
Global Journal of Computer Science and Technology Vol. 10  Issue 13 (Ver. 1.0 ) October  2010  P a g e | 43 

 

GJCST Classification (FOR) 
F.1.3, F.2.1, F.2.2 

Analyzing Complexity For NP-Complete Problem 

Through DNA Computing Algorithm 

                    Shalini Rajawat 1, Dr Vijay Singh Rathore 2,,Naveen Hemrajani 1,Ekta Menghani3

Abstract- Adleman and Lipton adopted a brute-force search 

strategy to solve NP-complete problems by DNA computing 

i.e., a DNA data pool containing the full solution space must 

first be constructed in the initial test tube (t0), and then correct 

answers are extracted and/or false ones are eliminated from the 

data pool step by step. Thus, the number of distinct DNA 

strands contained in the initial test tube (t0) grows 

exponentially with the size of the problem. The number of 

DNA strands required for large problems eventually swamps 

the DNA data storage, which makes molecular computation 

impractical from the outset. Lipton’s brute-force search DNA 

algorithm is limited to about 60 to 70 variables and thus it is 

believed that DNA computers that use a brute-force search 

algorithm can not exceed the performance of electronic 

computers. Since then, studies on DNA computing have 

focused on reducing the size of the data pool. A few new 

algorithms, such as the breadth-first search algorithm , Genetic 

algorithm , random walking algorithm , have been proposed 

and tested. With the breadth-first search algorithm, the 

capacity of a DNA computer can be theoretically increased to 

about 120 variables, but even so, DNA computers are still not 

capable of competing with electronic computers. Previously, we 

solved the SAT problem using a DNA computing algorithm 

based on ligase chain reaction. In the present study, we solve 

the SAT problem with the same DNA computing strategy using 

alternative biotechnical operations. Here we report some new 

results on the universality and space complexity of this DNA 

computing algorithm.  

Keywords-DNA computing, NP-Complete, space 

complexity, time complexity  

I. DNA COMPUTING ALGORITHM 

ithout becoming too specific, we can assume that 

none of the clauses of F has both the positive form 

and negative form of the same variable and that F does not 

have two or more clauses consisting of the same three 

literals. The program for solving a 3-SAT problem with n 

variables and m clauses is shown in Program. 1. In the 

computing process, tj contains all of the sequences that 

satisfy clauses C1 to Cj. Strings that do not satisfy C1 to Cj 

can not be produced because the corresponding variable 

DNA is absent in tjk, or can not be amplified by PCR 

because they are broken by a restriction enzyme in tjk. After 

m steps of such operations guided by the SAT formula, all  
_____________________________ 
About1-Department of Computer Science & Engineering, Suresh 

GyanVihar University, Jaipur, INDIA (rajawatshalini@yahoo.co.in; 

naven_h@yahoo.com 

About2-Department of Computer Science & Engineering, Karni College, 

Jaipur INDIA. ( vijaydiamaond@gmail.com ) 

About3-Department of Biotechnology, Mahatma Gandhi Institute of Applied 

Sciences,  Jaipur, INDIA (ekta.menghani@rediffmail.com) 

 

correct strings that satisfy all of the clauses will be 

generated.The computation time is O (9m+3n) because 

Split, U-ligate, Cut, Amplify, Merge and Detect commands 

are executed at most m, 3n, 3m, 3m, m and m times in the 

program, respectively.Therefore, the NP-complete problem 

can be solved in an amount of time that is proportional to 

the size of the problem. 

II. IMPLEMENTATION OF THE ALGORITHM 

Biotechnological implementation of the DNA algorithm is 

shown in Fig. (1). The commands are described in detail 

below: 

(1) PCR amplification of x0 v-xi v was performed in a total 

volume of 50μL, using 100 nmol/L of each primer P0 and 

Pi, 10ng of ligation product x0 v-xi v, 200 mmol/L of each 

of the 4 dNTP, and 2.5U Taq DNA polymerase in 1X PCR 

Buffer supplemented with MgCl2 

at a final concentration of 1.5 mM (all from Promega). 

Amplification was carried out on a Biometre T1 thermal 

controller as follows: 

predenaturing at 94°C for 1 min, followed by 20 cycles of 

denaturing at 94°C for 20s, annealing at 62°C for 20s, and 

extension at 72°C for 20s, and a final extension at 72°C for 

1 min. 

(2) U-ligation of variables xj v to x0 v-xi v was performed in 

a volume of 20μL, containing 100ng PCR product x0 v-xi v, 

1X PCR buffer and 2U USER enzyme (NEB). This mixture 

was incubated at 37�for 30 min to cut the uracil base. Next, 

1μmol xj v, 1X Taq DNA ligase buffer and 80U Taq DNA 

ligase (NEB) were added,and the mixture was heated to 95 c 

for 5 min, gradually cooled to 55 c, and incubated at 55 c for 

30 min to ligate xj v and x0 v-xi v.  

(3) Restriction cutting of x0 v-xi v… was performed in a 

volume of 20μL containing 100ng PCR product x0 v-xi v…, 

1X restriction buffer and 20U restriction enzyme (NEB) 

selected according to Table 1, and this mixture was 

incubated at the temperature recommended by the 

manufacturer for 60 min to cut strings containing xi v.  

/* Program 1: Solve 3-SAT on a DNA computer */ 

Function DNA3SAT (F, xi, m, n) 

Begin 

Empty (t0) /* Begin with an empty test tube t0 */ 

/* Step 1 to m: for each clause of F, Cj =  

(Ljk)*/ 

For j = 1 to m 

Split (tj-1, tj1, tj2, tj3) /* Split test tube tj-1 

equally to tj1, tj2, tj3 */ 

W 

mailto:rajawatshalini@yahoo.co.in
mailto:naven_h@yahoo.com
mailto:rajawatshalini@yahoo.co.in,ourabh_311@yahoo.co.in
mailto:rajawatshalini@yahoo.co.in,ourabh_311@yahoo.co.in
mailto:ekta.menghani@rediffmail.com


P a g e  |44 Vol. 10 Issue 13 (Ver. 1.0) October 2010 Global Journal of Computer Science and Technology 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Biotechnological operations in each step of the DNA computing process: 

 

 

Step 1: Ligating of x0 v and xi v and PCR amplification of 

the product x0 v-xi v; 

Step 2: U-ligating xj v: USER-cutting the ligation product 

x0 v-xi v to regenerate the sticky end and ligating of xj v to 

get x0 v-xi v-xj v; 

Step m: At the end of computation, PCR is used to amplify 

the final answer DNA x0 

v-xi v-xj v-…-xk v with primer P00 and Pk; 

Step m+1: Cloning of PCR product of the final answer 

DNA into the pNEB205A vector. 

 

For k = 1 to 3 /* for each literal of Cj */ 

i = index (Ljk) 

If First_occurrence (F, xi) then /* If Ljk (xi or ~xi) is the 

first occurrence 

of xi in F */ 

For l = 1 to 3 

U-ligate (tjl, xi 

0); U-ligate (tjl, xi 

1) 

Next l 

 

 

End If 

Restriction_cutting (tjk, NOT Ljk) /* Cut NOT Ljk with 

restriction 

enzyme */ 

PCR_ amplification (tj1, tj2, tj3, P0, Pi) 

/* PCR Amplify DNA in tj1, tj2 and tj3 with primer P0 and 

Pi */ 

Next k 

Merge (tj, tj1, tj2, tj3) /* Merge test tube tj1, tj2, tj3 to tj */ 

Next j 

/*Step m+1: detect the result by sequencing*/ 

Return Detect (tm) 

End Function 

 

 



Global Journal of Computer Science and Technology Vol. 10  Issue 13 (Ver. 1.0 ) October  2010  P a g e | 45 

 

 

III. RESULTS OF THE LAB EXPERIMENT 

 

 
Fig. (2). Results of the DNA computing process (Steps 0 to 2).

 

M is a 25-bp DNA ladder (MBI) DNA bands show x0 0 in 

test tube t11-1, ligating product in test tube t11-2 (x0 0- x3  

 

 

v) and PCR products in test tubes t11-3, t12-3, t13-3, t11-3, 

t11-4, t1, t21-1, t21-2, t22-2, t21-3, t22-3 and t23-3, 

respectively.

 
 

Fig. (3). Result of DNA cloning and sequencing of the final answer DNA. The variable names and values are marked, the 

binding positions of primers P0 to P3 are underlined, the restriction sites are boxed and marked, Pst I-Sac II-BamH I-EcoR 

V, and the unique answer is x0 1-x3

IV. EVALUATION OF THE SPACE COMPLEXITY OF THE 

DNA ALGORITHM 

For a given m-clause random SAT formula, F, the first j 

clauses is a SAT formula with j clauses, say Fj. In the 

computing process, when j grows from 1 to m, the number 

of different DNA strands in tj, say Nj, equals to the number 

of true assignment of Fj. The space complexity of this 

algorithm is the maximum number of DNA strands 

produced in test tubes tj, or the maximum number of partial 



P a g e  |46 Vol. 10 Issue 13 (Ver. 1.0) October 2010 Global Journal of Computer Science and Technology 

 

 
 

assignments of Fj, say max{Nj, j = 1,…,m}, which is always 

smaller than the full solution space (2n). 

We have examined the performance of our algorithm by 

computer simulation. We implemented on a HP Proliant 

workstation running a program that simulates our SAT 

solving algorithm on a family of random generated 3-CNF 

SAT formulas. In order to generate sample formulas, we 

wrote a program that give a range for the number of 

variables, n1 to n2, and a range for the clause/variable ratios, 

r1 to r2, constructs formulas of n variables and m clauses, 

where n€ [n1, n2], m/n€ [r1, r2]. When picking up a clause, 

three literals are repeatedly selected independently with 

equal probability, while keeping the clause free from 

complementary literals and identical literals. In both 

conventional and molecular computing studies on SAT 

problem, what we  interested in are hard SAT problems. 

The clause/variable ratio of the hardest instances of 3CNF-

SAT is around 4.3 [1, 16]. There are several algorithms that 

very efficiently solve the SAT problem if the clause/variable 

ratio is even slightly off from the critical point near 4.3. In 

order to test our SAT solving algorithm on both easy and 

hard problems, we generated at random fifty thousand 

instances of 3CNF-SAT problems with number of variables 

n€(5, 50) (more than one thousand for each n) and 

clause/variable ratio m/n€ (1, 50), and then investigated how 

the number of partial assignments changes while the 

algorithm runs. Because cutting operation helps decreasing 

of the partial assignments, and the more frequent a variable 

occur, the more cutting operation it brings to the computing. 

So we adopted a cutting-first strategy, the clauses are scored 

and sorted so that the cutting operations would happen as 

soon as a new variable is ligated to the solution. 

Once a 3-SAT formula is generated, say F=C1 \C2^…Cm, 

the clauses, Cj, are scored by, Wj = 3 k=1 log (qi), j = 1,…, 

m, Where qi is the occurrence number in F of the variable 

(xi) for theliteral Ljk. Then the clauses are sorted 

descendingly according to Wj, F was then transformed into 

an equivalent form, F' = C1'^C2'^…Cm'; where Cj€ [C1, 

C2, …, Cm], W1' >W2'>...>Wm'.Then we solve F' using the 

sequential version of our algorithm running on electronic 

computer and computes the maximum number of partial 

assignments ( ) that are required, outputs the exponent ratio 

p= (log2 )/n. The average and maximum ratio  for the 

maximum number of necessary partial assignments in 

solving random 3- SAT problems is shown in Fig. (4). The 

number of assignments in the initial pool generated by the 

brute force algorithm is 2n, so theratio  for Lipton‘s brute 

force algorithm is a constant, �Lipton=1.0. The observed 

ratio  for our algorithm decreases almost linearly with the 

increasing of n and m/n ratio. When n = 50, the overall 

average and maximum for the maximum number of DNA 

strands required is 20.4198n and 20.48n, respectively. If this 

relation 20.48n holds true or decreases further in 3-SAT  

instances with more variables,our algorithm will make 

solution of large and hard 3-SAT problemwith much smaller 

amount of DNA than the conventional bruteforce method. 

The observed average and maximum exponent ratio for this 

algorithm decreases logarithmically with the increasing of n. 

The regression equation of the maximum ratio to the number 

of variables n is,= 1.2902 -0.1788 ln (n) When n is set to be 

100 and 200, the predicted maximum number of DNA 

strands required is 1.13E+14 and 4.39E+20, i.e., the amount 

of DNA strands required are respectively within several 

nanomole and micromole. These requirements are surely 

possible with current biotechniques. If this relation holds 

true, this algorithm will make the solution of large 3-SAT 

problem possible with much smaller amount of DNA than 

the conventional brute-force method. Thus, based on the 

analysis in section 3 and section 6, we proposed conjecture: 

For the class of SAT problems generated by our program for 

random generated 3-CNF SAT formulas can be solved on a 

DNA computer with time complexity O (9m) and space 

complexity2 [1.2902-0.1788 ln (n)]n.  

V. DISCUSSION 

Even though the sample SAT problem solved here is very 

small, the proposed DNA computing algorithm has several 

advantages. Firstly, it eliminates the need to construct a full-

solution 0-x2 1-x1 0. DNA library. The first test tube (t0) is 

empty instead of containing the full-solution data pool, and 

the other test tubes tj (j=1 to m) contain only strings that 

satisfy clauses C1 to Cj, which greatly reduces the number 

of DNA strands needed in the DNA computation, and makes 

it possible to extend this approach to solve large SAT 

problems, and possibly to other large NP-problems[2]. The 

maximum number of variables it can deal with depends 

mainly on how many cycles of U-ligation and amplification 

can be performed to extend the DNA strands without any 

serious error. In the present study, we performed 3 steps of 

extension and obtained a 4-word DNA solution. Although 

the process can theoretically proceed for as many steps as 

desired, the actual number of steps should be determined by 

further experiment in practice; Secondly, our DNA 

computation algorithm is error-tolerant. In this algorithm, 

we adopted U-ligating, PCR amplifying and restriction 

cutting as basic operations. As far as we know, ligase and 

restriction enzyme are both the most precise DNA operation 

enzymes available[3]. A one-base-pair mismatch in the 

restriction sites or in the sticky ends is enough to prevent 

them from cutting or ligating DNA molecules. The intrinsic 

highly accurate DNA sequence-recognition ability of DNA 

ligase and restriction enzyme makes them the most suitable 

tools for use in DNA computing. The same operations have 

been used successfully to solve the max clique problem [7], 

and those authors pointed out that the major errors in this 

computation arise from two sources. The first is the 

production of single stranded DNA (ssDNA) during PCR. 

This ssDNA cannot be cut by restriction enzymes. The 

second source of errors is incomplete cutting of double-

strand DNA (dsDNA) by restriction enzymes, which also 

leads to incorrect answers. We used the selected restriction 

enzymes in 10-fold over digestion and found that they work 

well enough for our purpose in one cycle of digestion-PCR. 

Thanks to the combination of restriction digestion and PCR, 



Global Journal of Computer Science and Technology Vol. 10  Issue 13 (Ver. 1.0 ) October  2010  P a g e | 47 

 
this procedure gives an exponential amplifier with a larger 

exponent for uncut strands than for cut strands. Repeating 

the digestion-PCR process should therefore reduce the 

amount of noise arising from incomplete digestion [4-5]. In 

addition, the U-ligating operation we used to extend DNA 

strands not only helps to resist errors, but also increases the 

practical capacity of the DNA computer, since it is not only 

fast, easy and effective, but also prevents unwanted DNA 

strands from being generated by avoiding mistaken-ligation. 

Thirdly, the variables in the solution DNA are linked in the 

order of their position in the SAT formula instead of their 

indices. Compared with previous algorithms in which the 

variables are usually connected in the order of their  indices 

[4-8], this feature of our algorithm makes it much easier to 

handle and possible to implement DNA computing without 

generating the full solution pool.  In our algorithm, it is not 

necessary to sort the variables and literals, while we can 

reorder the clauses and the literals in any way to make the 

searching space smaller. As noted by Adleman [4], the 

information storage capacity of DNA is huge. In principle, 1 

mmol of DNA can encode 2 gigabytes of data. The major 

advantage of DNA computing lies in its high parallelism. 

Our algorithms take advantage of the high information 

density and parallel computing capacity of DNA molecules, 

resembling in vitro evolution without generating an initial 

data pool that contains every possible answer; the number of 

DNA strands required increase exponentially with the size 

of the problem, but the observed average and maximum 

exponent ratio for this algorithm decreases logarithmically 

with the increasing of the number of variables (n). So our 

algorithm is more space efficient and can be scaled-up to 

solve large SAT problems. Unfortunately, the laboratory 

operations used in this algorithm are still very slow: it takes 

an average of about 30 min for each operation and 30 h in 

total to solve a small 3-SAT problem. Although the 

operations may be further optimized, it is still not yet 

possible to exceed the performance of electronic computers.

 

 
Fig. (4). Average and maximum exponent ratio for different n and m/n ratio. Data was calculated from fifty thousand random 

3CNF–SAT instances with number of variables n=(5, 50) and clauses/variable ratio m/n=(1, 50). 

 

VI. REFERENCES 

1) Selman B.; Mitchell D.; Levesque H. Generating 

hard satisfiability problem. Artif. Intell., 1996, 81, 

17. 

2) Wang, X.; Bao, Z.; Hu, J.; Wang, S.; Zhan, A. 

Solving the SAT problem using a DNA computing 

algorithm based on ligase chain reaction. 

Biosystems, 

2008, 91(1), 117. 

3) Ouyang, Q.; Kaplan, P.D.; Liu S.; Libchaber, A. 

DNA solution of the maximal clique problem. 

Science, 1997, 278, 446. 

 

 

 

 

4) Adleman, L. Molecular computation of solutions to 

combinatorial problems. 

Science, 1994, 266, 1021. 

5) Lipton, R. Using DNA to solve NP-complete 

problems. Science, 1995, 268, 

542. 

6) Yoshida, H.; Suyama, A. DIMACS: Series in 

Discrete Mathematics and Theoretical Computer 

Science. Solution to 3-SAT by Breadth-First 

Search, American Mathematical Society, 

Providence, 2000, RI54, 9. 



P a g e  |48 Vol. 10 Issue 13 (Ver. 1.0) October 2010 Global Journal of Computer Science and Technology 

 

 
 

7) Li, Y.; Fang, C.; Ouyang, Q. Genetic algorithm in 

DNA computing: A solution 

to the maximal clique problem. Chinese Sci. Bull., 

2004, 49(9), 967. 

 

8) Liu, W.; Gao, L.; Zhang, Q.; Xu, G.; Zhu, X.; Liu, 

X.; Xu, J. A random walk DNA algorithm for the 

3-SAT problem. Curr. Nanosci., 2005, 1, 85. 


	Analyzing Complexity For NP-Complete Problem Through DNA Computing Algorithm

