
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Browse all Theses and Dissertations Theses and Dissertations 

2016 

Analyzing Cognitive Workload through Eye-Related Analyzing Cognitive Workload through Eye-Related 

Measurements: A Meta-Analysis Measurements: A Meta-Analysis 

Melissa Patricia Coral 
Wright State University 

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all 

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons 

Repository Citation Repository Citation 
Coral, Melissa Patricia, "Analyzing Cognitive Workload through Eye-Related Measurements: A Meta-
Analysis" (2016). Browse all Theses and Dissertations. 1507. 
https://corescholar.libraries.wright.edu/etd_all/1507 

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has 
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE 
Scholar. For more information, please contact library-corescholar@wright.edu. 

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/1507?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1507&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu


 
 

ANALYZING COGNITIVE WORKLOAD THROUGH EYE-RELATED 

MEASUREMENTS: A META-ANALYSIS 

 

 

 

A thesis submitted in partial fulfillment  

of the requirements for the degree of  

Master of Science in Industrial and Human Factors Engineering 

 

By 

 

Melissa Patricia Coral 

B.S., Wright State University, 2011 

 

 

 

 

 

 

2016 

Wright State University 



 
 

WRIGHT STATE UNIVERSITY 

GRADUATE SCHOOL 

      May 5, 2016 

 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY 

SUPERVISION BY Melissa Patricia Coral ENTITLED Analyzing Cognitive 

Workload Through Eye-related Measurements: A Meta-Analysis BE ACCEPTED 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF 

Master of Science in Industrial and Human Factors Engineering 

      
Mary E. Fendley, Ph.D. 

Thesis Director 
 

      
Jaime E. Ramirez-Vick, Ph.D. 

Chair, Department of Biomedical, 
Industrial and Human Factors Engineering 

 
Committee on Final Examination: 
 
      
Mary E. Fendley, Ph.D. 
 
      
Frank W. Ciarallo, Ph.D. 
 
      
Trevor J. Bihl, Ph.D. 
 
      
Robert E. W. Fyffe, Ph.D. 
Vice President for Research and  
Dean of the Graduate School 
 



 

iii 
 

ABSTRACT 

Coral, Melissa Patricia. M.S.I.H.E., Department of Biomedical, Industrial and Human 
Factors Engineering, Wright State University, 2016. Analyzing Cognitive Workload 
Through Eye-Related Measurements: A Meta-Analysis. 
 
 
 
Understanding cognitive workload has become a vital topic for researchers in developing 

future systems. Existing research has investigated the use of physiological measurements 

of the eye with cognitive workload, though a quantitative synthesis has yet to be 

performed.  A meta-analysis was conducted to examine the effects of cognitive workload 

on eye-related measurements. The objective of this meta-analysis is not to determine a 

difference between the levels of workload, but to identify reliable measurements. 

Measurements through blinks, saccades, pupils, and fixations were examined. Twenty-

two studies, contributing to a total of sixty entries, met the appropriate inclusion criteria 

for the meta-analysis. Findings conclude the use of specific eye-related measurements as 

a reliable assessment of cognitive workload. Similar results obtained for moderator 

variables of task type and eye-tracking system did not indicate significant influences. 

Further research should be conducted in this domain to identify causal influences and 

provide an understanding for the results.  
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I. INTRODUCTION 

 Cognitive workload, or the interaction between systems and tasks with the 

capabilities, motivation, and state of the human operator, has become an important 

research aspect to understand when designing and developing the systems of the future 

(Kramer, 1990). Understanding the state of a human operator has become a fundamental 

aspect commonly studied in the human-computer interaction domain. To be able to assess 

and predict cognitive workload relies on the availability of a known measurement linked 

to measuring cognitive workload. Understanding this topic is critical to the successful 

redesign and development of systems incorporating human operators.  

 Much of the cognitive workload research has investigated the use of physiological 

measurements, such as eye-related measurements, as a significant factor for assessing the 

state of the operator; however, a quantitative synthesis examining this relationship has yet 

to be performed. With the sufficient interest created around understanding cognitive 

workload in systems, it would be beneficial to perform a meta-analysis to combine those 

studies examining eye-related measurements with cognitive workload. A meta-analysis 

will allow an examination of the scope of the research domain and will provide a single 

estimate of the reliability and magnitude for the use of eye-related measures. This meta-

analysis is intended to evaluate the effect of cognitive workload on eye-related 

measurements. 

 With the growing research involving cognitive workload and the lack of a prior 

synthesis already being performed exclusively on eye-related measurements, completing 
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a meta-analysis on this topic provides both a cumulative summary of the research and a 

conclusive response to support its continued reliability and use in research. By including 

multiple eye-related measurements, this meta-analysis will attempt to further differentiate 

or identify those measures that have a significant link to cognitive workload. In addition 

to determining whether one measure is a sufficient variable for measuring cognitive 

workload, this analysis attempts to identify multiple useful measures to aid in future 

research where one measure may be more obtainable or measureable than another. 

 The second chapter of this thesis begins with addressing and defining the topic of 

cognitive workload based on its relevance and importance to the research community. By 

being able to discover significant measurements that are linked to understanding and 

evaluating an operator's state, many researchers have attempted to study the effect of 

cognitive workload through a variety of measurements.  

 These measurements can be described under three types: performance, subjective, 

and physiological. Research observing each of these measurement types has identified 

both their advantages and disadvantages; however, using physiological measurements can 

allow for a more objective measure of cognitive workload which can exceed most 

disadvantages (Endsley & Garland, 2000). One physiological system with promising 

connections to evaluating and predicting cognitive workload are measurements from the 

human eye. The use of measurements from this system are not without criticism, since it 

has been argued that real life situations, outside of a laboratory setting, can show 

diminishing values of certain measurements due to the presence of factors acting as noise 

like body movement and varying light conditions (Hogervorst, Brouwer, & van Erp, 

2014; Wickens, Hollands, Bandury, & Parasuraman, 2013). Current research findings 
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from studies observing different eye-related measurements are discussed in the second 

chapter with implications for continued use in evaluating cognitive workload. For 

example, EEG workload and feature saliency has been an observed topic (Laine, Bauer, 

Lanning, Russell, & Wilson, 2002; Noel, Bauer, & Lanning, 2005; East, Bauer, & 

Lanning, 2002). To aid in future research efforts and to determine and identify the most 

reliable eye-related measurements for measuring cognitive workload, a meta-analysis is 

performed. 

 The purpose of performing a meta-analysis for this topic is to provide a single 

estimate of the reliability and magnitude for a measurement of cognitive workload based 

on the combined results of multiple studies that observed these measurements 

individually. The third chapter of the thesis further discusses the background and 

motivation for performing a meta-analysis for this topic.  

 A discussion of the meta-analytic approach utilized in this thesis is also discussed 

in the third chapter. First, a comprehensive search of the literature was performed with 

keywords and search terms including workload, processing load, cognitive workload, 

mental workload, physiological measurements, eye, pupil, blink, fixation, pupillary 

response, pupillometry, and eye movement. From this literature review, a total of 57 

references were considered for inclusion in the meta-analysis. This total number of 

references was reduced further through the evaluation of inclusion criteria; 1) a proper 

quantification of the independent variable of workload and the dependent variable of a 

measurement of eye movement, 2) a publishing date within the past 25 years, dating back 

to 1990, 3) sufficient statistical information to determine effect size estimates, and 4) 

findings presented in terms of a single eye-related measurement with cognitive workload. 
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After all studies were examined based on the defined inclusion criteria, a total of 22 

studies, contributing to a total of 60 entries, remained and contributed to the meta-

analysis.  

 Additional evaluations and examinations are performed on those entries included 

in the meta-analysis. Identifying moderator variables could be important for modeling the 

effect of cognitive workload on eye-related measurements. As a result, the moderator 

variables of individual eye-related measurements, type of task being performed to 

examine cognitive workload, and the system being utilized for the collection of the eye-

related measurements are examined further. Finally, the third chapter concludes with a 

description of the specific steps performed for this meta-analysis, including the 

conversion procedures for calculating the effect sizes of each study included in the meta-

analysis. 

 The fourth chapter of this thesis presents the results of the meta-analysis, 

referencing back to the usability of eye-related measurements to assess and predict 

cognitive workload. From the large, significant effect size of 0.668 achieved for the 

examination of the studies collectively, these results indicate that eye-related 

measurements would provide a reliable measurement of cognitive workload. In 

particular, the measurements of blink duration, rate, interval and frequency, saccade 

extent and peak velocity, pupil size and dilation and horizontal fixation were identified as 

those specific significant and reliable eye-related measurements for assessing cognitive 

workload. The results for the different eye-related measurements are also presented as a 

forest plot, providing a visual depiction of the results. The conclusions and future 
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implications of this analysis are further discussed in the fifth and final chapter of this 

thesis. 
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II. BACKGROUND 

2.1 COGNITIVE WORKLOAD 

 Cognitive workload involves the demands of specific tasks and the mental 

resources available for one to meet those demands (Wickens, 2008). It can also be 

identified as observed delays in information processing capabilities when a considerable 

amount of mental effort is exerted by an individual (Rozado & Dunser, 2015). As seen in 

the previous statements, many descriptions of cognitive workload exist since there is no 

universally accepted definition for the term. Nevertheless, through general consensus, 

workload can be summarized as the interaction between the structure of systems and 

tasks with the capabilities, motivation, and state of the human operator (Kramer, 1990). 

Similar to the way in which physical workload characterizes the energy demand put upon 

muscles, cognitive workload describes the demands of tasks, either cognitive or physical, 

that require the limited information processing capability of the brain (Wickens et al., 

2013).  

  Cognitive workload has become a commonly studied concept in human-computer 

interaction, especially as an integral part of understanding operator state. The concept of 

cognitive workload is useful in explaining human performance errors in terms of 

overload, or when the required capacity of the information-processing system exceeds the 

available capacity (De Rivecourt, Kuperus, Post, & Mulder, 2008). According to De 

Rivecourt et al. (2008), when the operator is overloaded, a decrease in performance will 

be experienced. As a result, understanding cognitive workload allows for a direct 

comparison to the ability of an operator to sustain or reach desired performance levels 

(Xie & Salvendy, 2000). Additionally, understanding the cognitive state of an operator 
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can be important for identifying instances when additional information can be presented, 

avoiding overloading the operator. In fact, according to Haapalainen, Kim, Forlizzi, and 

Dey (2010), "presenting information at the wrong time can drastically increase one's 

cognitive demands, can have negative impacts on task performance and emotional state, 

and in extreme cases, even be life threatening." Identifying cognitive workload, instances 

of overload, and changes in performance are pivotal for many system designs; however, 

specific measurements to recognize these are still being scrutinized. Given its usefulness, 

many efforts have been made to discover and identify those measurements of workload 

(Recarte, Perez, Conchillo, & Nunes, 2008).  

 The ability to measure workload can be pivotal in detecting and preventing 

situations where operator performance would be negatively affected. Recarte et al. (2008) 

share this importance, agreeing that having the knowledge and predictability for human 

information processing errors has become crucial to improve human interaction with 

systems involving risk. In fact, Wang, He, and Chen (2014) state that "the main purpose 

of workload measurement is to identify conditions for overload so that they can be 

avoided by design." For example, data overload is a significant problem in many systems. 

Many systems can require a high intake of information from an operator; however, the 

volume and changing rate of data quickly surpass an operator's ability to gather and 

understand the data (Endsley, 2012). By understanding overload conditions, these 

systems can be redesigned to reduce overload. Thus, having the ability to assess and 

predict workload has become an important topic to consider for designing new systems, 

modifying existing systems, and through task reallocation or adaptive automation by 

avoiding task overload (Van Orden, Limbert, & Makeig, 2001). 
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2.2 COGNITIVE WORKLOAD MEASUREMENTS 

 Research performed to date has shown that cognitive workload can be assessed 

under three measurement types: performance, subjective, and physiological. Subjective 

measurements are based on judgments of the operators in terms of the workload 

associated with the performance of a task or a system function. Performance 

measurements assess workload through the ability of an operator to perform tasks or 

functions of a system. Physiological measurements evaluate the physiological responses 

of the operator with the system or task demands (Wierwille & Eggemeier, 1993). 

Physiological measurements are used to evaluate cognitive workload based on the 

assumption that with an increase in task demands, noticeable changes in various 

physiological systems can be observed (Stanton, Salmon, Walker, Baber, & Jenkins, 

2005).  

 The selection for use of one or more of these measurement types can depend on 

several factors, one being the use in a particular application. For instance, there are 

certain properties that are recommended for use in test and evaluation applications. These 

properties include sensitivity, intrusion, diagnosticity, global sensitivity, transferability, 

and implementation requirements (Wierwille & Eggemeier, 1993). Similar to test and 

evaluation applications, any application with the need for cognitive workload evaluation 

and measurement will expect to utilize those measurement techniques that have proven a 

relationship to cognitive workload. 

 Research using different measurements within these three categories have 

identified many to be significantly linked to measuring cognitive workload. Using 

subjective measurement techniques has the advantages of ease of use and low cost for the 
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researchers (Endsley, 1995). They can also be multidimensional and have the capability 

to permit some predictive assessment of the workload connected to proposed systems and 

designs (Wierwille & Eggemeier, 1993). Performance measures hold the advantages of 

being objective and usually nonintrusive (Endsley, 1995; Stanton et al., 2005). However, 

these measurement types also have some disadvantages. For instance, De Rivecourt et al. 

(2008) found that with subjective measures, "participants are having difficulties 

distinguishing task demands from invested effort." Also, there is the opportunity to 

experience critical information loss when there is a long delay between the operator's 

subjective ratings and completion of the task (Wierwille & Eggemeier, 1993).  

 Only providing indirect insights about cognitive workload are additional 

disadvantages for both performance and subjective measurements. Furthermore, 

performance techniques with primary task measures have limitations in regards to the 

varying levels of workload, by sometimes being insensitive to distinctions at low and 

moderate levels of demand. This occurs due to the operator's ability to expend extra 

processing resources to meet the increased demands at these levels of workload 

(Wierwille & Eggemeier, 1993). For insights about cognitive workload, physiological 

measurements provide direct measurements over time, identifying these measurements as 

potentially being more practical and unbiased compared to performance and subjective 

measurements (Rozado & Dunser, 2015). Previous associations between cognitive 

workload, or more specifically high cognitive workload, and physiological measurements 

have been identified through such aspects as increased cognitive processing, increased 

arousal and increased energy demand (Hogervorst et al., 2014). 
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 Physiological measures are not without their share of disadvantages. Techniques 

to record these measurements are substantially more expensive than those for 

performance and subjective measures and a larger problem exists for discriminating 

between signal and noise for these measurements compared to performance and 

subjective measures (Kramer, 1990). Still, the strengths of physiological measures can far 

outweigh the disadvantages. Such strengths include the ability to record a measurement 

in the absence of behavior, and to provide measures that respond quickly to shifts in 

workload. As well, these measures are relatively unobtrusive and are multidimensional 

(Kramer, 1990). Using physiological measurements can allow for a more objective 

measure of cognitive workload (Endsley & Garland, 2000). Also, by using physiological 

measurements, systems can address the need for in-the-moment, automatic assessments 

of cognitive workload; this includes being able to evaluate workload even when no 

change in task performance can be detected (Haapalainen et al., 2010). In other words, 

these types of measurements are often more attractive as an assessment approach since 

they can be obtained without an intervention by a subjective response or through a 

transformation of a performance response (Marquart, Cabrall, & de Winter, 2015). The 

advantages and disadvantages of these three measurement types are summarized in Table 

1. 
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Table 1. Advantages and Disadvantages of Cognitive Workload Measurements 

Measurement Type Advantages Disadvantages 
Performance Objective Indirect insights about workload 

Nonintrusive Insensitive sometimes to variations in 
workload at low to moderate levels of 
demand 

Subjective Low cost Difficulties distinguishing task 
demands from invested effort 

Ease of use 
Indirect insights about workload 

Multidimensional 

Predictive assessment 
capabilities 

Loss of critical rating information 
with extended delays 

Physiological Direct measurements 
over time 

Difficulty discriminating between 
signal and noise. 

Recorded in the absence 
of behavior 
Unobtrusive 
Responds quickly to 
shifts in workload 

Expensive recording techniques 

Multidimensional 
Unbiased 

 Even while considering the advantages and disadvantages of the different 

techniques of evaluating and measuring cognitive workload, it is not atypical for studies 

investigating this to incorporate the use of more than one measurement within two or 

more techniques (Brookings, Wilson, & Swain, 1996; Recarte et al., 2008; Di Stasi, 

Antoli, Gea, & Canas, 2011; Engstrom, Johansson, & Ostlund, 2005; Bommer & 

Fendley, 2015). According to Cegarra and Chevalier (2008), there are no methods that 

can evaluate and measure cognitive workload alone. Instead, with the inclusion of 

measurements under different techniques, the validity and reliability for identifying 
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cognitive workload would amplify. Before the decision on what those measurements to 

be utilized should include, it is important to justify its relationship to cognitive workload. 

2.3 EYE-RELATED MEASUREMENTS OF COGNITIVE WORKLOAD 

 Physiological measurements encompass those obtained through the different 

systems of the human body. One discipline under these physiological measurements is 

that of ophthalmic physiology. The study of eye movements and eye tracking research 

actually pre-dates the use of computers but it did not begin to thrive until the 1970s due 

to advances in technology for eye tracking and the development of a physiological theory 

linking eye tracking data to cognitive processes. This research only continued to evolve 

with technological advances and became a means of human-computer interaction (Jacob 

& Karn, 2003). Most recently, this technology involves the use of video recordings of the 

eye in real time from high speed cameras placed either on a headband or a computer 

monitor. Through these means, data can be collected in any environment without 

interfering with an operator's task performance (Marshall, 2007).  

 By observing an operator's eye and head movements, researchers have the use of 

a non-intrusive tool to understand how the mind acquires and processes visual 

information (Yang, McDonald, & Zheng, 2012; Holmquist et al., 2011; Poole & Ball, 

2005). Past research also provides an argument that cognitive processes such as reading, 

visual search, and problem solving can be studied based on the relationship between the 

behavior of the operator's eyes and cognition (Maier, Baltsen, Christofersen, & Storrle, 

2014; Kahneman, Beatty, & Pollack, 1967). With the use of eye-tracking technology, 

researchers have a more objective measurement of a user's cognitive workload through 

eye movements and pupillary responses (Buettner, 2013).  
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 Compared with other physiological measurements, there are many benefits 

associated with the use of eye movements in adaptive systems, and thus in identifying 

cognitive workload. Benefits identified include, insensitivity to limb movements, 

including being adjusted for head movements, and the equipment required for observing 

and recording eye movements does not require extensive amounts of training to setup and 

the calibration procedure can be completed rather quickly (Di Nocera, Camilli, & 

Terenzi, 2007). In addition, Kahneman (1973) states that "a useful physiological 

measurement for mental effort should be sensitive to both between-tasks and within-task 

variations." Eye-related measurements meet these criteria. 

 Many studies have previously researched the relationship between cognitive 

workload and eye-related measurements, with some measurements studied more 

frequently than others. Some of the eye-related measurements are related to eye blinks; 

these include blink rate, blink duration, and blink latency. Other measurements are 

characterizations of eye fixations including the number of fixations, fixation duration, 

saccadic duration, saccadic peak velocity, and gaze distribution. One of the most 

commonly studied measurement is of the pupil diameter, also referred to as pupillometry 

(Marquart et al., 2015). 

 The diameter, or size, of the pupil has often been observed and evaluated. 

According to Hess and Polt (1964), the "pupil response not only indicates mental activity 

in itself but shows that mental activity is closely correlated with problem difficulty, and 

that the size of the pupil increases with the difficulty of the problem." Changes in pupil 

diameter have previously been interpreted as indicators of second-to-second variation in 

the amount of workload imposed by a task (Kahneman et al., 1967). Measurements 



 

14 
 

involving the pupil, however, are not without the most criticism as the largest changes in 

the pupil can occur in response to other factors than cognitive workload. Some of the 

main functions of the pupil occur outside of the amount of mental stimulation, such as in 

changes in the amount of light that enters the eye or a shift in the fixation from a far to a 

near object (Kramer, 1990). 

 Research focusing on pupil dilations has shown that they occur at short latencies 

following the onset of a task and subside quickly once the task is completed. More 

importantly, the magnitude of the pupillary dilation appears to be a function of processing 

load, or the mental effort required to perform the cognitive task (Iqbal, Zheng, & Bailey, 

2004; Beatty & Kahneman, 1966; Beatty, 1982). In addition to cognitive tasks, pupillary 

changes have also been found to be sensitive to perceptual and response related demand 

tasks (Kramer, 1990). A specific pupil reaction known as the task-evoked pupillary 

response has been repeatedly associated with a variety of cognitive processes that are 

linked to cognitive load (Klinger, Kumar, & Hanrahan, 2008). One constraint discovered 

for pupillary dilation involves the limits of information-processing capacity of the 

operator. Once these limits are exceeded, any additional increases involved with task 

demands no longer yield an increase in pupillary dilation (Beatty, 1982).  

 Blinking has also being linked to certain cognitive processes. Holland and Tarlow 

(1975) found the rate of blinking to be significantly reduced during processing of 

information in memory. Indications of the relationship between blink rate and cognitive 

processes even dates back to Telford and Thompson (1933), who showed that blink rate 

was reduced during tasks that required concentration and intense mental stimulation. 

Blink rate is more sensitive to cognitive workload through task difficulty than other eye-
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related measurements in demanding visual tasks (Brookings, Wilson, & Swain, 1996). 

The relationship between blink rate and task demands is often attributed to an operator's 

attempts to minimize the possibility of missing important information (Fogarty & Stern, 

1989). Other studies have also led to discoveries such as a decrease in blink rate with 

increases in cognitive demand. Similarly, blink duration shows a tendency to decrease 

while experiencing increases in visual demand (Wierwille & Eggemeier, 1993). 

 Continued research has provided other measurements from the eye with a 

relationship to cognitive workload. For instance, dramatically different results can be 

obtained when even minor changes are made in the parameters defining a fixation (Jacob 

& Karn, 2003); however, dwell time and fixation duration are generally believed to 

increase with an increase in cognitive workload (Marquart et al., 2015). Recent research 

has also indicated that the size of the functional visual field decreases with increasing 

task difficulty (Young & Hulleman, 2013).  

 As previously discussed, different eye-related measurements have been observed 

to either increase or decrease as cognitive workload increases. A summary of those eye-

related measurements observed in this meta-analysis and their currently understood 

indication of increased cognitive workload are summarized in Table 2. 
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Table 2. Summary of Eye-related Measurements and their Relationship to Increased 

Cognitive Workload 

Indicator of Increased Cognitive Workload 
↑ Blink Duration 
↑ Blink Interval 
↑ Blink Frequency 
↑ Saccade Rate 

↑ Saccade Peak 
Velocity 

↑ Saccade Amplitude 

↑ Pupil Size 

↑ Pupil Dilation 

↑ Fixation Frequency 
↑ Fixation Duration 
↑ Horizontal Fixation 
↑ Vertical Fixation 
↑ Mean Dwell Time 

↓ Saccade Extent 

↓ Blink Rate 

↓ Area of Visual Field 

 Being able to understand the relationship between cognitive workload and eye-

related measurements could aid in attaining greater reliability in detecting operator 

cognitive states; which, according to Rozado and Dunser (2015), would "lead the way to 

better and more robust systems for direct, real-time measurement of cognitive workload, 

supporting better human-computer interaction and achieving greater user satisfaction." 

Given this importance and the abundance of research performed individually, it would be 

beneficial to the research community to combine and summarize these individual studies 

through the technique of meta-analysis. 
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III. META-ANALYSIS 

3.1 META-ANALYSIS METHODOLOGY 

 Meta-analysis is a technique that provides a single estimate of the reliability and 

magnitude of an effect, either supporting or refuting a given hypothesis, based on the 

combined results of multiple studies that observed a given hypothesis (Horrey & 

Wickens, 2004; Cooper, 2010; Rosenthal & DiMatteo, 2001; Hall & Rosenthal, 1995; 

Borenstein, Hedges, Higgins, & Rothstein, 2009). The methodology for a meta-analysis 

requires an extremely thorough search for relevant studies and performing a careful 

review and analysis; thus, preventing reliance on the results of a single study or review 

when attempting to understand a specific phenomenon (Rosenthal & DiMatteo, 2001).  

This past reliance was in part due to the statistical significance of a finding being the only 

information reported in the literature.  

 It has been this focus that has often misled researchers and is why a meta-analysis 

typically focuses on effect sizes. In fact, Rosenthal and DiMatteo (2001) state "meta-

analysis prevents our reliance on the significance test of any one finding as a measure of 

its value and helps us realize that repeated results in the same direction across several 

studies, even if not one is significant, are much more powerful evidence than a single 

significant result." Methods of reporting statistical results in any analysis are facing 

scrutiny, with many issues that exist when relying on p-values, especially for 

comparisons (Bihl, Bauer, Temple, & Ramsey, 2015; Halsey, Curran-Everett, Vowler, & 

Drummond, 2015). For example, there is currently disagreement in statistics literature on 

the appropriateness for using p-values due to issues involving its incorrect application 

(Bihl, 2015). The American Statistical Association has even released a statement 
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addressing the misconceptions and misuse of the p-value (Wasserstein & Lazar, 2016).  

Using effect sizes, or the measures of the magnitude of an effect, allow researchers to 

determine estimations of differences between groups or the strength of associations 

between different variables (Nakagawa & Cuthill, 2007). This means that the effect size 

refers to the degree to which the phenomenon is present in the population, with a larger 

effect size meaning a greater degree of manifestation (Cooper, 2010). 

 Cooper (2010) summarizes the meta-analysis process into seven steps; 1) 

formulating the problem, 2) searching the literature, 3) gathering information from 

studies, 4) evaluating the quality of studies, 5) analyzing and integrating the outcomes of 

studies, 6) interpreting the evidence, and 7) presenting the results. Herein, we apply this 

step-by-step methodology to conduct a meta-analysis of the use of eye-related 

measurements for cognitive workload. The step-by-step methodology for this meta-

analysis is summarized in Figure 1. 

 According to Rosenthal and DiMatteo (2001), a meta-analysis has many 

advantages including being able to see the scope of a research domain, keeping statistical 

significance in perspective, minimizing wasted data, and asking focused research 

questions. Cooper (2010) states that "a topic is probably not suitable for research 

synthesis unless it already has created sufficient interest within a discipline or disciplines 

to have inspired enough research to merit an effort at bringing it all together" (p. 23). The 

meta-analysis technique is utilized more routinely today when there is any size of 

research literature addressing a common hypothesis (Hall & Rosenthal, 1995). It allows 

for both formulating potential causal influences and trying to understand why the various 

results occurred (Rosenthal & DiMatteo, 2001). Although the idea of performing a 
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quantitative synthesis of research seems immense, Hall and Rosenthal (1995) reiterate 

that using simple and straightforward techniques that are easily executed, described, and 

understood can deal with the research questions raised in the meta-analysis.  

 

Figure 1. Step-By-Step Meta-Analysis Methodology 

Present the Results

Clearly and completely document the results of the meta-analysis referencing back to the 
applicability of eye-related measurements to assess and predict cognitive workload.

Interpret the Evidence

Summarize the cumulative research evidence and moderator variables in terms of 
strength, limitations, and generalizability.

Analyze and Integrate the Outcomes of Studies

Convert statistical results into effect sizes 
using the r-index or correlation coefficient.

Convert the effect sizes using Fisher's  r-to-z 
transformation before computing the mean 
values to combine results across studies.

Estimate the 95% confidence interval  for 
results of cumulative  study and moderator 

variables.

Evaluate  the Quality of Studies
Identify independent and 

dependent variables as cognitive 
workload and eye-related 
measurement respectively.

Identify Year of Publication 
dating back to 1990.

Identify sufficient statistical 
information to determine effect 

size estimates.

Identify measures of eye 
movement as moderator 

variables. 

Gather Information From Studies

Collect relevant information about each of the studies obtained through the 
literature search.

Search the Literature
Locate studies through multiple sources referencing keywords and search terms including workload, processing load, 

cognitive workload, mental workload, physiological measurements, eye, pupil, blink, fixation, pupillary response, 
pupillometry, and eye movement.

Formulate the Problem

Examine the applicability of eye-related measurements to assess and predict 
cognitive workload.
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3.2 META-ANALYTIC APPROACH 

 A comprehensive search of the literature was performed first to discover those 

relevant studies to be included in the analysis. Keywords and search terms included 

workload, processing load, cognitive workload, mental workload, physiological 

measurements, eye, pupil, blink, fixation, pupillary response, pupillometry, and eye 

movement. The literature search focused on sources including library databases, such as 

PsycINFO and IEEE Xplore,  and the web-based search engines of Google and Google 

Scholar. Together, these different sources allowed a comprehensive search for any 

references with potential relevance to be included in the analysis. These included journal 

articles and conference proceedings. Once the primary search was complete, backwards 

referencing, or a review of the reference lists for all obtained studies, was performed to 

determine whether any related studies could be included. The result of this stepped 

literature review comprised of a total of 57 references considered for inclusion in the 

meta-analysis. 

 Once the comprehensive search of the literature was completed, each study was 

examined based on different criteria predetermined for study inclusion. The inclusion 

criteria included a proper quantification of the independent variable of workload and the 

dependent variable of a measurement of eye movement. With the advancements in 

technology and understanding for recording eye movement measurements, this meta-

analysis focused on studies published within the past 25 years, dating back to 1990. Eye 

measurements collected before this time involved not only a large effort with data 

collection, but even more so with data analysis, where spending days processing data that 

only took minutes to collect was not uncommon (Jacob & Karn, 2003). Additionally, any 
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prospective study must also have included sufficient information to determine effect size 

estimates; from Rosenthal and DiMatteo (2001), certain effect sizes cannot be computed 

from kappa, percent agreement, relative risk, risk difference, or the odds ratio unless the 

raw data is available. Since main effects are most often the focus of a meta-analysis 

(Cooper, 2010), the findings must be presented in terms of a single eye-related 

measurement with cognitive workload and not a fusion of two or more measurements. 

This allowed direct interpretation for singular eye measurements.  

 Since prior meta-analyses have been performed in different disciplines that 

included multiple studies using different factor levels (Uttal et al., 2013; Glioma Meta-

analysis Trialists (GMT) Group, 2002), those studies which analyzed outcomes using 

different factor levels were included in this meta-analysis. Furthermore, since the 

objective of this meta-analysis is not to determine a difference between the varying levels 

of cognitive workload, but to identify reliable measurements capable of predicting 

cognitive workload, it is not imperative that any ordinal aspect of data is captured; thus, 

including estimates of effect sizes based on the F ratios for multiple conditions from the 

studies was allowed. Although this concept may differ from many meta-analyses 

previously performed, there is no particular statistical method defined for this "analysis of 

analyses" (Onnasch, Wickens, Li, & Manzey, 2014). Additionally, it was not necessary to 

identify the data type of the variable examined in the studies for inclusion since a meta-

analysis can be performed using dichotomous, continuous, and ordinal variables (Higgins 

& Green, 2008). In the end, studies that did not meet the established inclusion criteria 

were removed from the analysis. As mentioned by Schaefer, Chen, Szalma, and Hancock 

(2016), the process of rejecting studies for inclusion in the meta-analysis is both common 
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and necessary. This procedure ensures that meaningful results are achieved when 

combining effect sizes from multiple studies.  

 From the original set of research papers, a total of 22 studies remained and 

contributed to the meta-analysis. Those remaining studies and their attributes are 

summarized in Table 3. From the studies included, we can identify a selection of 72 

unique authors with research published in 16 unique journals contributing to the research 

on cognitive workload with eye-related measurements. Some of these studies analyzed 

several relevant eye-related measurements as dependent variables, leading to multiple 

effect sizes. With multiple effect sizes, these can be used individually in an analysis of 

subgroups or in examination of moderating variables (Rosenthal & DiMatteo, 2001). 

Because of this the overall number of entries for the meta-analysis increased to 60. 

Table 3. List of Studies and their Attributes Included in the Meta-Analysis. 

Reference Eye Measure(s) 
Studied 

Participants 
Studied / Task 
Type 

Levels of 
Workload 

Real World vs. 
Laboratory 
Setting 

System Used 

Backs, R. W., & 
Walrath, L. C. 
(1992) 

Pupil Dilation 8 participants, 
control vs. 
search task 

High vs. no 
cognitive 
load 

Laboratory Applied 
Science 
Laboratories 
Eye View 
Monitor and 
TV 
Pupillometer 
System model 
1994-S 

Blink Duration 

Benedetto, S., 
Pedrotti, M., 
Minin, L., 
Baccino, T., Re, 
A., & 
Montanari, R. 
(2011) 

Blink Duration 15 drivers, 
single- and 
dual-tasks, 
primary (Lane 
Change Test) 
and secondary 
(IVIS) tasks 

Baseline, 
dual-task, 
control 

Laboratory SMI iView 
HED head-
mounted 
monocular 
eye-tracker 

Blink Rate 

Average Pupil 
Size 

Brookings, J. 
B., Wilson, G. 
F., & Swain, C. 
R. (1996) 

Blink rate 8 subjects, 
simulated air 
traffic control 
tasks 

High, 
medium, 
low 

Computer-based 
air traffic control 
simulation 

Psycho-
physiological 
Assessment 
Test System 

Saccade Rate 

Saccade 
Amplitude 
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Reference Eye Measure(s) 
Studied 

Participants 
Studied / Task 
Type 

Levels of 
Workload 

Real World vs. 
Laboratory 
Setting 

System Used 

De Rivecourt, 
M., Kuperus, 
M., Post, W., & 
Mulder, L. 
(2008) 

Mean dwell time 19 pilots, 
instrument 
flight task 

4 levels ALSIM AL 100 
Flight Trainer 

Jazz 
Synchronic 
system 
Version RS-
232 

Fixation 
Duration 

Di Nocera, F., 
Camilli, M., & 
Terenzi, M. 
(2007) 

Eye Fixations 10 Pilots, flight 
simulation 

High 
workload 
(departure 
and 
landing) vs. 
low to 
moderate 
workload 
(climb, 
cruise, and 
descent) 

Microsoft Flight 
Simulator 2004 

Tobii ET17 
eye-tracking 
system 

May, J. G., 
Kennedy, R. S., 
Williams, M. 
C., Dunlap, W. 
P., & Brannan, 
J. R. (1990) 
 

Saccadic eye 
movement 

5 subjects, tone-
counting tasks 

High, 
medium, 
low 
 

Laboratory 
 

Infrared eye-
tracking 
instrument 
(Eye Trac, 
Model 106) 
 

Saccadic extent 10 subjects, 
levels of a 
visual counting 
task 

Saccadic extent 10 subjects, 
tone counting 
task 

Niezgoda, M., 
Tarnowski, A., 
Kruszewski, M., 
& Kamiński, T. 
(2015) 

Blink Rate 46 drivers,  
primary task - 
driving in 
traffic, 
secondary task -
delayed digit 
recall task 

n-back test, 
three levels 
(0-back, 1-
back, 2-
back) 

AutoSim AS 
1200-6 driving 
simulator 

Mobile eye-
tracking 
device, SMI 
glasses 

Pupil Size 
Diameter 

Fixation 
Durations 

Fixation location 
on the vertical 
axis 
Fixation location 
on the horizontal 
axis 

Pomplun, M., & 
Sunkara, S. 
(2003) 

Pupil Size 10 participants, 
recall tasks 

High, 
medium, 
low 

Laboratory EyeLink-II 
System 

Rantanen, E., & 
Goldberg, J. 
(1999) 

Area of Visual 
Field 

13 subjects, 
tone counting 
tasks 

high, 
moderate, 
none 

Laboratory Goldmann 
perimeter 

Recarte, M. Á., 
Pérez, E., 
Conchillo, Á., 
& Nunes, L. M. 
(2008) 

Pupil dilation 29 participants, 
cognitive tasks 
(listening, 
talking , or 
calculating) 
with visual 
detection or no 
visual detection.  

Single- and 
dual-task 
(cognitive 
and visual 
task) 

Laboratory ASL 5000 eye-
tracking 
system 

Blink Rate 
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Reference Eye Measure(s) 
Studied 

Participants 
Studied / Task 
Type 

Levels of 
Workload 

Real World vs. 
Laboratory 
Setting 

System Used 

Reyes, M. L., & 
Lee, J. D. 
(2008) 

Fixation 
Duration 

12 participants, 
In-vehicle 
information 
system (IVIS) 
task 

High, low, 
baseline 

DriveSafety 
Research 
Simulator 

Seeing 
Machines' 
faceLAB eye 
tracking 
system 
(version 4.1) 

Horizontal 
Fixation Position 
Vertical Fixation 
Position 
Gaze 
Concentration 
(dwell) 
Saccade 
Duration 
Saccade Speed 
Saccade 
Distance 

Rosenfield, M., 
Jahan, S., 
Nunez, K., & 
Chan, K. (2015) 

Blink rate 16 subjects, 
Reading text 
from different 
methods (tablet 
or hard copy) 

Low vs. 
high 
workload 

Laboratory Videotaped 
using Kodak 
EasyShare 
M853 zoom 
digital camera 

Ryu, K., & 
Myung, R. 
(2005) 

Blink interval 10 subjects, 
tracking tasks 

Low, 
medium, 
high speed 

Laboratory EOG was 
recorded using 
sternal leads. 

Savage, S. W., 
Potter, D. D., & 
Tatler, B. W. 
(2013) 

Fixation 
durations 

17 participants, 
inclusion of a 
puzzle to 
complete during 
the trial 

High vs. no 
cognitive 
load 
conditions 

Laboratory EyeLink 1000 
eye-tracker 

Saccade 
Amplitude 
Saccade peak 
velocity 
Horizontal 
spread of 
fixation positions 
Vertical spread 
of fixation 
positions 
Blink frequency 
Blink duration 

Steinhauer, S. 
R., Condray, R., 
& Kasparek, A. 
(2000) 

Pupil Diameter 
(extent of 
constriction) 

33 subjects, 
arithmetic task 

High vs. no 
load 

Laboratory ISCAN, Inc., 
Model RK-406 
pupillometer 

Steinhauer, S. 
R., Siegle, G. J., 
Condray, R., & 
Pless, M. (2004) 

Pupil Diameter 22 subjects, 
arithmetic task 

High vs. 
low 

Laboratory ISCAN, Inc., 
Model RK-406 
Pupillometer 

Tokuda, S., 
Obinata, G., 
Palmer, E., & 
Chaparro, A. 
(2011) 

Saccadic 
intrusions 

16 participants, 
dual task: 
auditory N-back 
task and a free-
viewing task 

Low, 
medium, 
and high 
mental 
workload 
conditions 

Laboratory Tobii 1750 eye 
tracker 

Pupil dilation 



 

25 
 

Reference Eye Measure(s) 
Studied 

Participants 
Studied / Task 
Type 

Levels of 
Workload 

Real World vs. 
Laboratory 
Setting 

System Used 

Van Orden, K. 
F., Limbert, W., 
Makeig, S., & 
Jung, T. (2001) 

Blink frequency  11 participants, 
mock air 
warfare task 

Target 
Density, 9 
levels 

Laboratory Applied 
Sciences 
Laboratory 
SU4000 eye-
tracking 
system 

Blink duration 

Fixation 
frequency 
Fixation duration 

Saccadic extent 

Mean pupil size 

Veltman, J. A., 
& Gaillard, A. 
K. (1996) 

Blink duration 14 subjects, 
primary and 
secondary task, 
simulated flight 
tasks 

6 segments 
of varying 
task 
difficulty in 
flight task 

Flight Simulator CODAS 
system 

Number of 
Blinks 

Wang, Q., 
Yang, S., Liu, 
M., Cao, Z., & 
Ma, Q. (2014) 

Fixation Count 42 subjects, 
Online 
shopping tasks 

Simple vs. 
Complex 
tasks 

Laboratory Hi-Speed 
iView X eye-
tracker Fixation 

Duration 
Wilson, G. F., 
Fullenkamp, P., 
& Davis, I. 
(1994) 

Blink Rate 7 pilots, flight 
tasks  

5 flight 
tasks 

Laboratory Del Mar 
Avionics 
miniature 
physiological 
data recorders 

Blink duration 

Yang, Y., 
McDonald, M., 
& Zheng, P. 
(2012) 

Fixation on 
touch screen 

41 Drivers, 
driving with 
touch screen 
tasks 

Three task 
levels of 
difficulty 
and 
baseline 

Real-road driving 
environment 

FaceLAB Eye 
Monitoring 
System Blink Rate 

Saccades 

 When performing a meta-analysis, it is also important to compare the variation in 

the observed effect sizes with the variation expected from sampling errors (Cooper, 

2010).  By testing the homogeneity of effect sizes, a calculation for the probability of 

only sampling error having caused the variation between the observed and expected 

effect sizes can be performed. This test allows a conclusion for any variation in effect 

sizes to be explained by sampling error, or chance, and prevents the need for additional 

analyses to be performed within the meta-analysis. According to Cooper (2010), the 

explanation of sampling error is the simplest explanation for a difference in effect sizes to 

occur. If it is determined that there is a greater variability in effect sizes than by sampling 
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error alone, an analysis should be completed to examine whether different characteristics 

within the study could be associated with the variance in effect sizes. Although, many 

meta-analysts will still examine any potential moderator variables, with or without 

identifying sampling error as a plausible cause in variation, when theoretical or practical 

reasons can be recognized (Cooper, 2010). This meta-analysis took the approach of 

examining moderator variables regardless of the result of the homogeneity analysis.  

 The examination of moderator variables adds to theory development and increases 

the richness of empirical work (Rosenthal & DiMatteo, 2001). Identifying these 

moderator variables could be important for modeling the effect of cognitive workload on 

eye-related measurements. With the inclusion criteria already taking into account the year 

of publication, it may be additionally beneficial to identify the eye-related measures as 

moderating variables to further analyze which eye-related measurements are related to 

identifying cognitive workload. This analysis would be similar to examining each of the 

dependent variables to further identify those most and least affected by varying levels of 

cognitive workload (Rosenthal, 1994). This may be important since some eye movement 

measurements have been observed to increase under higher cognitive workload while 

other measurements have been observed to decrease under higher cognitive workload.  

 A second moderator variable to examine was the type of task used in each study. 

Some tasks previously linked to cognitive workload include "short and long-term 

memory access, mental arithmetic, sentence comprehension, vigilance, and visual and 

auditory perception tasks" (Klinger et al., 2008). These task types can be classified as 

simplistic tasks when being compared to the application type tasks performed in real or 

simulated expert-driven tasks. It would be important for future modeling and design to 
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determine if there is an influence on the effect of cognitive workload with eye-related 

measurements between the different types of tasks performed by an operator. 

 A final moderator variable examined includes the relationship between the eye 

tracking system and the operator. Prior research utilizing eye trackers to estimate a user's 

cognitive workload used only head-mounted cameras; although this method provided 

high precision for results, it also proved to be distracting and burdensome to the operators 

(Klinger et al., 2008). The development of remote eye trackers, which use display-

mounted cameras, provide an attractive alternative to the head-mounted cameras. A 

remote eye tracker allows for a less obtrusive measurement of a user's eye movements. It 

is a familiar environment for subjects because it uses a computer system resembling a 

standard desktop computer. Unfortunately, remote eye trackers are subject to a greater 

amount of measurement noise compared to head-mounted systems (Klinger et al., 2008). 

The need to limit the physical relationship between the system and the operator continues 

to be one of the most significant obstacles to address before widespread use of eye 

tracking devices in system designs (Jacob & Karn, 2003). By investigating the type of 

eye tracking system utilized, we can further evaluate the relative efficiency and reliability 

of head- versus display-mounted systems.  

3.3 COMPUTATIONS FOR META-ANALYSIS 

 For this meta-analysis, the statistical results from the included studies were 

converted into effect sizes. With the use of effect sizes, it is possible to "compare the 

magnitude of experimental treatments from one experiment to another" (Thalheimer & 

Cook, 2002). Using effect sizes answers the question "how much?" instead of the test for 

significance answering yes or no (Cooper, 2010). In fact,  From Horrey and Wickens 
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(2004), "effect sizes are advantages because they focus on how large a particular effect is 

(as opposed to whether or not it differs from zero)." In other words, whereas statistical 

tests of significance are informative for the likelihood that the results from an experiment 

differ from chance expectations, the use of effect sizes focuses on the relative magnitude 

of the experimental treatment, or the size of the experimental effect. In general terms, 

effect sizes are calculated as the difference between treatment means divided by the 

standard deviation of the conditions (Thalheimer & Cook, 2002). 

 From Cooper (2010), one of the steps in a meta-analysis involves determining the 

effect size metric to utilize. According to Rosenthal and DiMatteo (2001), the product 

moment correlation (r) as a measure of effect size has a number of advantages over other 

measures such that it is more easily interpreted in terms of practical importance than are 

Cohen's d or Hedges' g. In particular, the product moment correlation, also referred to as 

Pearson's r, can quantify the strength of relationships and not just the size of the 

experimental effects (Nakagawa & Cuthill, 2007). In addition, the use of correlational 

effects, such as Pearson's r, will allow a representation of an association between eye-

related measurements and cognitive workload (Schaefer et al., 2016). Using Cohen 

(1992), we can compare effect size r results to the known benchmarks of 0.10 as small, 

0.30 as medium, and 0.50 as large effect sizes. 

 The effect size r was calculated using the test statistics reported in each study. 

The statistical results were converted into effect size r, using the conversions and 

procedures described in Rosenthal and DiMatteo (2001), Cohen (1988), Rosenthal (1984) 

and Rosnow and Rosenthal (1996). It should be noted that 𝑡𝑡0
2 ≈ 𝐹𝐹0 for simple linear 

regression, where t-tests from comparing two means and an F-test from analysis of 
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variance are equivalent and supported by Cochran's theorem for this special case (Kutner, 

Nachtsheim, Neter, & Li, 2005). This approach is based on the fact that the square of a t 

random variable with v degrees of freedom is an F random variable with 1 numerator and 

v denominator degrees of freedom (Montgomery, 2013; Kutner et al., 2005). The test 

statistics (t- or F-values) were converted into effect sizes using the computations 

provided. From Rosenthal and DiMatteo (2001), the computation for effect size r from a 

t statistic is: 

𝑟𝑟 =  �
𝑡𝑡2

𝑡𝑡2 + 𝑑𝑑𝑑𝑑
   .                                                        (1) 

Also, Rosenthal and DiMatteo (2001) identify the computation for effect size r from an F 

statistic with 1 degree of freedom (df ) in the numerator as: 

𝑟𝑟 =  �
𝐹𝐹

𝐹𝐹 + 𝑑𝑑𝑑𝑑error
   .                                                     (2) 

 To calculate the effect size r from an F statistic with different number of levels, 

we need to first perform and obtain additional information from the statistical results. 

From Cohen (1988), we can define 𝑑𝑑2, or a ratio of variances, as 

𝑑𝑑2 =  
𝑆𝑆𝑆𝑆treatment

𝑆𝑆𝑆𝑆error
   .                                                          (3) 

With this value we can directly compute the power, η2, via 

𝜂𝜂2 =  
𝑑𝑑2

1 +  𝑑𝑑2    .                                                           (4) 

 To obtain the same relationship above, the following equation from Rosenthal 

(1984) can be converted as below. 

𝐹𝐹 =  
𝜂𝜂2

1 −  𝜂𝜂2

𝑑𝑑𝑑𝑑error

𝑑𝑑𝑑𝑑treatment
                                                        (5) 
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𝐹𝐹 
𝑑𝑑𝑑𝑑treatment

𝑑𝑑𝑑𝑑error
=  

𝜂𝜂2

1 −  𝜂𝜂2                                                         (6) 

𝐹𝐹 =  𝑑𝑑2
𝑑𝑑𝑑𝑑error

𝑑𝑑𝑑𝑑treatment
                                                              (7) 

𝑑𝑑2 =  
𝜂𝜂2

1 −  𝜂𝜂2                                                                   (8) 

Using Cohen (1988), we can convert f to its d estimate 

𝑑𝑑 = 2𝑑𝑑                                                                      (9) 

and since both r and d estimates can be readily converted to one another (Rosenthal & 

DiMatteo, 2001), we can convert our d value to our effect size r as follows: 

𝑟𝑟 =  �
𝑑𝑑2

𝑑𝑑2 + 4
    .                                                        (10) 

 For studies only containing p values, it is possible to convert the p value to its 

associated one-tailed standard normal deviate Z and use the following conversion 

equation from Rosenthal and DiMatteo (2001) to convert to effect size r. 

𝑟𝑟 =  
𝑍𝑍
√𝑁𝑁

                                                                 (11) 

However, if only a range is given, the following one-tailed standard normal deviate Z can 

be used: p < 0.05, Z = 1.645; p < 0.01, Z = 2.326; and p < 0.001, Z = 3.090 (Rosenthal & 

DiMatteo, 2001). 

 These different conversions and procedures were utilized to calculate the effect 

size from the statistical results for each study included in the meta-analysis. A summary 

of the statistical results and the computed r values for each study in the meta-analysis is 

provided in Table 4.  
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Table 4. Statistical Results and Computed Effect Sizes 

Reference Eye Measure(s) 
Studied 

Statistical Results Effect Size (r) 

Backs & 
Walrath, (1992) 

Pupil Dilation F(1,6) = 27.46, p<0.01 0.9059 
Blink Duration F(1,6) = 12.51, P<0.05 0.8221 

Benedetto et al., 
(2011) 

Blink Duration F(2,28) = 4.78, p< 0.05  0.5045 

Blink Rate No significant results were 
obtained for blink rate. 

0.0000 

Average Pupil Size F(2,28) = 33.27, p<0.001   0.8389 

Brookings et al.,  
(1996) 

Blink rate F(2,14) = 9.37, p<0.01. 0.7566 

Saccade Rate Saccade measures were not 
significant. 

0.0000 

Saccade Amplitude Saccade measures were not 
significant. 

0.0000 

De Rivecourt et 
al., (2008) 

Mean dwell time (p < 0.001) 0.3544 

Fixation Duration (p < 0.001) 0.3544 

Di Nocera et al., 
(2007) 

Eye Fixations F(4,36) = 25.85, p<.0001 0.8614 

May et al., 
(1990) 
 

Saccadic eye 
movement 

F(2,8) = 4.22, p=0.056 0.7165 

Saccadic extent F(2,18) = 16.06, p<0.0001 0.8005 

Saccadic extent F(2,18) = 5.49, p=0.026 0.6155 

Niezgoda et al., 
(2015) 

Blink Rate F(2.63,118.16) = 2.96, p<0.05 0.2490 

Pupil Size Diameter F(2.52,101.36) = 71.31, p<0.01 0.7994 

Fixation Durations F(2.25,101.33) = 3.66, p<0.05 0.9970 

Fixation location on 
the vertical axis 

F(2.66,119.70) = 33.98, p<0.01 0.6557 

Fixation location on 
the horizontal axis 

F(3,135) = 8.24, p<0.01 0.3937 

Pomplun & 
Sunkara, (2003) 

Pupil Size F(2,18) = 35.13, p<0.001 0.8922 

Rantanen & 
Goldberg, 
(1999) 

Area of Visual Field F(2,39) = 15.21, p<0.001 0.6620 

Recarte et al., 
(2008) 

Pupil dilation Single-task, F(3,84) = 78.93, 
p=0.000 and Dual-task, F(3,84) 
= 51.49, p=0.000. 

0.8591 

0.8050 

Blink Rate Single-task, F(3,84) = 42.66, 
p=0.000 and Dual-task, F(3,84) 
= 4.01, p=0.010. 

0.7772 
 
0.3536 
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Reference Eye Measure(s) 
Studied 

Statistical Results Effect Size (r) 

Reyes & Lee, 
(2008) 

Fixation Duration F(2,16) = 2.9, p=0.08 0.5158 

Horizontal Fixation 
Position 

F(2,16) = 4.0, p= 0.038 0.5774 

Vertical Fixation 
Position 

F(2,16) = 24.1, p<0.0001 0.8665 

Gaze Concentration 
(dwell) 

F(2,16) = 69.00, p<0.0001 0.9466 

Saccade Duration F(2,16) = 60.00, p<0.0001 0.9393 
Saccade Speed F(2,16) = 64.10, p<0.0001 0.9429 

Saccade Distance F(2,16) = 132.8, p<0.0001 0.9712 
Rosenfield et 
al., (2015) 

Blink rate F(1,30) = 3.87, p=.05 0.3376 

Ryu, & Myung, 
(2005) 

Blink interval F(2,18) =7.64, p<.01  0.6775 

Savage et al., 
(2013) 

Fixation durations No other significant 
oculomotor differences 
between conditions. 

0.0000 

Saccade Amplitude No other significant 
oculomotor differences 
between conditions. 

0.0000 

Saccade peak 
velocity 

t(16) = 2.29, p=0.036 0.4970 

Horizontal spread of 
fixation positions 

t(16) =3.06, p=0.008 0.6080 

Vertical spread of 
fixation positions 

No other significant 
oculomotor differences 
between conditions. 

0.0000 

Blink frequency t(16) = 3.01, p=0.008 0.6010 

Blink duration No other significant 
oculomotor differences 
between conditions. 

0.0000 

Steinhauer et 
al., (2000) 

Pupil Diameter 
(extent of 
constriction) 

F(1,32) = 58.2, p<0.0001 0.8033 

Steinhauer et 
al.,  (2004) 

Pupil Diameter F(1,21) = 4.6, p=0.043, η2 = 
0.181 

0.4240 

Tokuda et al., 
(2011) 

Saccadic intrusions F(2,39) = 41.8, p<.05 0.8258 
 

Pupil dilation F(2,39) = 23.07, p<.05 0.7362 
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Reference Eye Measure(s) 
Studied 

Statistical Results Effect Size (r) 

Van Orden et 
al., (2001) 

Blink frequency  F(8,360) = 13.00, p<0.001 0.4733 
Blink duration F(8,360) = 7.2, p<0.001 0.3715 
Fixation frequency F(8,360) = 6.37, p<0.001 0.3521 
Fixation duration F(8,360) = 0.15, p<0.5 0.0548 
Saccadic extent F(8,360) = 3.15, p<0.005 0.2550 
Mean pupil size F(8,360) = 2.14, p<0.05 0.2121 

Veltman & 
Gaillard, (1996) 

Blink duration F(5,65) = 61.86, p<0.01 0.9090 
Number of Blinks F(5,65) = 13.75, p<0.01 0.7170 

Wang et al., 
(2014) 

Fixation Count F(1,41) = 115.051, p<0.0001 0.8586 
Fixation Duration F(1,41) = 134.046, p<0.0001 0.8751 

Wilson et al.,  
(1994) 

Blink Rate F(4,24) = 14.09, p<0.0001 0.8375 
Blink duration F(4,24) = 3.26, p=0.029 0.5933 

Yang et al.,  
(2012) 

Fixation on touch 
screen 

F(3,437) = 31.29 0.4207 

Blink Rate F(3,437) = 2.066 0.1183 
Saccades F(3,437) = 12.01 0.2757 

 Before continuing with the analysis, the effect sizes from these multiple studies 

need to be combined. In order to combine effect sizes in r from multiple studies, we first 

need to normalize our individual effect sizes. This step is essential since r-indexes can 

exhibit non-normal sampling distributions when estimating population values or the 

distribution of the r-indexes sampled will become more and more skewed (Cooper, 2010; 

Rosenthal, 1994). This is completed by converting the effect size r scores to z-scores 

using Fisher's r-to-z transformation (Rosenthal & DiMatteo, 2008; Rosenthal, 1994). 

From Rosenthal (1994), we can perform this transformation through the relationship 

between r and Zr of: 

𝑍𝑍r =  
1
2
𝑙𝑙𝑙𝑙𝑙𝑙e �

1 + 𝑟𝑟
1 − 𝑟𝑟

�       .                                             (12) 

According to Cooper (2010), the z-scores have no limiting value and are normally 

distributed. According to Rosenthal (1994), practically all meta-analytic procedures 

interested in r require most of the computations to be carried out on the transformation,  
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Zr, and not actually on r.  

 Once normalized by the transformation, the means, both weighted and 

unweighted, of these transformed values must be calculated. According to Cooper (2010), 

a meta-analysis typically presents both weighted and unweighted average effect sizes. 

Although both will be calculated, this meta-analysis will utilize each of the average effect 

sizes for different computations and analyses. The weighted and unweighted average 

effect sizes for this meta-analysis are shown in Table 5. 

Table 5. Sample Sizes and Weighted and Unweighted Average Effect Sizes for 

Measurements and Moderator Variables. 

  
Number 

of Studies 

Total 
Sample 

Size 

Weighted 
Average 

Effect Size 

Unweighted 
Average 

Effect Size 
Overall 60 1158 0.8407 0.8066 
Measures Blinks Overall 18 315 0.5020 0.6434 

Blink Duration 6 72 0.6495 0.7189 
Blink Rate 8 191 0.3977 0.5417 
Blink Interval 1 10 0.8245 0.8245 
Blink Frequency 3 42 0.7199 0.7035 

Saccades Overall 13 179 0.7196 0.8147 
Saccade Extent 6 89 0.6050 0.8323 
Saccade Rate 3 36 1.1535 0.9795 
Saccade Peak 
Velocity 1 17 0.5453 0.5453 
Saccade 
Amplitude 3 37 0.6792 0.7043 

Pupils Overall 10 219 1.0455 1.0372 
Pupil Size 6 137 0.9694 0.9907 
Pupil Dilation 4 82 1.1748 1.2232 

Mean Dwell Time 2 31 0.8844 1.0842 
Fixations Overall 16 401 1.0276 0.8055 

Fixation Duration 7 188 1.3242 0.8642 
Fixation 
Frequency 3 63 1.1531 0.9849 
Horizontal 
Fixation 3 75 0.5107 0.5935 
Vertical Fixation 3 75 0.6914 0.7014 

Area of Visual Field 1 13 0.7964 0.7964 
Task Type Simplistic 23 470 0.8374 0.7554 

Application 37 688 0.8429 0.8385 
Eye-Tracking 
Method 

Head-Mounted 19 399 0.9872 0.8358 
Display-Mounted 41 759 0.7619 0.7931 
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 All final results will be reported in r, meaning that after the calculations are 

performed, the transformed values need to be converted back to the r correlation units. As 

a result, it is the unweighted mean of these transformed values that is then converted back 

to r, representing the unweighted mean r (Rosenthal & DiMatteo, 2001; Cooper, 2010). 

The equation to convert each of these values back to the r correlation units based on 

Borenstein et al. (2009) and Rosenthal (1994) is: 

𝑟𝑟 =  
𝑒𝑒2𝑧𝑧 −  1
𝑒𝑒2𝑧𝑧 +  1

           .                                               (13) 

 A 95% confidence interval can be estimated to determine whether the combined 

effect sizes differ significantly from zero using the following equation from Rosenthal 

and DiMatteo (2001): 

𝑍𝑍r ���  ±
𝑡𝑡(.05)𝑆𝑆
√𝑘𝑘

   ,                                                        (14) 

where 𝑍𝑍r ��� is the unweighted mean of the transformed r values, t(.05) is the appropriate t 

value at the 0.05 probability level, S is the standard deviation of the transformed r values, 

and k is the number of studies. Rosenthal and DiMatteo (2001) point out, that with the 

unweighted mean r, a random effects confidence interval is usually preferred, even when 

it yields wider confidence intervals, to allow generalization for studies other than those 

included in the analysis. Once computed, these lower and upper values of the 95% 

confidence intervals are transformed back to r values, using equation 13, defining the 

confidence intervals around the effect (Rosnow & Rosenthal, 1996; Cooper, 2010). An 

example using each of the computations and procedures described can be found in the 

Appendix. 
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 It is then important to perform a homogeneity analysis on the r values that have 

been transformed to the appropriate z-scores. The test for homogeneity against z-

transformed r values is provided by Cooper (2010) and involves the following formula: 

𝑄𝑄total =  �(𝑛𝑛i − 3)𝑧𝑧i2

𝑘𝑘

𝑖𝑖=1

−  
�∑ (𝑛𝑛i − 3)𝑧𝑧i

𝑘𝑘
𝑖𝑖=1 �2

∑ (𝑛𝑛i − 3)𝑘𝑘
𝑖𝑖=1

   ,                            (15) 

where ni is the total sample size for the ith comparison, k is the number of studies and zi 

is the transformed r values.  
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IV. RESULTS AND ANALYSIS 

 The effect sizes and confidence intervals were computed for each measure 

considered in the overall meta-analysis as well as for the three moderator variables. The 

results from the meta-analysis are shown in Table 6 with bold results indicating non-

significant findings or those results where the confidence interval includes zero indicating 

there could be no relationship between cognitive workload and eye-related 

measurements. The combined effect size for the meta-analysis resulted in an effect size of 

0.668. By examining all of the studies included in the meta-analysis collectively, without 

factoring in any of the moderator variables, there is a large effect size, or relationship, 

between cognitive workload and eye-related measurements. The 95% confidence interval 

was estimated as [0.569, 0.748].  

 The homogeneity analysis performed resulted in a value of 489.871, which is a 

highly significant result based on a chi-square test with 59 degrees of freedom from a 

critical value of chi-square at p < 0.05. The interpretation of this significant result implies 

that given the sizes of the samples on which these variance estimates are based, the 

variation calculated in effect sizes is too great to be explained by only sampling error. An 

analysis on moderator variables can identify other possible distinctions between the 

studies that are contributing to the difference in variances. Furthermore, with the 

inclusion of the moderator variables, we can identify possible variables that could be 

important to consider for future modeling and design. 
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Table 6. Summary Table for the Meta-Analysis, Including the Examination of Moderator 

Variables.  

  
Number 

of Studies 
Combined 
Effect Size  

95% Confidence 
Interval 

Overall 60 0.668 [0.569, 0.748] 
Measures Blinks Overall 18 0.567 [0.402, 0.697] 

Blink Duration 6 0.616 [0.144, 0.860] 

Blink Rate 8 0.494 [0.151, 0.731] 
Blink Interval 1 0.678 [ ] 

Blink Frequency 3 0.607 [0.219, 0.829] 
Saccades Overall 13 0.672 [0.305, 0.865] 

Saccade Extent 6 0.682 [0.247, 0.888] 

Saccade Rate 3 0.753 [-0.849, 0.997] 
Saccade Peak Velocity 1 0.497 [ ] 

Saccade Amplitude 3 0.607 [-0.981, 0.999] 
Pupils Overall 10 0.777 [0.632, 0.869] 

Pupil Size 6 0.726 [0.398, 0.890] 

Pupil Dilation 4 0.837 [0.680, 0.921] 
Mean Dwell Time 2 0.795 [-1.000, 1.000] 
Fixations Overall 16 0.667 [0.283, 0.867] 

Fixation Duration 7 0.698 [-0.191, 0.958] 
Fixation Frequency 3 0.755 [-0.330, 0.981] 
Horizontal Fixation 3 0.532 [0.205, 0.753] 
Vertical Fixation 3 0.605 [-0.738, 0.982] 

Area of Visual Field 1 0.662 [ ] 
Task Type Simplistic 23 0.638 [0.503, 0.743] 

Application 37 0.685 [0.539, 0.791] 
Eye-
Tracking 
System 

Head-Mounted 
19 0.684 [0.441, 0.833] 

Display-Mounted 41 0.660 [0.548, 0.749] 
(Bold results indicate non-significant findings, i.e., confidence interval includes zero). 

 The first moderator variable examined was of the individual eye-related 

measurements observed in the studies included in the meta-analysis. By performing this 

analysis, we can identify which of the specific eye-related measurements are most and 

least affected by cognitive workload. Those eye-related dependent variables analyzed 
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from each study were grouped into the categories of blinks, saccades, pupils, mean dwell 

time, fixations and the area of visual field. These categories were further broken down to 

analyze each type of measurement observed under each category.   

 From this analysis, large effect sizes were calculated for each of the categories, 

with the highest significant effect size resulting from measurements of the pupil with an 

effect size of 0.777 and an estimated 95% confidence interval of [0.632, 0.869].  

Investigating the individual measurement types for the pupil, measuring pupil dilation 

appears to have the largest relationship with cognitive workload based on the effect size 

of 0.837 and the tight 95% confidence interval [0.680, 0.921]. Although a large overall 

effect size of 0.795 was calculated for mean dwell time, the effect size was non-

significantly different from zero; that is, the estimated 95% confidence interval included 

zero, [-1.000, 1.000].  

 Even with most measurements resulting in large effect sizes, there were still a few 

variables that appear to be less affected by cognitive workload than others based on the 

inclusion of zero within the estimated 95% confidence intervals. These measurements 

included saccade rate, saccade amplitude, fixation duration, fixation frequency, and 

vertical fixation. There are also three variables for which a 95% confidence interval could 

not be calculated. These variables are blink interval, saccade peak velocity and area of 

visual field since there was only one study observing these variables included in the 

meta-analysis. 

 The results for the different eye-related measurements are also presented as a 

forest plot, where all computed effect sizes are marked with a symbol, either a square or a 

diamond, and are shown with the estimated 95% confidence interval. The forest plot is 
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shown in Figure 2. 

 

Figure 2. Forest Plot Representing the Effects of Cognitive Workload on Eye-related 

Measurements. 
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 The forest plot provides a visual depiction of the results, not only providing the 

capability to easily and quickly identify those measurements of cognitive workload, but 

to also identify those areas where continued research is needed. Those areas would be 

indicated by large confidence intervals, those non-significant confidence intervals 

including zero, or the use of a small sample size (Schaefer et al., 2016). 

 The second moderator variable of task type was also analyzed. With both 

simplistic and application task types resulting in large effect sizes, it can be determined 

that there is no difference between the type of task being performed and using an eye-

related measurement to measure the effect of cognitive workload. In other words, both 

types of tasks result in similar effects with cognitive workload on eye-related 

measurements. In fact, there is relatively no statistical difference between the two types 

of tasks with estimated 95% confidence intervals being [0.503, 0.743] and [0.539, 0.791] 

respectively.  

 A similar conclusion can be drawn from the third moderator variable of eye-

tracking system utilized. Not only did both systems result in large effect sizes, but the 

effect sizes were roughly equivalent at 0.684 for head-mounted systems and 0.660 for 

display-mounted systems with the 95% confidence intervals being [0.441, 0.833] and 

[0.548, 0.749] respectively. 
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V. CONCLUSIONS AND APPLICATIONS 

 There are some important findings to be observed from the current meta-analysis. 

First, the large, significant effect size achieved for the examination of the studies 

collectively indicates that the use of physiological, or more specifically measurements 

from the eye, provide a reliable measurement of cognitive workload. From this 

conclusion, the monitoring and evaluating of eye-related measurements in systems would 

allow for identifying and handling the levels of cognitive workload imposed on the 

operator.  

 It can also be important to further discuss the previously mentioned notion of the 

number of unique contributing authors and selections of unique journals. From the 

studies included in the meta-analysis, two authors appeared as contributing authors on 

multiple studies, contributing to the research performed on two unique studies each, 

totaling four studies with similar authors. This practice is not uncommon in the research 

community, with similar contributing authors appearing on multiple studies examining 

similar topics, either based on their expertise or their designated research domain. It 

would be important to examine if similar measurements were examined by those 

overlapping authors, which could provide further support for the results obtained against 

those specific eye-related measurements. On the other hand, the inclusion of multiple 

studies from similar authors could hinder the results obtained if inconsistent or incorrect 

methods were proven to be performed by the author. Similar biases could be observed if 

the studies included in the meta-analysis were published from a limited diversity of 

journals. For instance, the aims and scope of each journal are specific to a range of topics 

and could limit the discovery and inclusion of other important studies found within a 
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different journal. The studies included in this meta-analysis range from journals in the 

domains of ergonomics, psychology, and engineering; thus emphasizing the vast 

importance and attempts to understand cognitive workload in a variety of different 

domains. With a sufficient uniqueness obtained from the journals and authors collected 

for this meta-analysis, any inconsistencies based on those similarities should be excluded 

from the results. 

 With the inclusion of multiple eye-related measurements, the additional intent of 

this meta-analysis was to attempt to further differentiate or identify those specific 

measurements that have a significant link to measuring cognitive workload. Through the 

examination of the dependent variables as moderators, specific measurements with a 

relationship to measuring cognitive workload were identified or further confirmed. With 

this knowledge, the selection of measurements to aid in future research can be simplified. 

This allows the researchers to select from known measurements of workload where one 

measure may be more obtainable or measureable than another within a particular system.  

 A discussion in regards to the classification of those dependent eye-related 

measurements identified from each study included in the meta-analysis and the reasoning 

for such classifications is also important. Without having direct knowledge of the 

individual research experiments conducted, any specific assumptions as to the intention 

of how the authors wished to utilize the specific measurements selected for observation 

could not be made. To prevent any misinterpretation for its intention, those eye-related 

measurements were categorized based on the wording selection of the authors.  

 Although individual studies have shown different outcomes in terms of the 

relationship of a specific measurement, the purpose of performing a meta-analysis is to 
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provide a single estimate of the reliability and magnitude for a measurement. Those 

significant and reliable measurements identified through this meta-analysis are blink 

duration, blink rate, blink interval, blink frequency, saccade extent, saccade peak 

velocity, pupil size, pupil dilation and horizontal fixation. It is important to note the 

inclusion of one study that did not identify the data for non-significant results. For this 

meta-analysis, these non-significant results were estimated as zero, which could lead to 

an underestimate of the average effect size (Pigott, 1994).  

 In addition, the number of included studies in this meta-analysis may not provide 

the most stable results. A previous meta-analysis only analyzed effect sizes where at least 

three correlation coefficients were available, based on the determination of the typical 

minimum standard indentified in past meta-analysis methodologies. With fewer studies, 

the values obtained based on the combined effect size can be unstable (Caird, Willness, 

Steel, & Scialfa, 2008). Therefore, estimates based on limited information should be 

interpreted with the appropriate caution. Nevertheless, it can be inferred by the results of 

this meta-analysis, that simply assuming that the small number of studies observing one 

measurement compared to another would not prevent the outcome of observing a large, 

significant effect size. This is shown since some measurements with an equal number of 

studies conclude both significant and non-significant results. However, these analyses 

based on limited information can serve to reveal the scarcity of studies that examine 

cognitive workload and eye-related measurements, pointing toward the need for further 

experimentation to reliably identify these effects. In particular, from the number of 

studies observing each eye-related measurement, we can identify which measurements 



 

45 
 

are being observed most often in experiments or studies compared to those measurements 

observed the least. 

 For future analyses, the statistical results and analyses missing from some studies 

should be requested from the study authors to potentially include the study in the meta-

analysis. This would prevent the exclusion of studies based on the criteria of unreported 

effect sizes. This would limit the need to justify in the inclusion criteria that sufficient 

information be included to determine effect size estimates. 

 It is also important to recognize those estimated 95% confidence intervals for 

variables that included zero. This result could represent the potential for a null effect for 

that measure or it could be explained through other limitations such as the number of 

studies included in the analysis or the existence of a large diversity in the characteristics 

of the findings within those included studies (Schaefer et al., 2016). These non-

significant confidence intervals should not condemn the use of these measurements, but 

instead should encourage additional research observing those particular measurements. 

 A second finding from this meta-analysis refers to the similarities observed 

between both simplistic and application task types or between those memory or 

arithmetic type tasks and those types of task performed in real or simulated expert-driven 

tasks. This is an important finding that allows for the designing or redesigning of systems 

to be non-restrictive to the types of tasks being performed and subsequently analyzed in 

terms of cognitive workload. 

 Findings based on the moderator variables of eye-tracking systems also resulted 

in a similarity between the two systems. Although this meta-analysis did not indicate a 

difference between the type of eye-tracking system used, this does not imply that both 
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systems are comparable. Since equipment could result in a lower reliance on actual 

measurements, this could have reduced the overall effect size for either head-mounted or 

display-mounted systems. Until equipment can be standardized and show consistent 

results for similar measurements, it can be assumed that there could be implications from 

using the current existing systems. For instance, Jacob and Karn (2003) note that more 

work is needed to resolve technical issues with the current eye tracking systems and in 

terms of the analysis of the produced data. These issues include "constraints on 

participant movement; tracker accuracy, precision, ease of setup; dealing with dynamic 

stimuli; and labor-intensive data extraction" (Jacob & Karn, 2003). 

 According to Cegarra and Chevalier (2008), there are no methods that can 

evaluate and measure cognitive workload alone, which is why it is not atypical for studies 

investigating techniques for evaluating and measuring cognitive workload to incorporate 

the use of more than one measurement from performance, subjective, and physiological 

techniques. However, with no method perfectly measuring cognitive workload by itself, 

the addition of eye-related measurements with other proven measurements can strengthen 

the design and implementation of a system for measuring and identifying cognitive 

workload.  
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Appendix 

Example of Conversions and Procedures Utilized in the Meta-Analysis 

An example is discussed utilizing the conversions and procedures described in this meta-

analysis from Rosenthal and DiMatteo (2001), Cohen (1988), Rosenthal (1984) and 

Rosnow and Rosenthal (1996) to compute the effect size r from Brookings et al. (1996), 

one of the studies included in this meta-analysis.  

 The statistical results from Brookings et al. (1996) are F(2,14) = 9.37. Using the 

equations we can calculate the effect size r to be 0.7566. 

𝐹𝐹 
𝑑𝑑𝑑𝑑treatment

𝑑𝑑𝑑𝑑error
=  

𝜂𝜂2

1 −  𝜂𝜂2      →    9.37 
2

14
=  

𝜂𝜂2

1 −  𝜂𝜂2 

𝑑𝑑2 =  
𝜂𝜂2

1 −  𝜂𝜂2      →   𝑑𝑑2 = 9.37 
2

14
   →    𝑑𝑑2 = 1.3386 

𝑑𝑑 = 2𝑑𝑑   →    𝑑𝑑 = 2�√1.3386�   →    𝑑𝑑 = 2.3139 

𝑟𝑟 =  �
𝑑𝑑2

𝑑𝑑2 + 4
     →    𝑟𝑟 =  �

(2.3139)2

(2.3139)2 + 4
      →      𝑟𝑟 = 0.7566 

 Then, using Fisher's r-to-z transformation, we can compute 𝑍𝑍r to be 0.9882.  

𝑍𝑍r =  
1
2
𝑙𝑙𝑙𝑙𝑙𝑙e �

1 + 𝑟𝑟
1 − 𝑟𝑟

�     →  𝑍𝑍r =  
1
2
𝑙𝑙𝑙𝑙𝑙𝑙e �

1 + 0.7566
1 − 0.7566

�     →    𝑍𝑍r = 0.9882   

  To continue with the analysis, the effect sizes from the multiple studies needed to 

be combined, or averaged, based on the separate eye-related measurements. After 

computing the average, 𝑍𝑍r ��� , for those studies observing blink rate as 0.5417 with S = 

0.4655, we can calculate the estimated 95% confidence interval for blink rate. 
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𝑍𝑍r ���  ±
𝑡𝑡(.05)𝑆𝑆
√𝑘𝑘

   →    0.5417 ±  
(2.365)0.4655

√8
    →     0.5417 ± 0.3892  

 After computing 𝑍𝑍r ��� for blink rate of 0.5417, we can convert this value back to r 

units to express the combined effect size for blink rate in terms of the effect. This 

computation results in an effect size r of 0.494. 

𝑟𝑟 =  
𝑒𝑒2𝑧𝑧 −  1
𝑒𝑒2𝑧𝑧 +  1

     →    𝑟𝑟 =  
𝑒𝑒2(0.5417) −  1
𝑒𝑒2(0.5417) +  1

     →    𝑟𝑟 = 0.494    

 After computing the lower and upper values for the 95% confidence interval for 

blink rate as [0.1524, 0.9309], we can convert these values back to r units to define the 

95% confidence interval around the effect for blink rate. The estimated 95% confidence 

interval computed for blink rate is [0.151, 0.731]. 

𝑟𝑟lower =  
𝑒𝑒2𝑧𝑧 −  1
𝑒𝑒2𝑧𝑧 +  1

     →    𝑟𝑟lower =  
𝑒𝑒2(0.1524) −  1
𝑒𝑒2(0.1524) +  1

     →    𝑟𝑟lower = 0.151    

𝑟𝑟upper =  
𝑒𝑒2𝑧𝑧 −  1
𝑒𝑒2𝑧𝑧 +  1

     →    𝑟𝑟upper =  
𝑒𝑒2(0.9309) −  1
𝑒𝑒2(0.9309) +  1

     →    𝑟𝑟upper = 0.731    
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