 h in many transcripts of the novel set, which was
consistent with the estimate using ARSER. These periodic patterns
were mainly non-sinusoidal and may explain why they were not
identified by COSOPT in the original study. The third component
also showed a linear trend (Fig. 7D), indicating the non-stationary
feature of the data. Dodd et al. (2007) reported 27 well-known clock-
associated genes in Arabidopsis. Two of these genes were found
among the newly identified genes of the present study. One was
CRYPTOCHROME 1 (CRY1), which functions as a photoreceptor
for the circadian clock in a light-dependent fashion. In plants, the
blue light photoreception can be used to cue developmental signals
(Brautigam et al., 2004). The other one was PSEUDO-RESPONSE
REGULATORS 9 (PRR9), which plays an important role in response
to temperature signals in a temperature-sensitive circadian system
(Harmer, 2009) and acted as transcriptional repressors of CCA1 and
LHY in the feedback loop of the circadian clock (Nakamichi et al.,
2010). Thus more clues could be provided by applying ARSER to
further study of Arabidopsis circadian expression data.

Unlike the synthetic datasets used in numeral experiments, the
notions of false positives and false negatives in real experimental
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Fig. 7. Principal component analysis of the newly found rhythmic transcripts
in Arabidopsis identified by ARSER. Plots of relative variance for the first
nine components (A); and the first (B), second (C) and third (D) eigengenes
are shown. The first three principal components account for 78% of the
variance. The first and second eigengenes are cyclic with spike-like patterns,
and the third shows a linear trend. These data reveal that non-sinusoidal and
non-stationary periodic transcripts could be found by applying ARSER. PCA
was carried out by Mev tool (Saeed et al., 2003).

Table 1. Summary of rankings of 27 known Arabidopsis clock-associated
genes in the entire genome, in order of significance using three algorithms

Method Rankings in the entire genomea

Top 5% Top 10% Top 25% Top 60%

ARSER 10 15 21 26
COSOPT 11 16 20 24
Fisher.G 10 14 21 24

aARSER and Fiser’s G-test rank genes by FDR q-value; COSOPT rank genes by
pMMC-β.

data are not well defined. Thus, we used the 27 known clock genes
as benchmark genes to evaluate a given algorithm in terms of false
negatives for analyzing circadian expression data. We applied three
algorithms to rank the 22 810 genes of the entire Arabidopsis genome
in order of the statistical significance of their expression profiles.
The rankings of the 27 known clock genes (Table 1) showed that the
three algorithms performed similarly, and all identified most of the
known clock genes from among their top 25% ranked candidates.

4 CONCLUSION
In this study, we present an automated algorithm for identifying
periodic patterns in large-scale temporal gene expression profiles.
It employs harmonic regression based on AR spectral analysis to
identify and model circadian rhythms. Compared with separate
frequency-domain or time-domain methods, our methodology is a
joint strategy which analyzes the time-series through both frequency
and time domains. Testing on synthetic and real microarray data
showed that our novel method was computationally optimal and
substantially more accurate than two existing and widely-used
rhythmicity detection techniques (COSOPT and Fisher’s G-test).

In addition, our method identifies a novel set of rhythmically
expressed Arabidopsis genes which may supply more valuable
information for further study of plant circadian systems.
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