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Abstract

A fluorescent emitter simultaneously transmits its identity, location, and cellular context through 

its emission pattern. We developed smNet, a deep neural network for multiplexed single-molecule 

analysis to enable retrieving such information with high accuracy. We demonstrate that smNet can 

extract three-dimensional molecule location, orientation, and wavefront distortion with precision 

approaching the theoretical limit and therefore will allow multiplexed measurements through the 

emission pattern of a single molecule.

Editor’s summary

The deep neural network smNet enables extraction of multiplexed parameters such as 3D position, 

orientation and wavefront distortion from emission patterns of single molecules.

Analyzing single-molecule emission patterns plays a critical role in retrieving the structural 

and physiological information of their tagged targets and, further, understanding their 

interactions and cellular context1. These emission patterns of tiny light sources (i.e. point 

spread functions, PSFs) encode information such as molecule’s location2, orientation3, 

environment within the specimen4 and the path the emitted photons took before reaching the 

camera5. Detecting and tracking single-fluorescent probes through their emission patterns 

lay the foundation of modern single-molecule based imaging methods2. These methods 

allow interrogation of cellular dynamics6, transcriptional regulation7 and protein interaction8 
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and further enable single-molecule based super-resolution imaging in both fixed and living 

specimens9.

One key in single molecule studies is to understand how the features of the PSF encode the 

properties of a single molecule, i.e., the analysis of single molecule emission pattern2. 

Conventionally, the analysis focuses on dominant and recognizable features of the PSFs10, 

such as rotation of the double helix PSF11, and on modeling feature changes through a 

simplified mathematical form, e.g., Gaussian PSF model. Most recently, interpolation based 

numerical methods, such as splines, have been demonstrated for three dimensional 

localization of single molecules12,13. However, the number of parameters required in the 

interpolation scales exponentially with increasing PSF complexities and measurement 

dimensions12, challenging its application in retrieving information carried by high-

dimensional PSFs (Supplementary Note 1). Furthermore, single-molecule emission pattern 

carries multiple classes of molecular information simultaneously. Due to difficulties in 

perceiving and summarizing a comprehensive PSF model, retrieving multiplexed 

information beyond 3D position from complex or high-dimensional single-molecule data 

remains challenging.

Deep neural networks (DNN) extract features from the input and learns its connection to the 

output automatically14. A neural network in its basic form (1-2 fully-connected layers) has 

been utilized to identify fluorophore species in single-molecule fluorescence lifetime 

experiments15 as well as to speed up dipole orientation estimation from an analytical 

approximation of the dipole PSF16. Through the deep architecture of DNN, the complex 

mapping between input and output is extracted from different levels of features 

hierarchically14. The inference precision, instead of depending on domain expertise (e.g. 

feature recognition), now mainly depends on the design of the network architecture14.

We have applied deep learning to extract multiplexed information carried by single-molecule 

patterns skipping conventional steps such as feature recognition, model simplification, and 

the iterative regression methods. For high-dimensional single-molecule data, we designed 

the network to tackle each inference task independently allowing complexities in each 

dimension to add instead of multiplying. We show that a well-designed DNN architecture 

can be trained to efficiently extract both molecular and specimen information, such as 

molecule location, dipole orientation and wavefront distortions from complex and subtle 

features of the PSFs, which otherwise are considered too complex for established 

algorithms.

The general principle of our DNN for single-molecule studies is illustrated in Fig. 1 

(referred as ‘smNet’). smNet is a deep network of 27 to 36 layers (Supplementary Figs. 1–3 

and Supplementary Table 1) consisted of convolutional layers, residual blocks and fully 

connected layers together with batch normalization and parametric rectified linear unit 

(PReLU). The complex and subtle features within the PSF lie in the photon distribution 

within a small sub-region (2-10 µm2). To fully utilize the information contained in the 

spatial domain, large kernel size was used in beginning layers, and a number of 

convolutional layers and ‘bottleneck’ residual blocks17 were stacked to capture as many 

levels of features as possible. This architecture helped smNet to learn different levels of 
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features and to generate an optimal mapping from the input to the output (Supplementary 

Notes 2 and 3). smNet can be trained using either simulated or measured PSFs. Importantly, 

we designed the training cost function to measure the relative difference between the 

measurement error of a specific single-molecule property and the information limit 

calculated by the Cramér–Rao lower bound (CRLB) for each training image (Supplementary 

Notes 4–6). With this design, the training process of smNet tunes the parameters to achieve 

the specific CRLB set by the inherent information content of each image. This allows smNet 

to extract information close to the theoretical limit at a large range of detected photons and 

background levels simultaneously. We found that it is sufficient to train smNet with ~1 

million PSF patterns for each inference task with a reasonably large range of their measured 

properties. (Supplementary Fig. 4 and Supplementary Table 2)

To test the performance of smNet, we first evaluated the precision and accuracy when pin-

pointing single-molecule centers on both simulated and experimentally obtained single-

molecule patterns. We found that smNet localizes single molecules at a precision matching 

the theoretical information limit given by the CRLB with a small or ignorable bias despite 

the significant amount of aberrations and PSF complexity (2.35 ± 2.71 nm (bias ± s.t.d.) for 

astigmatism, 1 ± 0.84 nm for double helix PSFs, 2 ± 1.8 nm for simulated complex PSFs, 

and 102.1 ± 7 nm (mean ± s.t.d.) for experimental complex PSFs, Supplementary Figs. 5–7). 

This performance is consistently achieved at various conditions such as molecule locations, 

intensity and background levels (Fig. 2e,f, Supplementary Fig. 8–10, Supplementary Table 3 

and Supplementary Notes 7–9 including testing results of smNet on various conditions). We 

further demonstrated smNet in three-dimensional single-molecule switching nanoscopy 

(SMSN) experiments. SMSN relies on localization of millions of PSFs down to a precision 

of 10-25 nm, which together with localization accuracy are essential to successfully 

reconstruct SMSN images. Using smNet, we reconstructed 3D-SMSN volumetric images of 

the fluorescently labeled mitochondrial protein, TOM20 in COS-7 cells (Methods), imaged 

either at the bottom coverslip or through a ~12 µm thick sample cavity. In fact, smNet 

learned to build a deep network from PSF images generated from an experimentally 

retrieved pupil, containing measured optical aberrations, modeled by 64 Zernike 

polynomials18 (Supplementary Note 10). This allows smNet to retrieve the correct molecular 

positions despite the significant amount of aberrations (Fig. 2d, Supplementary Figs. 1B and 

5). We found that the x-z cross sections of the mitochondria outer membrane show 

significant artifacts from conventional Gaussian-based methods, while smNet accurately 

reconstruct the surface contours of the subcellular organelles despite the imaging depth (Fig. 

2a–c, Supplementary Fig. 11 and Supplementary Notes 11–16).

Single-molecule emission patterns can be designed to evolve and encode molecular 

properties, such as, three-dimensional positions2, probe spectra19, identities15 and 

orientations3. However, encoding two or more classes of information in the emission 

patterns will increase their dimensionality, which challenges the traditional decoding 

processes such as feature recognition and regression.

smNet learns to recognize PSF features to extract the desired measurement through the 

information-limit weighted cost-function (Supplementary Note 3). During this process, 

smNet optimizes its parameters specifically for a certain measurement task ignoring other 
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irrelevant features. We found that smNet allows independent and therefore parallel inference 

of the spatial location together with the polar and azimuthal angles from a single-molecule 

dipole-emission pattern with little change to its architecture (Supplementary Table 4 and 

Supplementary Note 17). The inference precisions for all five dimensions closely approach 

the information limits in a large parameter range while degeneracies and wrappings of both 

polar and azimuthal angles can also be correctly predicted (Supplementary Fig. 12).

The possibility in extracting multiplexed information from emission patterns using smNet 

inspired us to use it for measuring wavefront distortions within the specimen. While a 

single-molecule dataset contains emission patterns originate from different locations within 

the detected region of the specimen, these patterns share a similar wavefront distortion 

induced by the inhomogeneous refractive indices of cell and tissue structures. smNet, 

designed to make its measurements (e.g. the amount of horizontal coma) from the common 

features of the PSF patterns, directly extracts the shared wavefront distortion from a small 

collection of detected emission patterns without any additional information (Supplementary 

Note 11). We found that smNet is capable of simultaneously measuring amplitudes of 12-21 

Zernike polynomials (Wyant order), representing wavefront shapes, while achieving a 

residual wavefront error of < 30 mλ (Fig. 3a,b, Supplementary Fig. 13, Supplementary 

Video 1 and Supplementary Note 8). We found that the resulting wavefront shape measured 

by smNet is in close agreement with the phase retrieval method using beads on a coverslip 

surface (Supplementary Fig. 14). Importantly, smNet is able to measure wavefront distortion 

without a guide star20, or scanning a bead18 sample which restricts the wavefront 

measurement from the actual imaging volume.

Using smNet, we are able to extract sample induced aberration through the raw single-

molecule blinking data itself allowing wavefront measurement deep into the specimen. As a 

demonstration, we measured the evolution of 12 Zernike aberration modes through 11 

consecutive optical sections through a immunolabeled specimen (TOM20 in COS-7 cells) on 

a custom-built biplane setup. We found that 1st order sepherical aberration evolves 

continuously while aberrations such as diagonal astigmatism decreases with increasing 

depth (Fig. 3c,d and Supplementary Video 2).

We found these wavefront measurements using smNet stabilizes after averaging 100-300 

sub-regions, or 20-60 raw data frames (depending on emitter density). This fast response 

time makes it useful in tracking dynamic wavefront distortions during continuous data 

acquisition. To demonstrate this, we applied smNet in capturing sudden aberration changes 

by introducing multiple cycles of controlled wavefront distortion using a deformable mirror 

during continuous acquisition. We found that our input-voltage amplitude for the deformable 

mirror which resembles normalized Zernike polynomials can be rapidly and consistently 

captured by smNet (Fig. 3e, Supplementary Fig. 15, Supplementary Videos 3–5, 

Supplementary Data). We expect further development could allow smNet to provide 

continuous feedback to an wavefront-control element during SMSN imaging of a living 

specimen.

We developed smNet, a deep neural network for complex and high-dimensional analysis of 

single-molecule emission patterns. Demonstrated through both computer-generated and 

Zhang et al. Page 4

Nat Methods. Author manuscript; available in PMC 2019 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



experimentally-obtained datasets, both general and subtle features of single-molecule 

emission patterns can be learned close to the information limit of the data for tasks including 

determination of 3D position, orientation and measurement of wavefront distortion. The 

designed architecture and network depth ensure smNet’s performance in precision, accuracy 

as well as speed. Furthermore, smNet decouples high-dimensional single-molecule 

measurement from limitations in human-based feature recognition, model simplification and 

regression, and therefore, could further allow encoding and extracting highly multiplexed 

physical and physiological information through the emission pattern of a single molecule.

Online Methods

Optical Setup

All experimental data (except for complex PSFs and wavefront estimation data) were 

recorded on a custom-built single molecule switching nanoscopy (SMSN) setup built around 

an Olympus IX-73 microscope stand (IX-73, Olympus America Inc., Waltham, MA) with a 

100×/1.35 NA silicone oil-immersion objective lens (FV-U2B714, Olympus America Inc.), a 

405 nm laser (DL-405-100, CrystaLaser, Reno, NV) and a 642 nm laser (2RU-VFL-

P-2000-642-B1R, MPB Communications Inc.) for activation and excitation, respectively. 

The filter turret contains a dichroic mirror (Di03-R405/488/561/635-t1, Semrock Inc.). A 

deformable mirror (MultiDM-3.5, Boston Micromachines, Cambridge, MA) placed at the 

conjugated pupil plane is used for correcting systematic aberrations and introducing 

astigmatism for 3D SMSN. Collected fluorescence emission passed through a bandpass filter 

(FF01-731/137-25, Semrock Inc.) placed just before the camera. The fluorescence signal 

was recorded on an EMCCD camera (C9100-23B, Hamamastu, Tokyo, Japan). The overall 

system magnification was ~141×, resulting in an effective pixel size of 113 nm.

For wavefront distortion measurements, the fluorescence emission after the imaging lens 

was split into two beam paths by a 50/50 beam splitter (BS016, Thorlabs). A small optical 

path length difference was introduced between the two paths to create a dual-focal plane 

configuration, resulting in a plane separation of 430 nm at the sample plane. The two beams 

were then combined by a right angle mirror (47005, Edmund Optics) and received by a 

sCMOS camera (Orca-Flash4.0v3, Hamamastu). The overall system magnification was 

~53×, resulting in an effective pixel size of 122 nm. A 100x/1.4 NA oil immersion objective 

(UPLSAPO 100XO, Olumpus America Inc., Waltham, MA) was used for wavefront 

distortion measurements. Biplane or multi-plane setup is preferred in wavefront distortion 

measurement to avoid degeneracies between aberration modes.

smNet architecture

smNet is composed of 3 to 5 convolutional layers21 (Supplementary Note 2.1), 7 to 11 

residual blocks17 (Supplementary Note 2.2) and 0 to 2 fully connected layers22. Each 

convolutional layer is followed by batch normalization23 (Supplementary Note 2.4) and 

PReLU24 (Supplementary Note 2.3), except for the last convolutional layer in M3 

(Supplementary Table 1). The first fully connected layer (FC) is followed by a PReLU and 

the last FC is followed by a HardTanh (https://github.com/torch/nn/blob/master/doc/
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transfer.md). The detailed information about smNet architecture and its variations are shown 

Supplementary Table 1.

Since the input image has a small size and the features of PSF span across a small number of 

pixels, it is imperative that we fully utilize the information contained in the spatial domain. 

To achieve this, we used larger kernels in beginning layers as compared to later layers of our 

neural network. We started with 64 kernels with a size of 7 by 7 pixels in the first layer 

followed by 128 kernels with a size of 5 by 5 pixels.

After this, we focused on capturing as many rich features as possible. Stacking large number 

of convolutional layers help us to achieve this, however, they often make neural networks 

untrainable17. To avoid this, we used a stack of 7 to 11 residual blocks in our architecture. 

Each residual block utilized the ‘bottleneck’ structure17, where the number of features is 

first squeezed and then expanded. This design not only helps in reducing the number of 

training parameters but also in learning more relevant features.

In later layers, we assume that there is much less spatial information left to be learnt by 

smNet, we used 1×1 convolutional layers. Finally, they are followed by fully connected 

layers. We found that reducing the number of both fully connected layers and 1×1 

convolutional layers helps in improving the accuracy in wavefront distortion estimation.

In our study, the output of smNet is a vector of 12 or 21 elements representing the 

amplitudes of 12 or 21 Zernike modes, or a vector of 2 elements representing x and y 
coordinates, or a scalar representing the z position, polar angle (α) or azimuthal angle (β). 

Since, x, y positions are based on the emitter’s location in the sub-region, and the axial 

position, polar and azimuthal angles and wavefront distortions are based on the shape 

information or a combination between shape and position information of the emitter, we 

decided to construct separate networks (with the same architecture) to perform these 

different tasks.

We didn’t use any subsampling and pooling methods in smNet for position and angle 

estimations. However, we found it helpful to add a stride of 4 in the 4th residual block for 

estimating the amplitudes of 12 Zernike modes (from astigmatism to 2nd spherical), and 

stride of 4 in both 4th and 8th residual block for estimating 21 Zernike modes (from 

astigmatism to 3rd spherical).

Sample Preparation

Immediately before SMSN imaging, round coverslip (25 mm diameter) containing immune-

stained COS-7 cells was placed on a custom-made sample holder, and 150 µL imaging 

buffer (10% (w/v) glucose in 50 mM Tris (JT4109-02, VWR), 50 mM NaCl (S271-500, 

Fisher Scientific), 10 mM MEA (M6500-25G, Sigma-Aldrich), 50 mM BME 

(M3148-25ML, Sigma-Aldrich), 2 mM COT (138924-1G, Sigma-Aldrich), 2.5 mM PCA 

(37580-25G-F, Sigma-Aldrich) and 50 nM PCD (P8279-25UN, Sigma-Aldrich), pH 8.0) 

was added on top of the coverslip. Then a cleaned coverslip of the same size was carefully 

placed on top of it and the excessive buffer was removed. The sample was sealed with 

melted Valap. Samples with cells on the top coverslip were prepared in a similar manner by 
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placing the cleaned coverslip at the bottom of sample holder and the coverslip with cells on 

top of it (the surface with cells facing down).

To obtain experimental complex PSFs, 200 nm diameter fluorescent beads (F8806, 

Invitrogen) with a dilution of 1:104 in deionized water were used. For experiments using 

phase retrieval method, 100 nm diameter beads (crimson, custom-designed, Invitrogen) with 

a dilution of 1:106 in deionized water were used. After diluting the desired type of beads, 

200 µL poly-L-lysine (P4707-50ML, Sigma-Aldrich) was added to the center of a round 

coverslip (25 mm diameter) placed on a custom-made sample holder and was incubated for 

20 minutes. Then the sample was rinsed once with deionized water and 200 µL diluted bead 

solution was added and subsequently incubated for 20 minutes at room temperature. Then 

the sample was rinsed with deionized water, drained and added with 10 µL deionized water 

(or 97% TDE (166782-500G, Sigma-Aldrich) for bead samples used in wavefront distortion 

measurements). Subsequently, a second pre-cleaned coverslip was placed on top and the 

sample was sealed with two-component silicone sealant (Picodent Twinsil, Picodent, 

Germany).

The dye coated coverslip sample were prepared by first adding 200 µL poly-L-lysine 

(P4707-50ML, Sigma-Aldrich) onto a 25 mm round coverslip and was incubated for 1 hour. 

Then the sample was rinsed once with deionized water and was incubated with 200 µL 1:106 

dye dilution in 0.1 M sodium bicarbonate (792519-500G, Sigma-Aldrich) for 2 hours. The 

dye dilution was prepared from a stock solution that was made by dissolving a small amount 

of Alexa Fluor 647 (A20006, Life Technologies) powder in DMSO (276855-100ML, Sigma-

Aldrich), the color was dark blue. The sample was then rinsed three times with deionized 

water and mounted in a Attofluor cell chamber (A7816, Life Technologies). Then 600 µL 

imaging buffer (as described above) was added to the chamber and was covered with mineral 

oil on top.

Immunofluorescence labeling

COS-7 cells (CRL-1651, ATCC) were seeded on 25 mm diameter coverslips (CSHP-

No1.5-25, Bioscience Tools, San Diego, CA) 1~2 days before immunofluorescence labeling. 

Cells were first rinsed three times with pre-warmed (at 37 ºC) phosphate buffered saline 

(PBS, 806552-500ML, Sigma-Aldrich) and then fixed for 15 minutes at room temperature 

(RT) with pre-warmed (at 37 ºC) 3% paraformaldehyde (PFA, 15710, Electron Microscopy 

Sciences, Hatfield, PA) and 0.1% glutaraldehyde (GA, Electron Microscopy Sciences, 

16019, Hatfield, PA) in PBS. Cells were then washed twice with PBS and treated for 7 

minutes in freshly-prepared fluorescence quenching buffer (0.1% sodium borohydride 

(452882-25G, Sigma-Aldrich) in PBS). After fluorescence quenching, cells were washed 

three times with PBS and treated for 10 minutes with 10 mM Tris (pH 7.3, JT4109-02, 

VWR). Cells were then rinsed three times with PBS and permeabilized with blocking buffer 

(3% bovine serum albumin (BSA, 001-000-162, Jackson ImmunoResearch) and 0.2% Triton 

X-100 (X100, Sigma-Aldrich) in PBS) for 30 minutes, gently rocking at RT. After blocking, 

cells were incubated with anti-TOMM20 primary antibody (sc-11415, Santa Cruz 

Biotechnology), diluted to 1:500 in 1% BSA and 0.2% Triton X-100 in PBS, at RT for 12 

hours. Cells were then washed three times each time for 5 minutes with wash buffer (0.05% 
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Triton X-100 in PBS) and incubated with secondary antibody conjugated with Alexa Fluor 

647 (A21245, Life Technologies, Grand Island, NY), diluted to 1:500 in 1% BSA and 0.2% 

Triton X-100 in PBS, at RT for 4 hours. After incubation with secondary antibody, cells 

were washed three times each time for 5 minutes with wash buffer. And then cells were post-

fixed with 4% PFA in PBS for 10 minutes. After post-fixation, cells were rinsed three times 

with PBS and stored in PBS at 4 ºC until they were imaged.

Data Acquisition

The experimental complex PSFs (Figure SS13) were collected on a custom-built microscope 

(W-4PiSMSN constructed from the previous design25). The bead sample was excited with a 

642 nm laser (2RU-VFL-P-2000-642-B1R, MPB Communications Inc., Canada) at an 

excitation intensity of 12 W/cm2. The sample’s z position was adjusted by moving a piezo-

driven nano-stage (P-541.ZCD, Physik Instrumente, Germany). The complex PSF shape was 

generated by applying a distorted wave front at the pupil plane of the emission path using a 

deformable mirror (MultiDM-5.5, Boston Micromachines). The wave front consisted of a 

combination of the mirror mode5,26 6 (resembling trefoil in Zernike polynomial) and 

Zernike polynomial27 5 (Wyant ordering, astigmatism) and their amplitude of 0.48 and 0.32 

(unit: λ) respectively. Data for generating training PSFs were acquired at z positions ranging 

from −1.5 µm to 1.5 µm, with a step size of 10 nm, a frame rate of 1 Hz and taking one 

frame per axial position. Data for testing were acquired at z positions from −1 µm to 1 µm, 

with a step size of 100 nm, a frame rate of 10 Hz and taking 20 frames per z position. Data 

for training and testing were acquired using different fluorescent beads in the same sample.

The PSF images used for phase retrieval were collected on a custom-built microscope. The 

bead sample was excited with a 642 nm laser (2RU-VFL-P-2000-642-B1R, MPB 

Communications Inc., Canada) at an excitation intensity of 55 W/cm2. The sample’s z 
position was adjusted by moving a PIFOC objective positioner (ND72Z2LAQ, Physik 

Instrumente, Germany). Data were acquired at z positions from −1 µm to 1 µm, with a step 

size of 100 nm, a frame rate of 50 Hz and taking 100 frames per z position.

One dataset of experimental PSF was normally acquired from 1 to 5 minutes. We therefore, 

does not expecting a significant drift in our SMSN system. We would like to note that if 

sample drift significantly during experimental PSF calibration, the experimental PSF will tilt 

and subsequently worsen the accuracy of single molecule analysis. Therefore, we 

recommend experimental PSF is taken within a short acquisition window. For systems 

exhibits large drifts (typically SMSN systems have much smaller drift), it is therefore 

mandatory to have close loop drift compensating mechanism during acquisition (for 

example, with fiduciary markers).

For beads imaged at the top coverslip (Figure SS13). The distance between the two 

coverslips was measured by first recording the piezo stage position when the dusts on the 

bottom coverslip were in focus, then recording a second piezo stage position when the beads 

were in focus. The distance was then estimated as the difference between the two recorded 

positions.
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The SMSN data of COS-7 cells were collected on a custom-built microscope. The sample 

was first excited with a 642 nm laser (2RU-VFL-P-2000-642-B1R, MPB Communications 

Inc., Canada) at low intensity of 55 W/cm2, to find a region of interest (ROI). Then the 

blinking data were collected at a laser intensity of 6~9 kW/cm2, and a frame rate of 71 Hz. 

During data acquisition, a 405 nm laser (DL-405-100, CrystaLaser) was used as an activate 

laser and was gradually adjusted from 0 to 37 W/cm2. For data with a single optical section, 

the mitochondria structure was imaged at around 1 µm from the coverslip surface 

(Supplementary Fig. 11). For data with multiple optical sections, the mitochondria structure 

was imaged from the top coverslip surface (Fig. 2a–c) to the top of the cell, with a step size 

of 400 nm in axial. Typically, 90,000 to 180,000 frames were collected for each dataset.

The blinking data for aberration measurement were collected in the same manner as 

described above. For TOMM20 in COS-7 cells, the mitochondria structure was imaged from 

the top of the cell to the top coverslip surface at a step size of 1 µm and a frame rate of 50 

Hz. For dyes immobilized on coverslip, the data were collected by applying a single 

aberration type using the DM every 600 to 700 frames, with a frame rate of 50 Hz.

Data simulation

A 3D Gaussian-PSF model28 was used to generate the localization result of aberrated 

astigmatism PSFs in Fig. 2d (see Supplementary Table 3 for simulation parameters and 

Supplementary Note 5 for simulation details). The aberrated astigmatism PSFs18,29 and 

double-helix PSFs11 in Fig. 2e,f were simulated based on scalar diffraction theory and their 

pupil functions were modified either with index mismatch aberration at 12 µm depth or the 

transfer function of propagation-invariant wave fields30 (Supplementary Table 3 and 

Supplementary Note 5). The error radius at each photon/background pair (blue circle) was 

calculated from the average over all the errors of the 11000 (or 21000) localizations from 

smNet. Each dashed red circle represents the averaged error-radius generated from Monte-

Carlo simulation based on CRLB31,32 (Supplementary Note 7), which simulates a 

localization result by sampling from a Gaussian distribution with its mean equal to the true 

position and a variance equal to the CRLB.

The test data for Fig. 3a,b were simulated from Fourier transform of pupil functions 

(wavefront distortion) composed of 12 or 21 Zernike aberration modes27 (from Astigmatism 

to 2nd Spherical). Each Zernike mode was simulated with random amplitude (in the range of 

−159.1549 to 159.1549 mλ, see Supplementary Table 3 and Supplementary Fig. 13 for 

simulation parameters and Supplementary Note 5 for simulation details).

Data Availability Statement

The data that support the findings of this study are available from the corresponding author 

upon request. Example data are available in supplementary data and software packages.

Code Availability Statement

LuaJIT scripts for training smNet, Matlab script for generating various PSF models and 

corresponding calculation of CRLB, Matlab script for phase retrieval, and Matlab script for 

estimation of total photon background photon counts are available in Supplementary 
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Software and further updates will be made available at https://github.com/HuanglabPurdue/

smNet.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Concept of training and inference with smNet and description of basic architecture.
(a) smNet training process. The example input training data set consists of PSF images and 

the underlying true values of the measurements θ0. smNet takes in the training images and 

outputs estimations θk for kth iteration. Iteratively, through backpropagation, the parameters 

in the network are updated by minimizing the designed information-limit weighted cost-

function. (b) The estimation process with smNet. Once trained, smNet takes in a stack of 

PSF images and outputs the desired estimations. The simplified illustration shows four 

major building blocks of smNet: convolutional layer, nonlinear transformation, batch 

normalization and residual block.
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Figure 2: 3D-SMSN reconstruction using smNet and its error radii comparison with the CRLB 
for aberrated astigmatism and double helix PSFs.
(a) 3D-SMSN reconstruction using smNet. The sample is TOM 20 in a COS-7 cell at a 

depth of 12 µm from coverslip surface. Color represents the relative axial position of the 

localized molecules. The image is representative of 9 independently repeated experiments. 

(b) Comparison of cross sections of selected regions (red boxes in a) from both smNet 

reconstruction and Gaussian-based reconstruction (Supplementary Note 12). The data are 

representative of 6 independently repeated experiments (c) Intensity profiles along the 

dashed lines in b. The data are representative of 6 independently repeated experiments. (d) 
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Comparison of precision and accuracy for axial localization using smNet and Gaussian-

based method. Data were generated from an experimentally retrieved pupil function 

including aberrations at 12 µm above the coverslip. (e,f) Error radii achieved at various total 

photon and background levels for aberrated astigmatism PSFs (same as in d) and double-

helix PSFs.
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Figure 3: smNet measures wavefront distortions.
(a,b) smNet measurement of wavefront shape composed of 12 or 21 Zernike modes through 

simulated PSFs. The amplitude of each mode is randomly sampled from −159.15 to 159.15 

mλ. The nine example PSFs (upper left) are randomly picked from the 1st planes of the 

1000 biplane PSFs. The centers and error bars in (a, b) are mean and s.e.m respectively (n = 

1000). (c) Illustration of smNet’s wavefront measurement based on single-molecule blinking 

data during SMSN imaging. Sub-regions are enlarged to show PSF shape in the biplane 

setup. (d) Measurement of wavefront distortion along 11 optical sections during SMSN 

imaging of a whole cell. (e) Tracking of dynamic wavefront changes introduced by a 

deformable mirror (DM) using smNet. Each dashed line represents a change of the input 

voltage to the deformable mirror (DM) shape which resembles normalized Zernike 

polynomials. Eight experiments were repeated independently with similar result and 

additional tracking results are included in Supplementary Fig. 15 and Supplementary Data.
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