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Introduction

Copy number variations in human population and disease genetics

A copy number variation (CNV) arises when the number of copies of a segment of a

chromosome, ranging from a few hundred base pairs (bps) to megabases (Mbs), differs from

the expected number of copies (e.g., two copies for autosomes and X chromosomes in

females) due to duplication or deletion. CNVs are a major source of genomic diversity in

human populations (Redon et al., 2006). Moreover, common or rare CNVs have been

associated with genetic susceptibility for many diseases including various cancers,

autoimmune disorders, schizophrenia, and autism (see Merikangas and colleagues’ review

(Merikangas, Corvin, & Gallagher, 2009)). One recent large study in the Wellcome Trust

Case Control Consortium of 16,000 cases (2,000 cases for each of eight different complex

diseases) and a shared set of 3,000 controls identified and replicated three loci with CNV

associations with disease: IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid

arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetes (Wellcome Trust Case Control

et al., 2010). While it is important to note that most common CNVs have demonstrated little

or no contribution to disease risk, CNVs have explained the elusive genetic effects in some

complex diseases like rheumatoid arthritis, and as such remain one of many viable

categories of genomic variation to be explored for possible genetic contributions to disease.

Much work has already been done in defining copy number variations throughout the

genome, and this has led to an explosion of bioinformatics resources. The Human Genome

Structural Variation Project website curated by Eichler and colleagues at the University of

Washington Department of Genome Sciences provides a detailed map of CNVs and large

structural variants (Kidd et al., 2008; http://hgsv.washington.edu/). The Copy Number

Variation (CNV) Project (http://www.sanger.ac.uk/research/areas/humangenetics/cnv/) from

the Wellcome Trust Sanger Institute curates CNVs identified through a variety of

genotyping and hybridization approaches and provides extensive information of known
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CNV- phenotype associations (Bochukova et al., 2010; Conrad et al., 2010). The Center for

Human and Clinical Genetics at Leiden University Medical Center maintains a

comprehensive list of genetic variation databases (http://www.humgen.nl/

SNP_databases.html), including CNV databases.

Detecting copy number variations

A variety of technologies are available to detect CNVs such as fluorescence in situ

hybridization (FISH), Array-comparative genomic hybridization (aCGH) (see Unit 4.14),

genome-wide single nucleotide polymorphism (SNP) arrays (see also Unit 8.13), and most

recently, high-throughput sequencing. These methods have their unique advantages and

limitations in cost, equipment needs, size resolution, and sensitivity.

High-throughput, high-density genotyping technologies used in genome-wide association

studies such as Illumina BeadArrays enable detection of CNVs. These technologies are

based on hybridizations with SNP marker probes designed specifically for particular

genomic locations (see Unit 2.9). These array platforms typically target biallelic SNPs. For

each SNP, an array platform includes two types of hybridization probes specific to two types

of known alleles, usually coded as A and B, and the SNP genotype can be determined by the

ratios of the hybridization intensities for A and B probes (Figure 1a). CNVs such as

duplications and deletions increase or decrease the total measured intensities; moreover, for

large CNVs that span multiple SNPs, intensity ratios have patterns distinct from normal

disomic genomic regions (Figure 1b). Computational methods such as PennCNV (Wang et

al., 2007), QuantiSNP (Colella et al., 2007), or R/CNVtools (Barnes et al., 2008) have been

developed that make full use of these properties to detect common or rare CNVs using

hybridization intensities and allele frequencies from SNP markers.

Outline

In this unit we present three basic protocols that: (1) apply PennCNV (Wang et al., 2007) to

Illumina SNP array data to detect CNVs, and perform quality assessment; (2) use R to

perform association testing of common CNVs; and (3) use PLINK (Purcell et al., 2007) to

perform burden tests to find associations with rare or non-overlapping CNVs. We also

include a support protocol to visualize CNVs using the UCSC Genome Browser. These

protocols assume the reader is familiar with using Linux-based operating systems and

software, and has experience using PLINK (Purcell et al., 2007) to analyze GWAS data.

Note that some additional terminology is discussed in the commentary section.

Basic Protocol I

Title: Detect CNVs from Illumina Whole-Genome Genotyping array data using PennCNV.

Introduction

In this protocol we describe using PennCNV (Wang et al., 2007) to analyze genotyping data

obtained from the Illumina Human660-Quad v1 SNP array to detect CNVs. With minor

adjustment these methods can be applied to data collected from other genotyping arrays.

Quality control measures of the data can be divided into two phases: 1) at SNP genotyping,
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including removing failed probes, removing individuals based on call rate, population

structure, Hardy-Weinberg Equilibrium (see Units 1.19 and 1.22); and 2) at CNV calling,

including removing individuals with highly variable signal intensity data.

Materials List

1. Signal intensity data - LRR (Log R Ratio) and BAF (B Allele Frequency) - of each

individual and each probe.

2. Additional input files for PennCNV as described in its manual: PFB (Population

Frequency of B allele), HMM, and GCModel files.

3. Linux environment with PennCNV installed. We assume the user has PennCNV

installed or has the knowledge on how to obtain and install the software; more

information is available on the PennCNV website (http://

www.openbioinformatics.org/penncnv/penncnv_installation.html).

Steps and Annotations

1. Generate a signal intensity file by the export function provided in Illumina

GenomeStudio or BeadStudio. The following fields are required: SNP information

(rs ID is required while chromosome and location are optional), and LRR and BAF

values for each sample. The PennCNV website (http://

www.openbioinformatics.org/penncnv/penncnv_input.html) provides step-by-step

instructions. Assume the file name is lrr_baf.txt.

2. Remove probes that can not be uniquely mapped to the genome. Although Illumina

selects SNPs that can be uniquely mapped to the reference genome when an array

was designed, this might not be the case for some of the SNPs when a newer

reference genome assembly is released. One may detect this when the SNP location

is mapped to the newer reference genome assembly using UCSC Genome

Browser's liftover tool or NCBI's genome-remapping service. For each version of

dbSNP, UCSC Genome Browser's provides of a list of SNPs that are mapped to

multiple loci. Users can use such file to filter out such potentially problematic

SNPs.

3. Choose proper PFB and GCmodel files. The PennCNV package comes with a

number of PFB files for different genotyping arrays. The PFB file describes which

B-allele frequencies to use for all markers on the array platform, and the GCmodel

file specifies parameters for adjustment of the differences in GC-content (e.g.

waviness) across the genome (Diskin et al., 2008) . Additional PFB and GCmodel

files occasionally become available on the PennCNV website. The coordinates used

in these files and the GCmodel file are, however, based on the hg18 reference

genome. One can use UCSC Genome Browser's liftover tool (http://

genome.ucsc.edu/cgi-bin/hgLiftOver) to convert them to the desired version of

genome assembly. We named the hg19 version of the PFB and GCmodle files for

Illumina Human660 array hh660.hg19.pfb and hh660.hg19.gcmodel respectively.
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4. If there are many samples to process, it is more efficient to split the intensity file by

sample into smaller files such that they can be processed by PennCNV in parallel.

For instance, in the example below we use kcolumn.pl of the PennCNV package to

split an intensity file lrr_baf.txt into 50 samples per file. Output files are named

incrementally as lrr_baf.split1, lrr_baf.split2, and so on.

5 Run PennCNV. Here is an example of the command used to identify CNVs.

This command processes the intensity file lrr_baf.split1 and generates a log file

lrr_baf_1.log, which contains summary statistics that provide information on

the quality of input data, and an output file lrr_baf_1.rawcn that contains called

CNVs. The user should edit and run this command for every split file from step

4.

The above perl script reads the three model files (hhall.hmm which comes with PennCNV,

and the two files hh660.hg19.pfb, and hh660.hg19.gcmodel we described earlier), and calls

CNVs using the intensity file lrr_baf1 Result The user should change the path to the files in

the command above according to where these reside on the user's computer system. This

command processes the intensity file lrr_baf.split1 and generates a log file, which contains

summary statistics that inform on the quality of input data, and an output file that contains

called CNVs.

6 Run PennCNV's filter_cnv.pl to generate a quality control summary for each

sample. The output file, lrr_baf_1_qcpass_default.rawcn, contains CNVs that

pass QC.
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7 Review the quality control summary file to exclude samples of poor quality.

PennCNV computes the following statistics for each sample: LRR_SD (standard

deviation of LRRs), BAF_drift (measuring departure of the BAF from the

expected values), WF (waviness factor, the amount of dispersion in signal

intensity, which is a good indicator for DNA quality after accounting for GC

content (Diskin et al., 2008)), and NumCNV (number of called-CNVs).

PennCNV uses the following exclusion criteria by default: LRR_SD > 0.3,

BAF_drift > 0.01, WF > 0.05. Samples meeting any of these three criteria will

be excluded. For more stringent quality control, use lower exclusion thresholds.

Our experience indicates that NumCNV is sensitive to the platform being used,

so we recommend checking the distribution across all samples and exclude

outliers.

8 Review each .rawcnv file and check the number of SNPs spanning each called

CNV. The .rawcnv file is a tab-separated text file that can be easily opened

using Excel or processed using R. Typically a minimum of three SNPs is used as

a filter. However, our experience suggests that a minimum of 10 SNPs produces

results with reasonable sensitivity.

9 Remove called CNVs in certain genomic regions: (1) HLA regions, (2) genomic

regions that are near the centromeres and the telomeres (PennCNV recommends

a 1Mb neighborhood). The PennCNV website provides physical locations (in

hg18) of these regions (see http://www.openbioinformatics.org/penncnv/

penncnv_faq.html#ig).

Basic Protocol 2

Use of R to perform association tests for common CNVs

In this protocol we demonstrate using logistic regression, which was implemented with the

glm() function (generalized linear models) in R to find CNV associations with disease. All

input and output files are tab-delimited with headers. To make the files a manageable size

while simplifying the input process to R, we divide the variants into one file per

chromosome, and each file contains both phenotype and genotype data.

Materials List

Output file from the PennCNV software (see Basic Protocol I) that contains all called CNVs.

Individuals’ case/control status and phenotypes or factors that may confound the relation

between CNVs and the disease state. Theses pieces of information are equivalent to those of

PLINK FAM and covariate files.
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Linux environment with R installed. We assume the user has installed R or has the

knowledge on how to obtain and install the software from the R website (http://www.r-

project.org/). Comprehensive documentation is available there.

1. Make a phenotype file that can be read by R as a data frame or a matrix (e.g. using

the read.table() command). This file includes case/control status and covariates,

which can include individual phenotype data such as sex and age and sample

characteristics such as tissue type and batch.

2. Generate Copy Number Polymorphic Regions (CNPRs). Predicted CNVs from the

same genomic locus can have various start and end points across individuals. To

make the analysis simpler, divide the genome into CNPRs. Each individual is then

assigned a Copy Number (CN) state for each CNPR according to the CNV

predicted in that region, with CN=2 if no CNV is predicted. Details on constructing

CNPRs are illustrated in Figure 2. The drawback to this approach is that the origin

of a CNV cannot be readily interpreted because one CNV may span multiple

CNPRs. We provide an R script (penncnv2cnpr.r, which can be downloaded from

the journal website as supplementary material) that takes PennCNV-predicted

CNVs pooled from multiple individuals, creates CNPRs and breaks each called

CNV into corresponding CNPRs.

3. Encode CN state with deletion (DEL) and duplication (DUP) variables. CNVs can

be the results of deletion or duplication. We use two variables to code for copy

number. Without further information, the copy number derived from genotyping

array data does not provide allele specific copy number. For instance, a typical

copy number of two at one locus, in fact, can indicate a single duplication of one

allele and single deletion of the other (i.e., uniparental disomy). Such events are

probably rare, but without dual coding of deletion and duplication, it would not be

treated as a CNV. Thus, for one individual in one CNPR, if no CNV is predicted,

both DEL and DUP are 0. If CN=1, then DEL=1 and DUP=0. If CN=0, then

DEL=2 and DUP=0; DEL = 0 and DUP = 1 for CN=3.

4. Divide the data into smaller subsets (e.g., one dataset per chromosome) for

regression analysis. Analyzing large datasets in R can be computationally intensive,

and so dividing the data into smaller files can reduce the computational demand on

hardware.

5. R commands for association analysis.

We use logistic regression for testing association of copy number and disease status.

Logistic regression can be performed in R using the glm() function with the family

parameter set to “binomial”. The following are examples of R commands for with and

without covariates at a given CNPR:
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6 Results of the regression are stored in nocovar and wcovar. One can then use

the summary() function in R (see below) to generate human-readable

summaries. DX is a vector of integers denoting affection status of every

individual, where 0 and 1 code for control and case, respectively. DEL and DUP

are vectors of non-negative integers. Copy Number (CN) at a diploid locus is

denoted by one number in DEL and another in DUP. If CN = 2, DEL = 0 and

DUP = 0. If CN > 2, DEL = 0 and DUP = CN - 2. If CN < 2, DUP = 0 and DEL

= 2 - CN. AGE is a vector of numbers denoting age at exam or age of onset.

SEX is a “factor” data type. It can be a vector of integers (e.g. 1 and 2 for male

and female respectively), or characters (M/F or male/female). Age and sex are

included on the right-hand side to adjust for the effects of age and sex on disease

risk. The data set is a dataframe composed of columns DX, DEL, DUP, AGE,

and SEX at a given CNPR,

7 Interpret the glm output.

The R summary() function provides a detailed view of the regression results. An example is

shown below. summary(nocov)$coefficients displays the coefficient and significance

information in four columns (“Estimate” “Std. Error” “z value” “Pr(>|z|)”) for each predictor

term. Note that as the regression was carried out once per CNPR, the P-value obtained here

should be corrected for multiple tests if multiple CNPRs were tested. In the example below,

deletions reduce the disease risk and duplications slightly elevate the disease risk (sign of

the z value), but neither is statistically significant (P=0.709 and 0.933 respectively).

Basic Protocol 3

Use of PLINK to perform burden tests for rare or non-overlapping CNVs

This protocol allows for testing if there is significant difference in the frequency and total

length of CNVs in case and control subjects without requiring all CNVs to span the same

genomic region. The test can be performed either genome-wide or over specific genomic

regions (e.g. a list of candidate genes). Plink uses permutation to compute empirical P-

values.

Materials

Output file from the PennCNV software (see Basic Protocol I) that contains all called CNVs
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PLINK FAM file from the Genome-Wide Association Study (GWAS) SNP data. An

optional file describing user-specified genomic regions for burden tests. For example, a file

containing the coordinates of all known genes on the human genome. Each row specifies

one genomic region (chromosome, start, and end positions)

Linux environment with PLINK installed. We assume the user has installed PLINK or has

the knowledge on how to obtain and install it (http://pngu.mgh.harvard.edu/~purcell/plink/).

Comprehensive documentation is available there.

1. Convert the PennCNV output file into the PLINK CNV file format. In this format,

each row is a called CNV for a subject (specified by the Family ID and Individual

ID fields), the physical locations of its breakpoints, the number of copies, and two

optional fields (confidence score, number of SNP markers) for filtering. See http://

pngu.mgh.harvard.edu/~purcell/plink/cnv.shtml#format for details on the file

format. Such conversion can be done using tools such as Excel, R or generic text

editors, or computer programs written in Linux, Perl, Python, C, etc. We named the

converted file mydata.cnv as the input CNV file for the PLINK commands

demonstrated below.

2. Create a map file for the input CNV data. PLINK CNV burden analysis program

requires a map file that describes the start and stop locations (base pairs) for all

input CNVs. The following command takes mydata.cnv as input and saves the map

information in the file mydata_cnv.map.

3 Perform a genome-wide burden test using the formatted CNV data and the

newly created MAP file.

The function randomly shuffles the case/control status of all subjects 10,000 times to

compute P-values empirically for the hypothesis that the burden of CNVs is different

between case and control subjects. PLINK will generate two files: mydata.summary contains

CNV frequencies by case/control status, and mydata.summary.mperm contains P-values

from permutations.

4 Numerous options can be added to the PLINK command shown above.

a. Both “--cnv-dup” or “--cnv-del” options limit the test to only

duplications or deletions respectively.

b. The options “--cnv-intersect region.txt --cnv-test-region” limit the

test to given genomic regions and only those CNVs intersecting with

such regions are included. The option “--cnv-overlap 0.6” further

specifies that the overlapping covers at least 60% of the intersecting

CNV.
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c. Similarly,“--cnv-exclude regions.list” excludes those CNVs

intersecting specified genomic regions. The format of ‘regions.list’ is

the same as that of item 3 in the Materials List. This option is useful to

avoid regions known for generating spurious CNV calls.

d. It is also possible to filter CNVs based on frequency. For instance, to

focus on rare CNVs, “--cnv-freq-exclude-above 10” excludes CNVs

that are present in at least 10 subjects (or 1% frequency in a 1,000-

sample dataset).

Support Protocol

Visually inspect CNVs on the UCSC Genome Browser

This protocol describes steps to format called CNVs in the Browser Extended Data (BED)

format, specify red/blue color schemes for copy numbers, and upload data to the UCSC

Genome Browser for visualization.

Materials

Output file from the PennCNV software (see Basic Protocol I) that contains all called CNVs.

A web browser that is compatible with the UCSC Genome Browser.

1. Format CNV files into the BED format. A BED file is a tab-delimited file that

represents genomic features, such as genes or CNVs as integer intervals one

interval per line, and describes how these intervals to be displayed on the UCSC

browser as a custom track (see UNIT 18.6). Only the first three fields -

chromosome/scaffold name, start and end positions - describing the genomic

location are required but the optional fields, such as name, strand etc., and the

“track line” make the visualization more informative. Please refer to http://

genome.ucsc.edu/FAQ/FAQformat.html#format1 for more details. For this

protocol, we put seven fields and a track line in one BED file. An example may

look like this:

Although the track line appears as two lines, it is in fact one single line. Both of the last two

fields being identical to the second one, i.e. the start position, makes the bars representing

the CNVs thinner so as to accommodate more CNVs in one given space. For a small number

of items, a generic text editor or Excel is sufficient to do the conversion manually. For a

large number, however, a program is usually needed to do it efficiently and correctly. The

following is an example Perl script that reads a PennCNV output file and converts it into a

BED file. The script gives the contrast between deletions and duplications by assigning a

strand status to each CNV (‘+’ when CN < 2 and ‘-’ when CN > 2), and using the

“colorByStrand” attribute in the track line. The two colors for the two strands are specified
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by RGB color codes and divided by a space. To visualize the contrast between cases and

controls, then the coding for strand should be used to encode disease status instead, and thus

duplications and deletions should be separated into two tracks.

2 Upload to UCSC Genome Browser.

a. Open the web browser and connect to the UCSC Genome Browser

(http://genome.ucsc.edu/). Click on “Genomes” at the top-left of the

home page.

b. Select the Human genome using the drop-down lists. It is important to

choose the version of the genome assembly (hg18/NCBI release 36, or

hg19/GRCh 37) that corresponds to the coordinate system used in your

CNV data.

c. Click on the “add custom tracks” button right below the drop-down

lists. You can then choose to copy-paste the BED file generated in the

previous step into the “Paste URLs or data” text field, or click the

“Choose File” button and then upload the BED file. Click the Submit

button.

d. If the input BED file is correct, you will be brought to a new page with

title “Manage Custom Tracks”. You should see a table that lists custom

tracks you have uploaded. Your BED file should become available as a

track with the name you specified. Click on “go to genome browser” to

view the uploaded data.
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Commentary

Background Information

Terminology for SNP genotyping array platform data types—Illumina and

Affymetrix Genome-wide SNP genotyping platforms use designed probes that specifically

hybridize with the genomic DNA flanking chosen SNPs. Although it is possible that two

kinds of nucleotides (biallelic), three, or even four are observed at these SNPs in the general

population, by design, the probes on a commercial genotyping array only detect two alleles.

In general, the two alleles are labeled A and B. The A/B designation is manufacturer-

specific but should be consistent across platforms from the same manufacturer; the reader

should consult the company for designation rules and/or annotations. A scanner is used to

measure the fluorescence intensity of hybridized A and B probes for each SNP on the array:

these data are referred as the raw intensities of the A and B alleles (RA and RB respectively).

SNP genotypes are determined by comparing A and B intensities: a genotype of A/A is

called when A fluorescence intensity is strong and B allele intensity is low; B/B is called

when B fluorescence intensity is strong and A allele intensity is low; and A/B is called if the

two intensities are similar and of an intermediate level of intensity (e.g. Figure 1a). The

following two derived measures are informative about the copy number status.

1. The log R ratio (LRR) is the log2-transformed value of the normalized intensity of

the SNP, (RA + RB)/Rexpected, where Rexpected is an interpolation generated by

GenomeStudio (http://www.illumina.com/documents/products/technotes/

technote_cnv_algorithms.pdf). LRR indicates the relative abundance of the

genomic DNA around the SNP and is expected to correlate with copy number

status.

2. The B allele frequency (BAF) of a SNP reflects the relative abundance of B allele

intensity; it is an adjusted value generated by GenomeStudio, assuming three

canonical clusters (A/A: 0.0, A/B: 0.5, B/B: 1). Please refer to the Illumina

technical note on algorithms for detecting CNVs (http://www.illumina.com/

documents/products/technotes/technote_cnv_algorithms.pdf) for the precise

definition. Normally BAF is close to 0, 0.5, or 1 for autosomal loci, and one

expects to observe BAF close to 0 and 1 but not 0.5 for SNPs in single deletions

(copy number=1). Similarly, one expects BAFs for SNPs in single duplications

(copy number=3) to be around 0, 0.33, 0.67, or 1. In more recent products, Illumina

and Affymetrix have introduced CNV-specific probes. These probes do not have

distinct alleles and only return intensity information. Therefore LRR is available

but BAF is not available for these probes.

Statistical approaches for CNV calling—SNP arrays call SNP genotypes with good

robustness since after proper normalization A and B allele intensities typically group into

three distinct clusters in a dataset with large number of samples (e.g. Figure 1a). Observed

intensities from individual SNPs are quite noisy for calling CNVs, requiring aggregation of

information across multiple SNPs/samples to improve the detection accuracy. Depending on

how information is aggregated, we can classify CNV calling algorithms into three types of

approaches:
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1. Aggregate along chromosomes: The first approach aggregates information across

adjacent SNPs to improve the specificity for CNV detection. These algorithms are based on

the observation that a CNV spanning multiple probes will have similar effects perturbing

their BAF and LRR values. PennCNV (Wang et al., 2007) and QuantiSNP (Colella et al.,

2007)} developed a Hidden Markov Model algorithm to generate smoothed copy number

calls using LRR and BAF as input. The cnvPartition algorithm developed by Illumina

(http://www.illumina.com/documents/products/technotes/technote_cnv_algorithms.pdf)

detects breakpoints as sudden changes in BAF and LRR values and assigns copy number

values to the partitioned genomic regions.

2. Aggregate across samples: The second approach aggregates information across multiple

samples to make CNV calls for a single SNP. For example, CNVtools {(Barnes et al.,

2008)} fits LRR values from multiple samples using a Gaussian mixture for each probe,

creating discrete intensity clusters that correspond to different copy numbers at the same

time.

3. Hybrid approaches: Other computer programs combine both concepts by aggregating

information from multiple SNPs and multiple samples. The Birdseye component of the

Birdsuite software {(Korn et al., 2008)}implements a Hidden Markov model for aggregating

adjacent SNPs. The software then searches for genomic regions showing correlated intensity

patterns across samples for better specificity.

Critical Parameters

Points to consider before beginning experiments

1. Confounding factors: Since all calling algorithms rely on the intensity of SNP probes to

detect CNVs, confounding factors arise easily and care must be taken to eliminate them.

Different genotyping platforms have different probe designs and usually lead to different

sensitivities for CNV detection. Different labs or different technicians may perform DNA

extraction differently. Our experience also indicates when DNAs are extracted from

different tissue types (e.g. DNA from whole blood versus from cell lines versus from frozen

brain), they have considerable difference in the distribution of called CNVs genome-wide.

We also found that such difference is minimized when we limit our analysis to large CNVs

(which require many more SNPs), indicating the tissue specificity effect may be artifacts

due to DNA extraction. If such confounding factors cannot be avoided in the study design,

one can introduce indicator variables (e.g. DNA source tissue, batch index) in the statistical

analysis to help control for confounding. We also recommend the analysis to focus on large

CNVs (e.g. 10 SNPs or longer for PennCNV).

2. Special genomic regions: Repeat-rich regions such as telomeres and centromeres are

highly copy-number polymorphic, and may cause problems in the analysis. Regions that

contain nearly identical duplicate sequences may also contain segmental duplications that

look like low copy number duplications in CNV analysis. The HLA Major

Histocompatibility Complex (MHC) region on chromosome 6 is also highly polymorphic,

and may lead to false positive calls either because of cell-line artifacts or by difference in the

specificity of SNP probe hybridization on genotyping arrays, indirectly affecting CNV
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detection. These physical locations of these regions can be downloaded either from the

PennCNV website (need to be converted to coordinates in the correct version of the

reference genome) or the UCSC Genome Browser.

3. Threshold parameters for calling a CNV: Many CNV calling programs do not assign a

confidence score to individual CNV calls, and users of these programs often set additional

criteria to exclude unreliable calls. For instance, PennCNV recommends analyzing CNVs

spanning at least three SNPs. This is can be done by the “-numsnp 3” option when invoking

PennCNV, or one can filter the output file by checking the ‘numsnp’ field. PennCNV also

allows users to set length threshold; e.g., only output CNVs 50Kbp or longer (using the “-
length 50k” option or checking the length field in the output file). We recommend

excluding CNVs spanning fewer than 10 SNPs. It is important to note that these two criteria

assume probes are uniformly distributed on chromosomes, which is not always the case for

many platforms. For example, many Illumina platforms contain CNV-specific probes

densely located in known copy number polymorphic genomic regions. SNP arrays lack

probes in centromeres, which span millions of bases in length. It is critical to take notice of

the fact that the wide variation in probe distribution can inflate the number of SNPs

supporting a called CNV or the length of the CNV.

Appendix

Internet Resources

PennCNV website: http://www.openbioinformatics.org/penncnv/ Users can download the

PennCNV source code, compile, and install on their own computers. The website also

contains a wealth of information including program manual, annotation files, tutorials for

the PennCNV software, and other useful tips such as visualization and quality control

recommendations.

R website: http://www.r-project.org/ R is a free program for statistical computing and

visualization. Users can download the compiled R package for their specific computing

platforms. The website also lists URLs to the Comprehensive R Archive Network (CRAN).

CRAN hosts user-contributed packages that provide additional analysis capabilities.

Illumina GenomeStudio Website: http://www.illumina.com/software/

genomestudio_software.ilmn The website contains instructions and FAQs for the

GenomeStudio software which is required to export SNP intensities from Illumina Chip

projects for CNV calling. Illumina customers can obtain the software for free.

PLINK website: http://pngu.mgh.harvard.edu/~purcell/plink/ PLINK is developed by Shaun

Purcell at Harvard University. The free, open-source program is widely used by the research

community to process and analyze genome-wide association studies (GWAS). Users can

download the source code or obtain pre-compiled binaries for installation from this website.

This website also contains very detailed instructions on how to use the program.
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UCSC Genome Browser: http://genome.ucsc.edu/ Users can go to UCSC Genome

Browser to download genomic annotations, or visualize CNV calls on the reference genome

as outlined in the Alternative Protocol.

List of Genetic variation databases: http://www.humgen.nl/SNP_databases.html The

Center for Human and Clinical Genetics at Leiden University Medical Center maintains a

comprehensive list of genetic variation databases, including CNV databases.

The Human Genome Structural Variation Project: http://hgsv.washington.edu/ This

website, maintained by the Eichler lab at the University of Washington, provides a detailed

map of CNVs and large structural variants.

The Copy Number Variation (CNV) Project: http://www.sanger.ac.uk/research/areas/

humangenetics/cnv/ The database is maintained by the Wellcome Trust Sanger Institute. It

hosts CNVs identified through a variety of genotyping and hybridization approaches and

provides extensive information of known CNV/phenotype associations.

The Database of Genomic Variants: http://projects.tcag.ca/variation/project.html This

database is maintained by the University of Toronto Centre for Applied Genomics. The

database is a comprehensive catalog of structural variants in the human genome by

collecting published reports on healthy controls in the literature. It can be used as controls in

studies to correlate CNVs with diseases and traits.
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Figure 1.
(a) Calling SNP genotypes by the ratio of probe intensities (allele frequencies) on

hybridization arrays. (b) Examples where copy number variations alter total intensities and

allele frequencies.
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Figure 2.
A section of a chromosome to demonstrate how Copy Number Polymorphic Regions

(CNPRs) are constructed. In this example, PennCNV has been run to call CNVs from SNP

array data of six individuals (indiv1 through 6). All called CNVs from all individuals were

pooled together. All non-redundant end points of the CNVs become break points that would

be used to partition the chromosome. A pair of break points form a CNPR. Every CNV is

then decomposed into multiple consecutive CNPRs. Red: Copy Number (CN) = 1; Blue:

CN=3; Black: CN=4. Based on the the type of a CNV (CN=1 or CN=3) one individual has

in a CNPR (CN=2 if no CNV was called), a matrix can be generated.
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