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Abstract: This research presents a brain-computer interface (BCI) framework for brain signal classifi-
cation using deep learning (DL) and machine learning (ML) approaches on functional near-infrared
spectroscopy (fNIRS) signals. fNIRS signals of motor execution for walking and rest tasks are ac-
quired from the primary motor cortex in the brain’s left hemisphere for nine subjects. DL algorithms,
including convolutional neural networks (CNNs), long short-term memory (LSTM), and bidirectional
LSTM (Bi-LSTM) are used to achieve average classification accuracies of 88.50%, 84.24%, and 85.13%,
respectively. For comparison purposes, three conventional ML algorithms, support vector machine
(SVM), k-nearest neighbor (k-NN), and linear discriminant analysis (LDA) are also used for classi-
fication, resulting in average classification accuracies of 73.91%, 74.24%, and 65.85%, respectively.
This study successfully demonstrates that the enhanced performance of fNIRS-BCI can be achieved
in terms of classification accuracy using DL approaches compared to conventional ML approaches.
Furthermore, the control commands generated by these classifiers can be used to initiate and stop the
gait cycle of the lower limb exoskeleton for gait rehabilitation.

Keywords: functional near-infrared spectroscopy; brain-computer interface; convolutional neural
network; long short-term memory; neurorehabilitation

1. Introduction

The world has been striving to create a communication channel based on signals
obtained from the brain. A brain-computer interface (BCI) is a communication system
that provides its users with control channels independent of the brain’s output channel to
control external devices using brain activity [1,2]. The BCI system was first introduced by
Vidal in 1973 in which he proposed three assumptions regarding BCI, including analysis of
complex data in the form of small wavelets [3]. A typical BCI system consists of five stages,
as shown in Figure 1. The first stage is the brain-signal acquisition using a neuroimaging
modality. The second is preprocessing those signals as they contain physiological noises
and motion artefacts [4]. The third stage is feature extraction in which meaningful features
are selected [5]. These features are then classified using suitable classifiers. The final stage is
the application interface in which the classified BCI signals are given to an external device
as a control command [6].

Researchers have been using different techniques to acquire brain signals [7]. These
techniques include electroencephalography (EEG), functional near-infrared spectroscopy
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(fNIRS), magnetoencephalography (MEG), and functional magnetic resonance imaging
(fMRI) [8]. EEG is a technique used to analyze brain activity by measuring changes in the
electrical activity of the active neurons in the brain [9], while MEG measures the changes in
magnetic fields associated with the brain’s electrical activity changes [10]. fMRI is another
modality for analyzing brain function by measuring the localized changes in cerebral blood
flow stimulated by cognitive, sensory, or motor tasks [11,12]. In this study, we will only
be dealing with fNIRS-BCI. fNIRS is a non-invasive optical neuroimaging technique that
measures the concentration changes of oxy-hemoglobin (∆HbO) and deoxy-hemoglobin
(∆HbR) that are associated with the brain activity stimulated, when participants perform
experiments, such as arithmetic tasks, motor imagery, motor execution, etc. [13]. It is a
non-invasive, portable and easy-to-use brain imaging technique that helps study the brain’s
functions in the laboratory, naturalistic, and real-world settings [14]. fNIRS consists of
near-infrared light emitter detector pairs. The emitter emits light with several distinct
wavelengths absorbed in the subject’s scalp, consequently causing scattered photons; while
some of them are absorbed, the others disperse and pass through the cortical areas where
HbO and HbR chromophores absorb the light and have different absorption coefficients.
The concentration of HbO and HbR changes along the photon path in consideration of the
modified Beer-Lambert law [15].

Figure 1. Basic design and operation of the brain-computer interface (BCI)-based control.

In the recent decade, the research on fNIRS-BCI has increased enormously, and new
diverse techniques, particularly in its applications, may grow exponentially over the follow-
ing years [16]. One of the significant fields of fNIRS application is cognitive neuroscience,
particularly in real-world cognition [17], neuroergonomics [18], neurodevelopment [19],
neurorehabilitation [20], and in social interactions. fNIRS-BCI can provide a modest input
for BCI systems in the real time, but improvements are required for this system as there is
the difficulty faced with the collection and interpretation of the data for classifiers due to
noise in the data and subject variations [21].

Well-designed wearable assistive devices for rehabilitation and performance augmen-
tation purposes have been developed that run independently of physical or muscular
interventions [22–24]. Recent studies focus on acquiring the user’s intent through brain
signals to control these devices/limbs [25–27]. In assistive technologies, the fNIRS-BCI
system is a suitable technique for controlling exoskeletons and wearable robots by using
intuitive brain signals instead of being controlled manually by various buttons in order to
get the desired postures [28]. In addition, it has a better spatial resolution, fewer artefacts,
and acceptable temporal resolution, which makes it a suitable choice for rehabilitation and
mental task applications [29].

To find the best machine-learning (ML) method for fNIRS-based active-walking classi-
fication, a series of experiments with various ML algorithms and configurations were con-
ducted; the classification accuracy achieved was above 95% [30] for classifying 1000 samples
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using different ML algorithms, such as random forest, decision tree, logistic regression, sup-
port vector machine (SVM) and k-nearest neighbor (k-NN). In order to achieve minimum
execution delay and minimum computation cost for an online BCI system, linear discrimi-
nant analysis (LDA) was used with combinations of six features for walking intention and
rest tasks [31].

The traditional method of extracting and selecting acceptable features can result in
performance degradation. In contrast, deep neural networks (DNNs) can extract different
features from raw fNIRS signals, nullifying the need for a manual feature extraction stage
in the BCI system development, but limited studies are available so far [32,33].

Convolutional neural network (CNN) is a deep-learning (DL) approach that can
automatically learn relevant features from the input data [34]. In a study, CNN architecture
was compared to conventional ML algorithms, and CNNs performed better in terms of
classification with an average classification accuracy of 72.35± 4.4% for the four-class motor
imagery fNIRS signals [35]. CNN-based time series classification (TSC) methods to classify
fNIRS-BCI are compared with ML methods, such as SVM. The results showed that the
CNN-based methods performed better in terms of classification accuracy for left-handed
and right-handed motor imagery tasks and achieved up to 98.6% accuracy [36].

Time-series data can be handled more precisely using long short-term memory (LSTMs)
modules. In a study, four DL models were evaluated including multilayer perceptron
(MLP), forward and backward long short-term memory (LSTMs), and bidirectional LSTM
(Bi-LSTM) for the assessment of human pain in nonverbal patients, and Bi-LSTM model
achieved the highest classification accuracy of 90.6% [37]. Using the LSTM network, large
time scale connectivity can be determined with the help of the InceptionTime neural net-
work, which is an attention LSTM neural network utilized for the brain activations of mood
disorders [38]. A recent study assessed four-level mental workload states using DNNs,
such as CNNs and LSTM for fNIRS-BCI system, with average classification accuracies of
87.45% and 89.31% [39].

This study contributes to the development of a neurorehablitation tool in the gait
training of elderly and disabled people. The main objective of this study is to compare two
classification approaches, ML and DL, to achieve high performance in terms of classification
accuracy on the time-series fNIRS data. The complete summary of the methods employed
in this research is depicted in Figure 2.

Figure 2. Time-series functional near-infrared spectroscopy (fNIRS) signal classification for walking
and rest tasks using conventional machine-learning (ML) and DL algorithms. Signal processing and
feature engineering followed by classification using ML and DL approaches.
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2. Materials and Methods
2.1. Experimental Paradigm

Nine healthy right-handed male subjects of 27 ± 5 median age were selected. The
subjects had no history of motor disability or any visual neurological disorders affecting
the experimental results. fNIRS-based BCI signals were acquired from the primary motor
cortex (M1) in the left hemisphere for self-paced walking [40]. Before the start of each
experiment, the subjects were asked to take a rest for 30 s in a quiet room to establish the
baseline condition; it was followed by 10 s of walking on a treadmill, followed by 20 s of
rest while standing on the treadmill. At the end of each experiment, a 30 s rest was also
given for baseline correction of the signals. Each subject performed 10 trials, as shown
in Figure 3. Excluding the initial (30 s) and final (30 s) of rest, the total length of each
experiment was 300 s for each subject. All the experiments were conducted in accordance
with the latest Declaration of Helsinki and approved by the Institutional Review Board of
Pusan National University, Busan, Republic of Korea [41].

Figure 3. Experimental paradigm with experimental 10 trials with initial and final 30 s rest.

2.2. Experimental Configuration

In this study a multi-channel continuous-wave imaging system (DYNOT: Dynamic
Near-infrared Optical Tomography; NIRx Medical Technologies, NY, USA) was used to
acquire the brain signals, which operate on two wavelengths, 760 and 830 nm, with a
1.81 Hz sampling frequency. Four near-infrared light detectors and five sources (total of
nine optodes) were placed on the left hemisphere of the M1 with 3 cm of distance between
a source and a detector [42]. A total of twelve channels were formed in accordance with the
defined configuration, as shown in Figure 4.

Figure 4. Optode placement on the left hemisphere of the motor cortex with channel configuration
using 10–20 international system.
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2.3. Signal Acquisition

The acquired light intensity signals from the left hemisphere of the M1 were first
converted into oxy- and deoxy-hemoglobin concentration changes (∆cHbO(t), and ∆cHbR(t))
using the modified Beer-Lambert law [43].

[
∆cHbO(t)
∆cHbR(t)

]
=

[
αHbO(λ1) αHbR(λ1)
αHbO(λ2) αHbR(λ2)

]−1[ ∆A(t, λ1)
∆A(t, λ2)

]
d ∗ l

(1)

where ∆cHbO(t) and ∆cHbR(t) are the concentration changes of HbO and HbR in [µM],
A(t, λ1) and A(t, λ2) are the absorptions at two different instants, l is the emitter–detector
distance (in millimeters), d is the unitless differential path length factor (DPF), and αHbO( λ)
and αHbR(λ) are the extinction coefficients of HbO and HbR in [µM−1 cm−1].

2.4. Signal Processing

After obtaining oxy-hemoglobin concentration changes (∆cHbO(t) and ∆cHbR(t)), the
brain signals acquired were filtered with suitable filters using the modified Beer-Lambert
law. In order to minimize the physiological or instrumental noises, such as heartbeat
(1–1.5 Hz), respiration (~0.5 Hz), Mayer waves (blood pressure), artefacts, and others, the
signals were low-pass filtered at a cut-off frequency of 0.5 Hz and a high-pass filter with
cut-off frequency of 0.01 Hz [44]. The filter used for ∆cHbO(t) signals were hemodynamic
response (hrf) using NIRS-SPM toolbox [45]. The averaged ∆cHbO(t) signal for task and
rest of subject 1 after filtering is shown in Figure 5.

Figure 5. Averaged ∆cHbO(t) signal for task and rest of subject 1.

2.5. Feature Extraction

For the conventional ML algorithms, five different features of filtered ∆cHbO(t) signals
were extracted using the spatial average for all 12 channels. Five statistical properties
(mean, variance, skewness, kurtosis, and peak) of the averaged signals were calculated
for the entire task and rest sessions. In this study, a feature combination of signal mean,
signal peak, and signal variance a was used for the ML classifiers. This specific combination
was selected based on the higher classification accuracies that were obtained using these
features [46,47].
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For the mean, the equation was as follows:

X =
1
N

N

∑
i=1

(Zi) (2)

where N is the total number of observations, and Zi is the ∆cHbO(t) across each observation.
For signal variance, the calculation was as follows:

σ2 =
∑N

i=1
(
Xi − X

)
n− 1

(3)

where n is the sample size, Xi is the ith element of the sample, and X is the mean of the
sample. To calculate signal peak, the max function in MATLAB® was used.

3. Classification Using Machine-Learning Algorithms
3.1. Support Vector Machine (SVM)

SVM is a commonly used classification technique suitable for fNIRS-BCI systems for
handling high-dimensional data [48,49]. In supervised learning, the SVM classifier creates
hyperplanes to maximize the distance between the separating hyperplanes and the closest
training points [50]. The hyperplanes, known as the class vectors, are called support vectors.
The separating hyperplane in the two-dimension features space is given by:

f (x) = r · x + b (4)

where b is a scaling factor, and r, x ∈ R2 and b ∈ R1. The optimal solution, r*, that is
the distance between the hyperplane and the nearest training point(s) is maximized by
minimizing the cost function. The optimal solution, r* is given by the equation.

Minimize
1
2
||w||2 + C

n

∑
i=1

ξi (5)

Subject to
yi

(
wT xi + b

)
≥ 1 – ξi, ξi ≥ 0 (6)

where yi represents the class label for the ith sample, T is the transpose, and n is the
total number of samples, ||w||2 = wTw. where wT and xi ∈ R2, b ∈ R1, C is the trade-off
parameter between the margin and error, and ξi is the training error.

3.2. k-Nearest Neighbor (k-NN)

k-NN predicts the test sample’s category; the k value represents the number of neigh-
bors considered and classifies it in the same class as its nearest neighbor based upon the
largest category probability [51]. Euclidean distance is the distance between the trained
and the test object given by the equation.

DE (p, q) =

√
n

∑
i=1

(pi − qi)
2 (7)

where n is the n-space, p and q are two points in the Euclidean n-space, and pi, qi are the
two vectors, stating from the origin of the space.

k-NN is a widely used efficient classification method for BCI applications because of
its low computational requirements and simple implementation [52,53].

3.3. Linear Discriminant Analysis (LDA)

LDA has discriminant hyperplanes to separate classes from each other. LDA performs
well in various BCI systems because of its simplicity and execution speed [54]. It minimizes
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the variance of the class and maximizes the separation between the mean of the class by
maximizing the Fisher’s criterion [55]. The equation for Fisher’s criterion is given by:

J (v) =
vT Sbv
vT Swv

(8)

where Sb and Sw are the between-class and within-class scatter matrices given as:

Sb = (m1 −m2)(m1 −m2)
T , (9)

Sw = ∑
xn∈ C1

(xn −m1)(x−m2)
T + ∑

xn∈ C2

(xn −m1)(x−m2)
T

where xn denotes samples, m1 and m2 are the group means of classes C1 and C2, respectively.

4. Classification Using Deep-Learning Algorithms

fNIRS signal classification with conventional ML methods is composed of local and
global feature extraction, e.g., independent component analysis (ICA) and principal compo-
nent analysis (PCA), selection of possible features, their combinations, and dimensionality
reduction, which leads to the biasness and overfitting of the data [56]. It is because of these
limitations a large amount of time is consumed in the mining and preprocessing of the
data [57].

The BCI classification task can avoid local filtering, noise removal, and manual local
feature extraction by utilizing DL algorithms as an alternative to avoid the need for manual
feature engineering, data cleaning, analysis, transformation, and dimensionality reduction
before feeding it to the learning machines [58]. Extracting and selecting appropriate features
is critical with fNIRS-BCI signals, and the multi-dimensionality and complexity of fNIRS
signals make it ideal for DL algorithms to work with.

4.1. Convolutional Neural Networks (CNNs)

CNNs are a type of neural networks that are capable of automatically learning ap-
propriate features from the input fNIRS time-series data. CNNs consist of several layers,
such as the convolutional layer, pooling layer, fully connected layer, and output layer [59].
The input fNIRS time-series data (the changes in the HbO concentrations) across all the
channels are passed through CNN layers. The convolutional layer contains filters that are
known as convolution kernels to extract features. CNN minimizes the classification errors
by adjusting the weight parameters of each filter using forward and backward propagation.

The convolution operation is the sliding of a filter over the time series, which results
in activation maps also known as feature maps that stores the features and patterns of the
fNIRS data [60]. Convolution operation for time stamp t is given by the equation:

Ct = f (ω ∗ Xt−l/2:t+l/2 + b) | ∀ t ∈ [1, T ] (10)

where C is the output of a convolution (dot product) on a time series, X, of length, T, with a
filter, ω, of length, l, b is a bias parameter, and f is a non-linear function, such as the rectified
linear unit (ReLU).

After the convolutional layer, we have a pooling layer that downsamples the spatial
size of the data and also reduces the number of parameters in the network [61]. The pooling
layer is followed by a fully connected layer, as shown in Figure 6 in which each data point
is treated as a single neuron that outputs the class scores, and each neuron is connected to
all the neurons in the previous layer [62].
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Figure 6. Convolutional neural network (CNN) model with convolutional layer, dropout layer,
pooling layer, flatten layer, fully connected layer, and output layer.

The proposed CNN model consists of the input layer, three one-dimensional convolu-
tional layers, max-pooling layers, dropout layers, a fully connected layer, and an output
layer. The three convolutional layers contain filters 128, 64, 32 with a kernel size of 3, 5, 11,
respectively. A dropout layer of 0.5 ‘dropout ratio’ was added after each convolutional layer
to avoid overfitting, followed by a pooling layer with a stride of two. The input fNIRS time-
series data after passing through a number of convolutional, max-pooling, and dropout
layers is flattened and fed into the fully connected layers for the purpose of classification.
The fully connected layer of 100 units is incorporated with ReLU activation. The output
layer consists of two neurons corresponding to the two classes with Softmax activation. The
optimization technique used was Adam with a batch size of 150 and 500 number of epochs.

4.2. Long Short-Term Memory (LSTM) and Bi-LSTM

LSTM is a DL algorithm that can achieve high accuracies in terms of classification,
processing, and forecasting predictions on the time-series fNIRS data. LSTMs have internal
mechanisms called gates that can regulate the flow of information [63]. These gates, such as
forget gate, input gate, and output gate, can learn which data in a sequence are necessary
to keep or throw away [64]. By doing that, it can pass relevant information down the long
chain of sequences to make predictions. The equations for forget gate ( ft), input gate (it)
and output gate (ot) are given by:

ft = σ
(

W f · [ht−1, xt ] + b f

)
(11)

it = σ(Wi · [ht−1, xt ] + bi) (12)

ot = σ(Wo · [ht−1, xt ] + bo) (13)

where W f , Wi, and Wo are the weight matrices of forget, input, and output gates, respec-
tively, and ht−1 is the hidden state.
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These gates contain sigmoid and Tanh activations to help regulate the values flowing
through the network [65]. General sigmoid function is given by:

f (x) =
1

1 + e−k(x−xo)
(14)

where xo is the x-value of the sigmoid midpoint, e is the natural logarithm base, and k is the
growth rate.

For LSTM the data has to be reshaped because it expects the data in the form of
(m × k × n), where m is the number of samples, n refers to the number of fNIRS channels
(12 ∆cHbO(t) channels), and k refers to the time steps. The proposed LSTM model consisted
of an input layer, four LSTM layers, a fully connected layer, and an output layer, as shown
in Figure 7. A dropout layer of 0.5 ‘dropout ratio’ was added after the LSTM layers to avoid
overfitting. The output from the dropout layer is flattened and fed to the fully connected
layer of 64 units, also known as the dense layer, and incorporated with ReLU activation.
Finally, an output layer consists of two neurons corresponding to the two classes with
Softmax activation. The early-stopping technique was used to avoid overfitting with the
patience of 50; a batch size of 150 over 500 epochs with Adam optimization technique.

Figure 7. Long short-term memory (LSTM) model with four LSTM layers, dropout layer, flatten layer,
fully connected layer, and output layer.

Bi-LSTM models are a combination of both forward and backward LSTMs [66]. These
models can run inputs in two ways, from past to future and from future to past and have
both forward and backward information about the sequence at every time step [67]. Bi-
LSTM differs from conventional LSTMs as they are unidirectional, and with bidirectional,
we are able at any point in time to preserve information from both past and future, which
is why they perform better than conventional LSTMs [68].

The proposed Bi-LSTM model consisted of two Bi-LSTM layers with 64 hidden units,
a fully connected layer, and an output layer, as shown in Figure 8. The fully connected
layer of 64 units is employed with ReLU activation, and the output layer consists of two
neurons corresponding to the two classes with Softmax activation.
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Figure 8. Bidirectional LSTM (Bi-LSTM) model with two Bi-LSTM layers with 64 units, fully con-
nected layer, and output layer.

5. Results

The results evaluated for all the methods used in this study are presented in this
section, including the validation of the methods. ML algorithms (SVM, k-NN, and LDA)
were performed on MATLAB® 2020a Classification Learner App, whereas DL algorithms
(CNN, LSTM, and Bi-LSTM) were performed on Python 3.7.12 on Google Colab using
Keras models with TensorFlow.

5.1. Classification Accuracy of Machine-Learning Algorithms

For ML algorithms, five features (signal mean, signal variance, signal skewness, signal
kurtosis, and signal peak) across all 12 channels of filtered ∆cHbO(t) signals were spatially
calculated. Three feature combinations that were signal mean, signal variance, and signal
peak yielded the best results. The manually extracted features from fNIRS data of walking
and rest states of nine subjects are fed to the three conventional ML algorithms, SVM, k-NN,
and linear LDA, and the highest accuracies obtained were 78.90%, 77.01%, and 66.70%
across 12 channels, respectively, as given in Table 1.

Table 1. Accuracy of conventional machine-learning (ML) algorithms, k-nearest neighbor (k-NN),
support vector machine (SVM), and linear discriminant analysis (LDA) for all nine subjects.

Classifier Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9

SVM 78.90% 76.70% 66.70% 71.50% 72.00% 72.80% 73.50% 75.70% 77.40%
k-NN 77.01% 74.40% 68.30% 70.60% 73.50% 74.10% 72.02% 73.50% 84.80%
LDA 64.30% 66.30% 63.70% 66.30% 66.70% 65.20% 65.60% 67% 67.60%

To curb overfitting, 10-fold cross-validation was used for the training of the models.
The accuracy of conventional ML algorithms for all nine subjects is shown in a bar graph in
Figure 9.
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Figure 9. Machine-learning (ML) classifier accuracies (in %) for nine subjects. The ML classifiers are
support vector machine (SVM), k-nearest neighbor (k-NN), and linear discriminant analysis (LDA).

5.2. Classification Accuracy of Deep Learning Algorithms

To evaluate the deep-learning models, the dataset was initially split into an 80:20 ratio,
the training set (80%) and the testing set (20%). The training set used for DL methods in this
study has 12 feature dimensions. The learning performance of the algorithm is affected by
the size of the training set, which is why 20% of the validation set were employed for each
subject since the larger training set usually provides higher classification performance [69].
Although, for CNN, a smaller number of samples after the 30%validation set also attained
classification accuracy reaching 90%. The pre-processed fNIRS data of walking and rest
states of nine subjects is fed to the three DL algorithms, CNN, LSTM, and Bi-LSTM;
the highest classification accuracies obtained were 95.47%, 95.35%, and 95.54% across 12
channels, respectively. The classification accuracy of DL algorithms for all nine subjects is
shown in a bar graph in Figure 10.

Figure 10. Deep-learning (DL) classifier accuracies (in %) for nine subjects. The DL classifiers are
convolutional neural network (CNN), long short-term memory (LSTM), and bidirectional LSTM
(Bi-LSTM).
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All the DL models (CNN, LSTM, and Bi-LSTM) were compiled with the metric “accu-
racy”, which is the measure of the number of correct predictions from all the predictions that
were made. To further evaluate the effectiveness of the model, model “precision”, which is
the number of positive predictions divided by the total number of positive predicted values
and model “recall”, which is the number of actual positives divided by the total number
of positive values were also calculated. Accuracy, precision, and recall of DL algorithms
are summarized in Tables 2–4. The loss function used for the models was “categorical
cross-entropy” which is a measure of prediction error, and the optimization technique used
was “Adam optimizer”. In order to avoid overfitting, early-stopping technique was used
to halt the training when the error during the last 50 epochs is not reduced. Learning rate
of 0.001 and decay factor of 0.5 were used in all DL models.

Table 2. Accuracy, precision, and recall of deep-learning (DL) algorithm, convolutional neural
network (CNN) for all nine subjects.

CNN Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9

Accuracy 95.47% 88.10% 85.71% 87.72% 95.29% 85.63% 85.70% 87.37% 85.52%
Precision 90.78% 86.65% 88.28% 82.94% 93.72% 86.18% 79.32% 85.23% 83.79%

Recall 87.88% 80.74% 84.37% 85.63% 90.49% 82.87% 82.60% 88.06% 81.63%

Table 3. Accuracy, precision and recall of deep learning (DL) algorithm, long short-term memory
(LSTM) for all nine subjects.

LSTM Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9

Accuracy 83.81% 82.84% 82.72% 81.83% 95.35% 83.04% 81.72% 82.00% 84.81%
Precision 78.24% 83.36% 80.92% 80.83% 90.76% 85.49% 80.29% 81.43% 82.45%

Recall 80.04% 82.32% 81.75% 81.25% 93.45% 84.35% 81.82% 83.63% 79.83%

Table 4. Accuracy, precision and recall of deep learning (DL) algorithm, bidirectional LSTM (Bi-LSTM)
for all nine subjects.

Bi-LSTM Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9

Accuracy 95.54% 83.55% 81.81% 82.42% 93.28% 81.67% 81.85% 82.62% 83.42%
Precision 90.74% 80.23% 82.45% 81.72% 95.56% 80.48% 84.90% 80.53% 85.37%

Recall 92.38% 82.08% 80.76% 83.62% 91.49% 82.43% 83.73% 84.29% 80.97%

To evaluate the statistical significance of ML and DL methods, a t-test was performed
for the best performing DL method (CNN) and all the other five classifiers accuracies, as
shown in Table 5 The results of these statistical tests showed significant improvement of
classification accuracy for the proposed DL method (p < 0.008) and the null hypothesis,
meaning no statistical significance was rejected.

Table 5. Statistical significance between CNN and all other five classifiers accuracies.

Classifiers Bonferroni Correction Applied (p < 0.008)

CNN vs. SVM 1.42 × 10−5

CNN vs. k-NN 8.63 × 10−5

CNN vs. LDA 4.01 × 10−12

CNN vs. LSTM 5.35 × 10−9

CNN vs. Bi-LSTM 2.19 × 10−8

5.3. Validation

For the purpose of validation of the proposed methods, the analysis was also per-
formed on an open-access database containing fNIRS brain signals (∆cHbO(t) and ∆cHbR(t))
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for the dominant foot tapping vs. rest [70]. The analysis was performed for 20 subjects
with 25 trials for each subject. By applying the ML methods (SVM, k-NN, and LDA) on
the fNIRS dataset for the dominant foot tapping vs. rest tasks, the average classification
accuracies were estimated at 66.63%, 68.38%, and 65.96%, respectively, while for DL meth-
ods (CNN, LSTM, and Bi-LSTM) the average classification accuracies were estimated at
79.726%, 77.21%, and 78.97%, respectively. The students’ t-test showed significantly higher
performance (p < 0.008) for the proposed DL method. The results obtained from the valida-
tion dataset also confirmed the high performance of the proposed DL methods over the
conventional ML methods.

6. Discussion

Around the world, there are a substantial number of people that have gait impairment
and permanent disability in their lower limbs [71]. In the recent decade, the development
of wearable/portable assistive devices for mobility rehabilitation and performance aug-
mentation focuses on acquiring the user’s intent through brain signals to control these
devices/limbs [72]. In the field of assistive technologies, the fNIRS-BCI system is a rel-
atively suitable technique for the control of exoskeletons and wearable robots by using
intuitive brain signals instead of being controlled manually by various buttons to get the
desired postures [28,31]. It has a better spatial resolution, fewer artefacts, and acceptable
temporal resolution, which makes it a suitable choice for rehabilitation and mental task
applications [29,73]. High accuracy BCI systems are to be designed in order to improve
the quality of life of people with gait impairment since any misclassification can probably
result in a serious accident [56]. To achieve this, the proposed DL and conventional ML
methods are investigated for a state-of-the-art fNIRS-BCI system. The control commands
generated through these models can be used to initiate and stop the gait cycle of the lower
limb exoskeleton for gait rehabilitation.

Researchers have been exploring different ways to improve the classification accuracies
by using different feature extraction techniques, feature combinations, or by using different
machine-learning algorithms [30]. In a study, six feature combinations, signal mean (SM),
signal slope (SS), signal variance (SV), slope kurtosis (KR), and signal peak (SP) have
been used for walking and rest data, and the highest average classification accuracy of
75% was obtained from SVM using the hrf filter [31]. In this study, we used three feature
combinations of the signal mean, signal variance, and signal peak, and the accuracy
obtained from SVM using these features were 73.91%. In a recent study, four-level, mental
workload states were assessed using the fNIRS-BCI system by utilizing DNNs, such as
CNN and LSTM, and the average accuracy obtained using CNN was 87.45% [39]. Our
study achieved almost the same average classification accuracy for CNN with 87.06% for
two-class motor execution of walking and rest tasks.

CNN generally refers to a two-dimensional CNN used for image classification, in
which the kernel slides along two dimensions on the image data. Recently, researchers
have started using deep learning for fNIRS-BCI and bioinformatics problems and have
achieved good performances using 2-D CNNs [35,74]. However, in this study, we have
considered the one-dimensional CNN for time series fNIRS signals of motor execution
tasks and reached a satisfactory classification accuracy. The highest average classification
accuracy obtained in this study is 88.50%. For time-series fNIRS data, LSTMs and Bi-LSTMs
can achieve high accuracy in terms of classification, processing, and forecasting predictions.
In a study for assessing human pain in nonverbal patients, LSTM and Bi-LSTM models
were evaluated, and the Bi-LSTM model achieved the highest classification accuracy of
90.6% [37]. In another study, the LSTM based conditional generative adversarial network
(CGAN) system was analyzed to determine whether the subject’s task is left-hand finger
tapping, right-hand finger tapping, or foot tapping based on the fNIRS data patterns, and
the classification accuracy obtained was 90.2%. In the present study, the highest accuracy
achieved on any subject with LSTM and Bi-LSTM is 95.35% and 95.54%, respectively, across
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all 12 channels. The comparison of the average accuracies obtained using ML and DL
approaches is shown in a bar graph in Figure 11.

Figure 11. Comparison between machine-learning (ML) classifiers (support vector machine (SVM),
k-nearest neighbor (k-NN), and linear discriminant analysis (LDA)) and deep-learning (DL) classifiers
(convolutional neural network (CNN), long short-term memory (LSTM), and bidirectional LSTM
(Bi-LSTM)) based on average accuracies.

7. Conclusions

In this study, two approaches, ML and DL, are investigated to decode two-class data
of walking and rest tasks to obtain maximum classification accuracy. The DL approaches
proposed in this study, CNN, LSTM, and Bi-LSTM, attained enhanced performance of
the fNIRS-BCI system in terms of classification accuracy as compared to conventional ML
algorithms across all nine subjects. The highest average classification accuracy of 88.50%
was obtained using CNN. CNN showed significantly (p < 0.008) better performance as
compared to all other ML and DL algorithms. The control commands generated by the
classifiers can be used to start and stop the gait cycle of the lower limb exoskeleton which
can effectively assist elderly and disabled people in the gait training.
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