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Abstract Over the last 25 years, a life-course perspective on criminal behavior has

assumed increasing prominence in the literature. This theoretical development has been

accompanied by changes in the statistical models used to analyze criminological data.

There are two main statistical modeling techniques currently used to model longitudinal

data. These are growth curve models and latent class growth models, also known as group-

based trajectory models. Using the well known Cambridge data and the Philadelphia cohort

study, this article compares the two ‘‘classical’’ models—conventional growth curve model

and group-based trajectory models. In addition, two growth mixture models are introduced

that bridge the gap between conventional growth models and group-based trajectory

models. For the Cambridge data, the different mixture models yield quite consistent

inferences regarding the nature of the underlying trajectories of convictions. For the

Philadelphia cohort study, the statistical indicators give stronger guidance on relative

model fit. The main goals of this article are to contribute to the discussion about different

modeling techniques for analyzing data from a life-course perspective and to provide a

concrete step-by-step illustration of such an analysis and model checking.

Keywords Latent class growth modeling � Growth mixture modeling �
Zero-inflated Poisson distribution � Developmental trajectory groups

Introduction

Research on the relationship between age and criminal behavior continues to play a

prominent role in the criminological literature (for overviews see Sampson and Laub

2005a; Piquero et al. 2003; Piquero 2007). The increasing availability of individual-level
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longitudinal data in criminology (e.g., Elliot 1985; Tracy et al. 1990; Farrington and West

1993; Nieuwbeerta and Blokland 2003) has led to a larger number of empirical papers in

recent years with individual ‘‘criminal careers’’ as the outcome of interest. Those articles

address questions regarding patterns of criminal offending across the (full or partial) age

range of the life course (e.g., Piquero and Buka 2002; Laub and Sampson 2003), the

existence of typical offender trajectories (e.g., Nagin et al. 1995; D’Unger et al. 1998),

possible correlates of or explanations for different offender trajectories (e.g., Blokland

et al. 2005), and the prediction of future offending from juvenile offender trajectories in

combination with certain covariates (Piquero and Buka 2002).

These studies, while different in content, all rely on analyses of the age-crime rela-

tionship. These respective analyses, as well as those that attempt to link other variables to

the observed age-crime trajectories, require a decision on the statistical model used to

estimate the trajectories of interest. Currently, two statistical modeling techniques are in

prominent use for modeling longitudinal data in criminology: growth curve models (e.g.,

Raudenbush and Bryk 2002) and latent class growth models, also known as group-based

trajectory models (e.g., Nagin and Land 1993; Roeder et al. 1999).

In a growth curve model, the joint distribution of the observed outcome variables (in

this case, the number of convictions at each time point) is characterized as a function of

age. Individual variation is expressed as random effects or growth factors that are allowed

to vary across individuals, assuming a normal distribution. Like growth curve models,

latent class growth analysis (LCGA) models, or group-based trajectory models,1 model the

development of criminal behavior as a function of age. However, instead of assuming

normality for random effects, LCGA uses a small number of groups to approximate the

distribution of developmental pathways across individuals. Group-based trajectory models

are employed to study criminological theories that predict prototypical developmental

etiologies and trajectories within the population (Nagin 1999, 140). These theories dis-

tinguish, for example, between adolescent-limited and persistent offenders (Moffitt 1993).

Concretely, the use of group-based trajectory models specifies that the variation of the

coefficients across individuals can be fully explained by group membership. The groups

will differ in their developmental pathways, but, according to the model, there is no further

variation within the group, i.e., all members of a group have the same expected outcome

trajectory.

The increasing number of criminological articles that use latent class growth analysis

have led some to voice concern about the implicit notion behind them, i.e., the existence of

a finite number of distinct developmental trajectories and the classification of people into

those trajectories. ‘‘A key question [...] is whether trajectory groups actually exist. If they

do, then group-based trajectory modeling is clearly an ideal modeling approach. But if they

do not, [...] we must ask what insight is gained and also what is lost in this kind of

approximation’’ (Raudenbush 2005, p. 132). ‘‘Perhaps we are better off assuming con-

tinuously varied growth a priori and therefore never tempting our audience to believe [...]

that groups of persons actually exist’’ (Raudenbush 2005, p. 136). But even if there is

agreement on the existence of different groups (and with them typical offense trajectories),

the question remains if those groups are distinct in their power to predict future criminal

careers (Sampson and Laub 2005b, p. 907) and to which extent group members ‘follow’

the group trajectories (Sampson and Laub 2005b, p. 908).

1 This approach is often referred to under its technical SAS procedure name PROC TRAJ (Jones et al.
2001).
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We think that this discussion would be well served by reflecting on the various mod-

eling alternatives. To this end, we compare not only growth curve modeling and group-

based modeling, but expand that comparison to include growth mixture modeling (GMM)

and non-parametric growth mixture modeling (NP-GMM). These additional modeling

approaches are conceptually located between the two extremes usually discussed in the

criminological literature, i.e., the assumptions of purely random versus purely group-based

variation among individuals in their developmental trajectories. In this article, we will

compare these four modeling approaches using a framework in which each approach is

treated as a specific case of general growth mixture model.

The focus of this article is on the specification and interpretation of the different

modeling alternatives as well as their relative performance for particular data sets rather

than on their mathematical details or further substantive implications. To this end, we will

illustrate the methods by analyses of data in common use in the criminological literature,

the Cambridge data and the Philadelphia cohort study. These data are described in the next

section and are almost entirely in the public domain.2 For the Cambridge data the different

mixture models yield quite consistent inferences regarding the nature of the underlying

trajectories of convictions. For the Philadelphia cohort study the statistical indicators give

stronger guidance on relative model fit, and point to GMM as the preferred model.

Population-based Conviction Data

We will use data from the ‘‘Cambridge Study’’ for the step-by-step demonstration of the

different models, and show the modeling results for the data from the ‘‘Philadelphia Cohort

Study’’. Both data sets will also be used to further examine sensitivity in the model

comparisons.

The so-called ‘‘Cambridge Study’’ includes data on 411 males from Cambridge, Eng-

land who were followed from ages 10 to 40.3 This data collection effort, initiated by Dr.

Donald J. West and continued by Dr. David Farrington, was undertaken to test several

hypotheses about delinquency (Farrington and West 1990). The data set includes a rich set

of covariates collected to determine the causes of crime and delinquency. The Philadelphia

cohort study includes information on 13,160 males born in Philadelphia in 1958. Annual

counts of police contacts are available from ages 4 to 26 for this birth cohort. A detailed

discussion of these data can be found in various places (e.g., Tracy et al. 1990) and will not

be repeated here.

Both data sets are typical in presenting two challenges that are characteristic for pop-

ulation-based conviction data where the prevalence of the non-normative behavior is, by

definition, low. First, the outcome variable, number of convictions in the Cambridge study

and number of police contacts in the Philadelphia study, is extremely skewed with a large

number of zeros at each point in time. In the Cambridge study, in any given year between

89% and 99% of males have zero convictions. Table 1a displays the 2 year intervals used

for the analyses in this article. Even after the biannual grouping there are still between 83%

2 ICPSR study number 8488. http://www.icpsr.umich.edu/ includes the Cambridge data until age 24. David
Farrington kindly provided us with the outcome variables until age 40 for the Cambridge sample. A
summary of the non-public data is given in Table 1a.
3 Some of these boys died within the observation period. For the sake of simplicity, data for these boys are
not included in our analytical illustration. The variable of interest in this context is the number of con-
victions per year for each of the 404 males, for whom data are available until age 31.
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and 98% of the observations with zero convictions. The number of police contacts is

equally skewed in the Philadelphia data (Table 1b). Here the percentage of zero police

contacts in the bi-annual intervals ranges between 80% and 98%.

The second characteristic issue is that the aggregate age-crime curve follows the well-

known pattern of increasing number of convictions throughout the subjects’ teenage years

and a decrease in annual conviction rates thereafter (Hirschi and Gottfredson 1983). The

left panel of Fig. 1 depicts this age–crime relationship across all subjects in the Cambridge

study, with the number of convictions displayed for each of the biannual observation

periods used here, starting from age 10–11 up to age 38–39. However, individual trajec-

tories do not necessarily follow this aggregate curve and, in fact, sometimes deviate from it

substantially. Most males in this data set were never once convicted. But even among those

with criminal careers, development of an official criminal history over time can vary

considerably. The right panel of Fig. 1 shows an example of the heterogeneity in the

trajectory curves. Displayed in Fig. 1 are five individual trajectories. The dot-dashed line is

an example of an observation with early and high-rising conviction counts. Four convic-

tions had been recorded in the age interval 16–17 as well as 18–19 but after age 25 there is

no further conviction recorded for this case. In contrast, the dotted line shows a devel-

opment with no conviction until age 31, one and respectively two counts between age 32

and 37 and zero thereafter. The dashed line is an example of a third type of trajectory with

conviction counts on and off throughout the observation period.

Although the panels in Fig. 1 show the range of possible trajectories, it should be noted

that the trajectories displayed in Panel 2 are somewhat ‘‘unusual’’ in the sense that each one

appears in the data only once. The frequency of response patterns is typically not seen in

articles analyzing longitudinal offense data. An example summary of pattern frequencies is

given in Table 2. We will use these pattern frequencies again when we discuss model fit to

data in later sections.

Table 2 summarizes patterns of conviction frequencies in biannual intervals that appear

more than once in the Cambridge data. Including those males that died during the

observation period, there are 108 single patterns that are omitted from this table. Most of

those have a higher total number of convictions and are more likely to have convictions in

two consecutive intervals.

Similar to the Cambridge data, around 60 of the subjects in the Philadelphia cohort

study have no police contact throughout the entire observational period. Given the shorter

time span and much larger sample there is a higher probability for multiple patterns visible
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Fig. 1 Panel 1 shows the total number of convictions for all observations. Panels 2 show the developmental
pathway of five men in the Cambridge data
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in Table 3. Displayed are the 10 patterns with more than 100 cases (where 100 cases are

0.76% of the data). 1,082 cases (8.22%) show a unique frequency pattern. Among those the

number of police contacts throughout the entire observational period can go up to 57.

However, for the vast majority of cases, 97%, the total number of police contacts between

age 10 and 25 does not exceed 10, and for a cumulative total of 99% it stayed below or

equal 16.

Different strategies have been used to meet these two challenges of offense trajec-

tories. To meet the first challenge—the skewness of the count variable (number of

convictions) at each point in time—the outcome variable can be analyzed in a zero-

inflated Poisson (ZIP) model (Lambert 1992; Nagin and Land 1993). These models were

developed for situations in which the count outcome is equal to zero more often than one

would expect assuming a Poisson distribution (Hall 2000). Zero-inflated Poisson models

are discussed in detail in Nagin and Land (1993) and Roeder et al. (1999), and will

therefore not be explained any further. A brief description of these mixture models can

be found in the Appendix. Alternatively, negative binomial models could be used to

address this challenge. For simplicity we will employ ZIP to all models in this article.

Our focus is on the second challenge of how to capture the heterogeneity around an

overall developmental trajectory above and beyond what the zero-inflated Poisson is

already capturing. More specifically, we will attempt to answer the following questions.

How well can the development of a criminal career be approximated by one overall

growth curve? How much individual variation is there around the overall growth curve?

Table 2 Patterns of convictions in biannual intervals in the Cambridge data

Pattern (Age 10–39) N % Pattern (Age 10–39) N %

000000000000000 245 59.61 000000100000000 3 0.73

000010000000000 8 1.95 000000000001000 2 0.49

000001000000000 6 1.46 000000001000000 2 0.49

001000000000000 6 1.46 000010300000000 2 0.49

000000000010000 5 1.22 000200000000000 2 0.49

000100000000000 5 1.22 001010000000000 2 0.49

000110000000000 5 1.22 002000000000000 2 0.49

000000000000100 3 0.73 010000000000000 2 0.49

000000010000000 3 0.73 Total displayed 73.72

Single patterns are omitted from the table

Table 3 Patterns of police contacts in biannual intervals in the Philadelphia data

Response Pattern (Age 10–25) N % Response pattern (Age 10–25) N %

00000000 8021 60.95 00000100 201 1.53

00010000 572 4.35 01000000 181 1.38

00000010 378 2.87 00000001 141 1.07

00001000 292 2.22 00110000 117 0.89

00000010 203 1.54 00020000 107 0.81

Total displayed 77.61

Patterns with frequency n = 1 1,082 8.22
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How can this variation be represented? What difference does the choice of a certain

modeling technique make for substantive interpretation? And, finally, how should one

proceed in exploring the fit of these different models to the data?

Comparison of the Mixture Modeling Approaches

As noted above, the two dominant models used in the criminological literature to model

heterogeneity of growth trajectories are growth curve models and latent class growth

analysis or group-based trajectory models. We will briefly review these two models using a

general latent variable framework.4 This framework allows for the introduction of two

additional models that bridge the gap between conventional growth and group-based

models, namely a parametric and non-parametric version of growth mixture models. We

propose that having all four models at one’s disposal will help criminological researchers

understand the structure of a specific data set and will better guide modeling choices.

Therefore, once the models are reviewed, we will apply each of the models in turn to the

Cambridge data. A summary of the model comparisons will be provided for the Phila-

delphia data.

Current Modeling Strategies

Conventional Growth Modeling

In growth curve models, the joint distribution of the observed outcome variables is

characterized as a function of age. Conventional growth modeling can be used to estimate

the amount of variation across individuals in the growth factors (random intercepts and

slopes) as well as average growth. In other words, in a conventional growth model the

individual variation around the estimated average trajectory is expressed in growth factors

that are allowed to vary across individuals (Raudenbush and Bryk 2002). The variation of

the growth factors (random effects) is assumed to take on a normal distribution (Hedeker

and Gibbons 1994). Substantively, it means that one assumes all people in the sample have

the same expected criminal trajectory and the individual variation around this expected

trajectory is centered on the estimated intercept and slopes for the whole sample, with

symmetric deviation on both sides (e.g., some individuals start their criminal careers earlier

some later, but on average they start at the estimated intercept). Conventional growth

models are most often used in conjunction with covariates to ‘‘explain’’ the variation in the

growth factors. In such cases, the people in the sample have the same expected trajectory

conditioned on their covariate pattern. We will address the issue of covariates again in the

discussion and focus on the simple modeling of trajectories for the present comparison.

In a simple model with no covariates other than age, the age–crime relationship is often

described by a quadratic growth function (e.g., Roeder et al. 1999). In this case, the log of

the Poisson rate parameter, k, the expected value of the count part of the zero inflated

Poisson model, can for each individual i and time point j be expressed as a linear

4 For an overview of this modeling framework, see Muthén (2002). For a step-by-step introduction to
applying latent variable models to longitudinal data, see Muthén (2004). For a recent technical presentation
see Muthén and Asparouhov (in press).
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combination of the time-related variable a with a linear slope factor g1 and a quadratic

slope factor, g2,

lnðkijÞ ¼ g0i þ g1iaj þ g2ia
2
j ð1Þ

Here, g0i, g1i and g2i are random intercepts and slopes that vary across individuals. Using

multilevel notation (e.g., Raudenbush and Bryk 2002) the equations estimated at Level 2

(the individual level) are:

Level 2:

g0i ¼ a0 þ f0i;

g1i ¼ a1 þ f1i;

g2i ¼ a2 þ f2i:

8
><

>:
ð2Þ

The random effects, g0i, g1i and g2i, can therefore also be seen as latent variables with a

joint distribution that is usually assumed to be normal.

Group-based Trajectory Model/Latent Class Growth Analysis

The normality assumption for the random effects in the conventional growth model was

challenged by Nagin and Land (1993). Instead Nagin and Land adopted a model by

Heckman and Singer (1984) that approximates an unspecified continuous distribution of

unobserved heterogeneity with a linear combination of discrete distributions (Nagin et al.

1995). That is, different groups, each with its own growth trajectory, are used to capture the

overall variation.

This model can be characterized as latent class growth model. Like classic latent class

analysis (see Clogg 1988), this model introduces a categorical latent variable, C
(C = 1,2,...,K), that can be viewed as a possible explanatory variable for the observed

correlation between the outcome variables. Here, the parameter k in the count part of the

zero inflated Poisson is still expressed as a linear combination of the time-related variable,

a, a linear slope factor, g1 and a quadratic slope factor, g2,

Level 1 : lnðkijjci¼kÞ ¼ g0k þ g1kaj + g2ka2
j

Level 2:

g0k ¼ a0k;

g1k ¼ a1k;

g2k ¼ a2k:

8
>><

>>:

ð3Þ

However, these gs now no longer vary across individuals but across groups of indi-

viduals captured by the latent class variable. The model specifies zero within-class

variance in the growth factors. The variation and covariation in the growth factors is

represented exclusively by discrete mass points (corresponding to bars in a histogram). The

class variable, C, replaces any distributional assumptions regarding the growth factors. The

growth factors—intercept, linear and quadratic slopes of the trajectories—can vary across

classes, but the model specifies zero variation within a class. This means that individuals

within class k of the class variable C are treated as identical with respect to their expected

developmental trajectory.

8 J Quant Criminol (2008) 24:1–31
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The LCGA model has been attractive for criminologists. In most of the group-based

modeling applications LCGA classes have been given substantive interpretation, and

LCGA is used to support distinctions among subgroups with different offending trajec-

tories. For example, Moffitt (1993) advances a theory differentiating between a large group

of adolescence-limited offenders and a small subgroup of life-course persistent offenders.

While classifying individuals in typical offender groups is appealing, there is a risk

involved in the substantive interpretation of these latent class growth models. First, it is

conceptually unclear whether or not the classes are used merely to model an unknown

distribution of trajectories or if they instead represent substantively meaningful classes.

The criminological literature is not clear on this, even across analyses of the same data set

(see critique by Sampson and Laub 2005b). Second, the model assumes that the class-

specific trajectory is a good representation for all members of this class. Variation around

the expected trajectory within a class is assumed to be zero according to the model and

therefore cannot be estimated. Third, as with all models that include latent classes, the

number of classes necessary to best represent the data is often a matter of debate (e.g.,

D’Unger et al. 1998).

Additional Modeling Strategies

Both the conventional growth model and the latent class growth model can be seen as

special cases of growth mixture models (for details see Muthén 2004 and Muthén and

Asparouhov in press). The following section will briefly show the connection between

these models.5

Growth Mixture Modeling

Similar to the conventional growth and group-based trajectory models, the quadratic

growth function for a Poisson outcome in a growth mixture model can be expressed as

linear combination of the time-related variable, a, a linear slope factor, g1 and a quadratic

slope factor, g2. As in the conventional growth model, g0i, g1i and g2i are intercepts and

slopes that may vary randomly among individuals. However, in marked contrast to con-

ventional growth models, these random effect models can be specified for unobserved

subpopulations or classes,

ln(kijjci¼k) = g0ki þ g1kiaj þ g2kia
2
j

g0ki ¼ a0k þ f0ki;

g1ki ¼ a1k þ f1ki;

g2ki ¼ a2k þ f2ki:

ð4Þ

The key differences among the classes are typically found in the fixed effects a0, a1, and

a2, which may differ for each of the K classes of C. Intercepts and slopes may have random

effects, that is, non-zero variances. If all variances in the growth factors, g0, g1, and g2 are

set to zero, a GMM model provides the same results as a latent class growth model. The

LCGA can therefore be seen as a specific member of the more general class of growth

5 For an in depth discussion of growth mixture models see Muthén (2001a).
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mixture models (Muthén 2004). Also, the conventional growth model can be seen as a

growth mixture model with one class.

The growth mixture model can be estimated by maximum likelihood using an EM

algorithm. For models with random effects, this involves numerical integration computa-

tion (for technical details see Muthén and Asparouhov in press). For a given solution, each

individual’s probability of membership in each of the classes and the individual’s score on

the growth factors can be estimated.

The advantage of this model is that it allows for both subpopulations, as predicted by

certain criminological theories of different trajectories types, and for a variation on the

theme of the trajectory type within those subpopulations. This variation can itself be

predicted by covariates. However, if random effects are allowed within the classes, the

GMM model relies on the normality assumption. While the assumption of normally dis-

tributed random variation among individuals might be more likely to hold within

subclasses than for the whole population, it is still possible that the data-generating process

has some more systematic, non-normal components.

Non-parametric Growth Mixture Modeling

As the name indicates, the non-parametric version of a growth mixture model does not rely

on any distributional assumption for the random effects (Muthén and Asparouhov in press).

The model is specified such that additional latent classes are estimated to capture the

potentially non-normal distribution within the growth mixture classes.

Consider, for example, a growth mixture model with random intercept (no random

effects for the linear and quadratic slope parameters):

lnðkijjci¼kÞ ¼ g0ki þ g1kaj + g2ka2
j ; and g0ki ¼ a0k þ f0ki: ð5Þ

A non-parametric version of this growth mixture model would use classes to capture the

f0ki variation of the intercept within each of the K substantive classes. In this case, the

distribution of the random effect for the intercept can be left unspecified and will be

estimated. For estimation, the EM-algorithm can be employed. To understand the estima-

tion procedure, it might be helpful to step back and think of numerical integration, which

can be used to approximate a normal distribution. In numerical integration the integral is

substituted by a finite weighted sum of mass points (nodes), similar to bars in a histogram. If

one were to approximate a normal distribution with numerical integration, Gauss-Hermite

quadrature can be used. In this case nodes and weights of the nodes are known and fixed.

However, if an unknown distribution needs to be approximated (as it is the case here), the

nodes (mass points) and weight of the nodes (masses) can be estimated. Together they

provide the necessary parameters to capture the unknown distribution of the random effect.

An age–crime relationship that is described by a quadratic growth function, the random

effect of the intercept within each of the K substantive classes would now no longer be

captured by g0ki ¼ a0k þ f0ki but through Dk different nodes that would be called classes in

the latent variable framework. The full estimation equation would be expressed with

lnðkijjci¼k;cni¼dÞ ¼ g0kd þ g1kaj + g2ka2
j ð6Þ

The subscript i on the intercept growth factor is replaced with d indicating a particular

class (node) in the unknown distribution. The overall trajectory shape of the K substantive
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classes will not change. That is, each substantive class is still defined by the same slope and

quadratic term. However, in addition there will now be Dk classes within each class, k, that

differ only in the estimated intercept term and that are used to capture the distribution of

the intercept random effect. One can think of these non-parametric classes as shifting the

growth trajectories along the y-axis. Within the non-parametric classes there are no further

random effects. Hence no normality assumption is needed.

By having the slope factor means for the linear and quadratic term (g1k g2k) be the same

across the cn-classes within each substantive class c, the assumption is made that the linear

and quadratic slope growth factors are uncorrelated with the intercept growth factor. In our

example this assumption is made because there was initially no random effect for the linear

and quadratic slope. (Thus the only variation that the sub-classes model are for the random

effect of the intercept.) This assumption is not made by the LCGA model specified in Eq.

3. In LCGA, all growth factor means (intercept, slope, and quadratic terms) can be dif-

ferent across classes, and all growth factor variances are set to zero. This said a latent class

growth model could give a result where the estimated slope factor means (g1k and g2k) vary

across substantive classes without being correlated with the estimated mean intercept

factor.

Strategies to Decide on the Number of Classes

A common challenge for all of the latent variable models discussed here is the decision on

the number of classes needed to best represent the data (see, e.g., McLachlan and Peel

2000). Objective criteria for doing so have been a matter of some controversy. The like-

lihood ratio test (defined as minus two times the log-likelihood of the restricted minus the

log-likelihood of the unrestricted model) does not have the usual large-sample chi-square

distribution due to the class probability parameter being at the border of its admissible

space (Muthén 2004). In nested models (comparing a k-1 to a k-class model) parameter

values of the k-class model are set to zero to specify the k-1-class model. This model

specification results in the difference of the two likelihoods not being chi-square distrib-

uted. In addition, the k-parameter space no longer has a unique maximum. Although the

comparison of the log-likelihood values can indicate the appropriate number of classes, the

ratio test should not be used as the sole decision criteria (Muthén 2004; Nylund et al. in

press).

An alternative procedure commonly used in past criminological applications is the

Baysian Information Criteria (BIC) (see Schwarz 1978). The BIC, defined as

�2 log Lþ p log n; ð7Þ

where p is the number of parameters and n is the sample size, also makes use of the

likelihood ratio and is scaled so that a small BIC value corresponds to a good model with

large log-likelihood value and not too many parameters.6 New mixture tests were devel-

oped in the past years (for an overview see Muthén 2004), among those a bootstrap

likelihood ratio-test (McLachlan and Peel 2000). The bootstrap LRT or BLRT, uses

6 In addition to the BIC, the Akaike Information Criteria (AIC) is sometimes used for model comparison.
However, for finite mixture models, the AIC has been shown to overestimate the correct number of
components (Soromenho 1994; Celeux and Soromenho 1996). The BIC on the other hand has been reported
to perform well (Roeder and Wasserman 1997) and most consistently (Jedidi et al. 1997). For further details
and comparisons see McLachlan and Peel (2000) as well as Nylund et al. (in press).
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bootstrap samples to estimate the distribution of the log-likelihood difference test statistic.

Instead of assuming the difference distribution follows a known distribution (e.g., the chi-

square distribution), the BLRT empirically estimates the difference distribution. The

BLRT provides a p-value that can be used to test a k-1-class model against a k-class model.

In this sense the BLRT can be interpreted like the traditional likelihood ratio test, only that

bootstrap sample distribution replaces the chi-square distributional assumption.

A recent simulation study by Nylund et al. (in press), in which data were generated with

a known number of classes, showed that the bootstrap likelihood ratio-test (BLRT) per-

forms better than the traditional likelihood ratio test or BIC in determining the correct

number of classes. While the simulation was not carried out for GMM specifically with the

Poisson or even zero-inflated Poisson outcome variables as are of interest here, the per-

formance lags shown in the GMM setting with continuous outcomes and in the Latent

Class Analysis setting were so substantial that it seems unlikely that they would surpass the

performance of the bootstrap likelihood ratio-test in the present application. Nevertheless,

we compare model performance using the two standard criteria (the log-likelihood test and

the BIC) and supplement this information with the bootstrap likelihood test.

Fit to Data

There is not yet a formal statistical test for comparing the results of the alternative

modeling approaches. The log-likelihood statistics as well as BIC used in the previous

section are only one type of guide for choosing among models. Another important guide is

the actual fit to the data. Model fit to data does not seem to have been commonly con-

sidered in analyses of trajectory types. We will therefore compare the different models

under consideration with respect to their standardized residuals in terms of response pattern

frequencies (as seen in Tables 2 and 3). We also considered the effect of single influential

cases on the model fit. This is done by computing the influence statistic for each obser-

vation (Cook 1986; Liski 1991).

Application of the Four Different Modeling Strategies

In the previous section, we introduced four models for the analysis of longitudinal data. In

this section, all four of these models will be applied to the analysis of the Cambridge data

and the Philadelphia cohort study. All analyses are performed with maximum likelihood

estimation in Mplus (Version 4.21, Muthén and Muthén 1998–2007). The code to repro-

duce our analyses is available online.7 For the mixture analyses of GMM, NP-GMM and

LCGA, a large number of random perturbations of starting values was used to avoid local

maxima.

Cambridge Data

A quadratic growth function will be specified in all models. The necessity of adding

random effects on the intercept, slope and quadratic growth factors of the quadratic growth

function will be explored. Further, in line with criminological theories on the existence of

7 http://www.statmodel.com
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subpopulations with conceptually different developmental trajectories, the conventional

growth models will be extended to growth mixture models, which allow both for separate

classes and for random growth factors within those classes. Then the normality assumption

within these classes will be examined and non-parametric growth mixture models will be

applied. Finally, these models will be compared to latent class growth analysis in which

classes represent different subpopulations with different trajectory shapes, but no variation

of growth factors is allowed within these classes. For each of the models a non-technical

summary will be provided.

Conventional Growth Model

This section presents the analyses of the Cambridge data using conventional growth

models. In the present analysis of the Cambridge data, the outcome variable (number of

convictions) is treated as zero-inflated Poisson as mentioned above.8 A random intercept

model results in a log-likelihood value of @1481.3 with seven parameters9 and BIC of

3004.7 (see Table 4). According to BIC, a model that allows for not only a random-effect

intercept but also for a random-effect slope fits the data even better. With these two

additional parameters,10 the log-likelihood increases to @1469.6 and the BIC decreases to

2993.2. However, allowing for a random effect for the quadratic term did not lead to an

improvement for BIC.

Figure 2 shows a summary of the model results. Displayed is the mean trajectory curve

for the number of biannual convictions as a function of age. Not visible in the graph is the

random effect variation for intercept and slope. That is, individuals are ‘allowed’ to have a

different level of onset and a different slope in their trajectories. Figure 2 shows a very low

average number of convictions at each time point. This is not surprising, given the large

number of zeros (no convictions) for individual subjects at each point in time. The peak of

the overall age–crime curve is at age 18.

Growth Mixture Model

Taking the descriptive analysis of the Cambridge data as a starting point, it seems

reasonable to postulate that there exists a subgroup with no criminal career whatsoever.

We therefore specified a growth mixture model (GMM) with one class being assumed to

have zero values throughout the observational period. According to all model-fit

indicators (log-likelihood, BIC, and BLRT) this two-class GMM model outperforms the

one-class conventional growth model. The GMM model with two classes, one class with

one or more convictions and one zero class (see Table 5, GMM (zip) 1 + 0), has eight

8 The quadratic growth function is applied to the count part as well as the zero-inflation part of the growth
model. We estimated all models with and without growth structure on the zero-inflation part. The results for
the models with unstructured zero-inflation part do not differ from those presented here and are therefore not
listed in addition. A cubic growth parameter was specified for the conventional growth model with random
intercept, but had not significant contribution. The cubic function was then not pursued any further.
9 Among the seven estimated parameters, three are for the means of the Poisson growth factors, one for the
variance for the intercept of the Poisson growth model and three parameters for the quadratic growth model
for the inflation part.
10 The two additional parameters are the variance of the slope and the covariance between slope and
intercept.
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parameters. Compared to the regular growth model with a random intercept, there is now

one additional parameter estimated, which is the probability for the class membership.

For the GMM with one zero class the BLRT (not shown in the Table) indicates that this

two-class model significantly improves the fit compared to the one class model (BLRT p-

value \ 0.01). The comparison of BIC (3004.7 for the one class GMM and 2994.5 for

the two class GMM) and the log-likelihood values (@1481.3 for the one class GMM and

@1473.3 for the two class GMM) support this decision.

As was done in the case of the general growth model above, we tested the possibility of

improving model fit by allowing both random intercept and random slope parameters. This

new model, with a slope variance as well as a covariance for the intercept and slope, fits the

data better than the GMM with one zero class and a random intercept only. With only two

more parameters, the likelihood value increases from @1473.3 to @1461.8 and BIC drops

from 2994.5 to 2983.7. The presence of significant variance in the growth factors is not

surprising from a substantive point of view. It seems reasonable to assume that criminal

careers of a certain trajectory type would show substantial variation across individuals

within this type.

Given the contribution of a random effect for the intercept and slope in the growth

mixture model with one zero and one non-zero class, one might ask how this variation

could best be described. Are the data best described with a model that has one non-zero

class and random effects for both intercept and slope, or is it more reasonable to assume

0
2.

4.
6.

8.

E
st

im
at

ed
 m

ea
n 

- 
co

nv
ic

tio
n

10 12 14 16 18 20 22 24 26 28 30

Age - biannual

Fig. 2 Estimated mean
trajectory curve of a conventional
growth model with random
intercept and slope for the
Cambridge data

Table 4 Model comparison for the Cambridge data: conventional growth model

Model Random effect Log-likelihood Number of parameters BIC

Growth (zip) I @1481.3 7 3004.7

Growth (zip) I S @1469.6 9 2993.2

Growth (zip) I S Q @1465.7 12 3003.5

All models are specified with a quadratic growth function. The conventional growth model differ in whether
or not they allow for a random effect on the I = intercept; S = slope; or Q = quadratic growth factor of those
growth function(s). Zip refers to zero-inflated Poisson
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variation with more than one distinct pattern for different trajectory types, as implied by

the different developmental pathways described by Moffitt (1993)?

To answer these questions, we examined the improvement in model fit between the

GMM with only one non-zero class and a GMM with additional non-zero classes. The

GMM with one zero and two non-zero classes (in Table 5 labeled as GMM (zip) 2 + 0) has

12 parameters: Two parameters for class membership, three growth factor means for both

count trajectories, one parameter for the intercept variance, and three parameters for the

quadratic inflation growth part of the model.11 The log-likelihood value increases to

@1454.7 (from @1473.3) and BIC decreases to 2981.5 (from 2994.5) for the model with

one non-zero class and random intercept (see Table 5). Adding another substantive class

led to an increase in BIC and a BLRT p-value of p = 0.1 did not indicate a significant

improvement in model fit.

The growth trajectories for the growth mixture model with the best performance are

displayed in Fig. 3. For the growth mixture model one can see the estimated growth

trajectories for criminal convictions for two non-zero classes, and one zero class. The

dotted line at the bottom depicts the latter. The two substantive classes differ in the age at

which the developmental trajectory peaks (age 16 versus 18) and they differ in the rate of

decline thereafter.

The two non-zero growth factor mean curves that are displayed in Fig. 3 represent two

substantial classes in terms of size. According to the model estimates, roughly 18% are in

the early-peaking class and 33% are in the late-peaking class. For both classes, the model

allowed the intercepts to be a random effect. The random variation of the intercept within

each of the two classes is assumed to be normally distributed, an assumption that can be

questioned.

One possibility for examining the appropriateness of the normality assumption is a

graph of the distribution of the estimated individual values from the random intercepts.

These individual values of the random effect (here the intercept factor) are often called

factor scores (Lawley and Maxwell 1971). If the normality assumption holds the distri-

bution of the individual factor scores should resemble a normal distribution. Figure 4

contains such graphs for both the early-peaking and the late-peaking classes. Plotted in

Fig. 4 are histograms of the individual factor scores together with a more general kernel

density estimator to smooth the function.12

What is noticeable in Fig. 4 is the strong skewness of the distribution in both classes.

The early-peaking class also displays a slight bi-modality. Neither of these two graphs

Table 5 Model comparison for the Cambridge data: growth mixture model

Model Classes Random effect Log-likelihood Number of parametersf BIC

GMM (zip) 1 + 0 I @1473.3 8 2994.5

GMM (zip) 1 + 0 I S @1461.8 10 2983.7

GMM (zip) 2 + 0 I @1454.7 12 2981.5

GMM(zip) 3 + 0 I @1450.7 16 2997.3

All models are specified with a quadratic growth function. The growth mixture model differs in whether or
not they allow for an additional random effect for the I = intercept; S = slope; or Q = quadratic growth
factor of those growth function(s). Zip refers to zero-inflated Poisson

11 Note that the three inflation parameters are held equal across classes.
12 We used an Epanechnikov kernel for the nonparametric smoothing function (Silverman, 1986).
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would support the assumption of symmetric normally distributed variation around the

estimated mean intercept for each of these classes.

To summarize, it seems to be the case that a model that distinguishes criminal career

trajectory types is preferred over the conventional growth model in which one mean

trajectory is estimated for the entire sample. However, looking at the distribution of the

estimated individual intercept values (i.e., factor scores) the assumption of continuous-

normal varied growth within those two non-zero classes can be challenged. A non-para-

metric version of growth mixture models was therefore applied.

Non-parametric Growth Mixture Model

In the next step of the analysis, the assumption of normally distributed variation around the

estimated intercept for both non-zero groups was relaxed. A non-parametric version of the

GMM was used instead. Here, the intercept variation is represented non-parametrically

through estimated support points. These can be seen as sub-classes of the two larger,

substantive classes. The sub-classes differ in terms of their intercepts, but have equal slope
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parameters and no random effects. If the normality assumption were reasonable, then the

support points (sub-classes) that are found should be symmetric and approximately equi-

distant from the initially estimated intercept mean.

Table 6 lists the results for three different non-parametric GMM models. All three

models have two substantive classes and one zero class, just like the best fitting growth

mixture model. However, now each of the substantive classes can be thought of as having

two or more sub-classes (the number of sub-classes within each substantive class is

indicated inside the brackets in the labels of Table 6). Each of these sub-classes will have

the same overall trajectory (slope) as the larger substantive class to which it belongs. The

only difference between the sub-classes is in the intercept.

In the first model reported in Table 6, three support points were used to represent the

distribution of the intercepts in each of the substantive classes. However, the results of this

model showed an empty class for one of the three sub-classes of the early peaking class.

This indicates that only two support points are needed to represent the variation in the

early-peaking class (which we found in the GMM model). This model—with two support

points for intercept variation in one of the two non-zero class and three in the other—had a

log-likelihood value of @1444.4 with 15 parameters and the lowest BIC value with 2978.8.

Reducing the number of support points for the late-peaking class to two as was done for the

early-peaking class worsens the model fit, decreasing the log-likelihood by 13 points by

adding two additional parameters. Likewise, the BIC increases from 2978.8 to 2,993

(Table 6).

As mentioned earlier in the model description, numerical integration is used in the EM-

algorithm. Here the integral is replaced by nodes (mass points/support points) and node

weights (masses). Both node locations and weights can be estimated. Figure 5 shows the

location of the support points for the distribution of the intercept factor scores for the early

peakers and the late peakers. Two support points are needed for the early peakers. The

height of the bars in Fig. 5 is proportionate to the class size for each of the sub-classes.

Looking at both Figs. 5 and 6, one can see two early-peaking classes, those indicated by

the dashed lines in Fig. 6.

About four-fifth (12.7% out of 15.5%) of the observations in the early-peaking class

are estimated to have a low intercept; the average number of convictions of class members

at age 16 (the peak of this trajectory) is less than 0.4. The remaining third is in the tail of

the intercept distribution; the number of convictions at the peak of their trajectory is

estimated to be around three. However, since the additional classes in the NP-GMM model

are used to capture variation only in the intercept and not in the other parameters, both

early-peaking classes are constrained to have the same slope and quadratic growth

parameters. This constraint is visible in Fig. 6 in terms of the steep decline in convictions

through the late teenage years and the return to zero biannual convictions by their

Table 6 Model comparison for the Cambridge data: non-parametric representation of growth mixture
model

Model Classes Log-likelihood Number of parameters BIC

GMM np zip 2 (3 + 3) + 0 @1444.5 16 2985.0

GMM np zip 2 (2 + 3) + 0 @1444.4 15 2978.8

GMM np zip 2 (2 + 2) + 0 @1457.7 13 2993.0

All models are specified with a quadratic growth function. Zip refers to zero-inflated Poisson
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mid-twenties. Three support points for the intercept distribution of the late-peaking class

are visible in Fig. 5. All three are displayed with the solid lines in Fig. 6.

The NP-GMM preserved the basic structure of the substantive classes found in the

growth mixture model. The trajectory for the late-peaking sub-class with the lowest

intercept value captures about 60% (20.2 out of 33.5) of the entire late-peaking class. The

highest of the three late-peaking trajectories is the estimated mean curve for about 12% of

the ‘‘late-peakers’’. While the different curves imply different levels of convictions, all

three trajectories show again a pattern often called ‘‘long term persistence’’ in the crimi-

nological literature (e.g., Roeder et al. 1999) in that criminal activity persists throughout

the subject’s twenties.

Reducing the number of support points for the late-peaking class to two as was done for

the early-peaking class worsens the model fit, decreasing the log-likelihood by 13 points by

adding two additional parameters. Likewise, the BIC increases from 2978.8 to 2,993

(Table 6).

In summary, according to this model the data support two substantive conviction tra-

jectories and one zero-class. There is variation within the substantive trajectories, where

the level of conviction varies but not the pattern over time. Rather than capturing the

variation assuming a normal distributed random effect, two or three ‘‘support points’’ are

needed for the substantive classes.

Latent Class Growth Model

Table 7 shows a summary of the results of a Latent Class Growth Analysis of the Cam-

bridge Study data. As stated above, a LCGA is characterized by zero variances and

covariances for the growth factors. The model assumes that individuals within a class are

homogeneous with respect to their development. However, unlike the non-parametric

version of the growth mixture model, each class is now allowed to differ not only in the

intercept factor means but also in the slope factor means. None of the classes are allowed to

have random effects for any of the growth factors. The LCGA model was first estimated

again having one class as a zero class.13 According to BIC the model with two substantive

classes and one zero class clearly outperformed the model with only one substantive class

(BIC 3005.4 vs. 3184.8). The model with three substantive classes and one zero class had a

similar BIC value (BIC 3006.1). The 2 + 0 model (see Table 7) shows a high peaking and

a low peaking class and an estimated 60% in the zero-class. In the 3 + 0 model the low

peaking class ‘‘splits’’ into two shapes that follow the pattern we already saw in the GMM

model.

Even without explicit specification of a ‘‘zero’’-class a nearly zero-class is part of the

resulting solution in the LCGA models for the Cambridge data. The likelihood is increased

for those models. Among the LCGA models without explicit zero-class, two perform best.

If model fit decision is solely based on BIC, the 4-class model performs best. The BLRT p-

value (again not shown in the table) being \0.01 for the 5-class model indicated further

significant model fit improvement, whereas adding a 6th class had no further significant

improvement (BLRT p-value [0.05).

13 The inflation part was modeled in the same way as it was for the GMM. That is, three parameters are
estimated and set equal across the classes.
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We mentioned earlier that the NP-GMM can be thought of as an LCGA model with

restrictions imposed on the parameters. What is interesting to note here is that the resulting

5-class LCGA solution is very similar to the NP-GMM model results. The 5-class LCGA is

characterized by one class that accounts for 68% of the sample, which has a very low

intercept value and non-significant slope factors compared to all the other classes. The

trajectory of this class (indicated by the dotted line in Fig. 7) is similar to the zero class in

the GMM models.

The other four classes also show a familiar pattern. Two classes can be characterized by

an early peak at age 16 and a sharp decline in convictions thereafter (2.7% and 11.9%) and

the remaining two classes by a later peak around age 18 with some persistence through the

late twenties (3.9% and 13.3%). Both of the early- and late-peaking patterns have versions

with a high peak (reflecting a high number of convictions) and low peak (reflecting a low

number of convictions), with a much higher proportion in the low-peak version in each

case. The results of the 4-class solution look very similar. What is missing compared to the

5-class solution is the high-peaking class around age 16.

Comparing Fig. 6 and 7, the similarity between the results of the non-parametric version

of GMM and the LCGA is striking. The patterns are nearly identical, which means that

even if the slope and quadratic growth factors are allowed to vary among the classes (as

they are in LCGA), the results are close to the result of what was called a non-parametric

version of the growth mixture model.

Fit to Data

The similarity in BIC and estimated mean trajectories across the different models is

underscored by looking at the standardized residuals for the Cambridge data. Similar to the

model fit statistics, the standardized residuals do not point to one model with particular

worse model fit.

Table 8 displays observed and estimated response patterns for the Cambridge data as

well as the standardized residuals. Estimated response patterns and standardized residuals

are provided for the conventional growth model, the 3-class GMM and its non-parametric

version as well as two zero-class LCGA models and the 4-class and 5-class LCGA models

with all trajectories estimated. In all models does the response pattern ‘‘00011000000’’

with one conviction at the ages 16/17 and 18/19 has a significant misfit. The pattern with

Table 7 Model comparison for the Cambridge data: latent class growth analysis

Model Classes Log-Likelihood Number of parameters BIC

LCGA (zip) 1 + 0 @1571.4 7 3184.8

LCGA (zip) 2 + 0 @1469.7 11 3005.4

LCGA (zip) 3 + 0 @1458.0 15 3006.1

LCGA (zip) 3 @1463.7 14 3011.6

LCGA (zip) 4 @1450.0 18 3008.0

LCGA (zip) 5 @1441.0 22 3014.0

LCGA (zip) 6 @1435.2 26 3026.4

All models are specified with a quadratic growth function. Zip refers to zero-inflated Poisson
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one conviction at the end of the observational period was underestimated in all five models,

and significantly in GMM, NP-GMM, the 2 + 0 and 3 + 0 LCGA models.14

Summary

In sum, there are several points to note. First, all the mixture modeling alternatives indicate

that at least two classes are needed in which one of the classes captures a separate

developmental trajectory for young males with a very low propensity to be convicted.

Second, all the mixture modeling alternatives show two trajectory ‘themes’ for the non-

zero classes (see D’Unger et al. 1998; Roeder et al. 1999 for similar findings). One has an

early peak with relatively quick desistance and one has a later peak with some continuation

in criminal convictions throughout its members’ late thirties. Third, neither the shape of the

curves nor the proportions of the classes vary substantially across the mixture modeling

alternatives. The last point is especially reassuring for substantive researchers working

with the Cambridge data. For one, it indicates that for the Cambridge data, the substantive

conclusions on the nature of the developmental trajectories would be very similar across

the different mixture modeling alternatives. Interestingly enough, this also means that

although the normality assumption in GMM was violated, this violation did not influence

the substantive results. One would reach essentially the same conclusions with the NP-

GMM as with the regular GMM. Also, the NP-GMM yields the same conclusion as the

LCGA.

We will now turn to a second model comparison using the Philadelphia cohort study.

Here the model comparison leads to a different conclusion of the relative model fit. That

leads us into a discussion of likely reasons for the differences with the Cambridge data

application.

Modeling Results for the Philadelphia Data

From a statistical point of view, the most noticeable difference between the Cambridge

data and the Philadelphia cohort study is the number of observations available for the

analysis. One cannot hide the fact that the mixture models and, foremost, the random

effects models are computationally demanding. It is therefore not surprising that in the

past, subsets of these data had been analyzed (see D’Unger et al. 1998, 2002). Recent

software and hardware improvements allow more easily for an analysis of the full data

set. In the following sections we will report on the model comparison for the Phila-

delphia data, examine the standardize residuals and draw a comparison with the

Cambridge data results.

14 What again becomes obvious here, is the small number of patterns represented by more than one person
in the Cambridge data. It could be that in the case of outliers, the GMM model might have an advantage in
as much as allowing for random effects can lower the effects of single influential cases. In a model that
allows for variance around the growth factors, a few outliers will increase variance substantially. If the
growth factors are not allowed to vary, those cases would be more likely to form a new class. Thus, we were
concerned about the effect of single influential cases to the model comparison performed here. We computed
the influence statistic for each observation (Cook 1986; Liski 1991). The results of the model comparison
did not change after excluding influential cases (patterns).
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Model Comparison

For the modeling comparison with the Philadelphia cohort data we use the full set of

13,160 observations (excluding 34 individuals with more than 10 criminal offenses in any

given year, the analysis are based on 13,126).15 Like in the Cambridge data analyses a

quadratic model was applied to the data. Table 9 shows the modeling results for the

conventional growth model, the growth mixture model with random effects and in its

nonparametric version as well as results from the latent class growth analysis.

Unlike for the Cambridge data, here the growth mixture models included random effects

for all three terms; the intercept, linear slope, and quadratic slope. Allowing the effects to

be random for the linear and the quadratic slope improved the model fit. In all of the

models displayed here, no structure was applied to the inflation part of the growth model.16

Compared to the conventional growth model, BIC improved by adding classes to the

random effect models. A 3-class mixture GMM model showed clear improvement in BIC

compared to the conventional growth model. The 4th class added little improvement

compared to the 3-class GMM. Figure 8 shows the results for the 3-class GMM model. The

largest class (64.6%) has an estimated mean trajectory almost flat at zero. The second

estimated mean trajectory shows a peak in teenage years with a clear decline after age 17,

flattening out around zero, similar to the largest class at age 20. The third trajectory type

found for the Philadelphia data peaks at age 16/17 and shows continuing police contacts

until the end of the observational period at age 25.

For the LCGA models, the BIC kept improving up to as many as eight classes. How-

ever, with three classes, the GMM gives a better BIC value than the 8-class LCGA model.

Finding a dip in BIC values can be difficult for data with large number of observations.

Substantive considerations were taken into account by D’Unger et al. (1998, 2002) as well

as Loughran and Nagin (2006) to decide on the number of classes. Loughran and Nagin

(2006, pp. 255) give good substantive reasons for their choice of a 4-class model. The

resulting trajectories are comparable to our LCGA modeling results. With the same number

of parameters the non-parametric GMM has a better BIC value than the 4-class LCGA.

Looking at the likelihood values, the 3-class GMM has a better log-likelihood by 200

points with two parameters less than the 5-class LCGA.

Fit to Data

Tables 10 and 11 show the model fit to the 10 most frequent patterns, comprising 78% of

the Philadelphia data. Both tables show the estimated frequencies for each of the models.

Table 10 for the conventional growth model, the three GMM models and the non-para-

metric GMM model. Table 11 shows the estimated frequencies for five different LCGA

models. The column next to each estimated frequency has the standardized residuals for

this particular pattern.17 Residuals significant at the 5% level are highlighted. To give an

example, in the first column of Table 10 the response pattern ‘‘00001000’’, with one police

contact between age 18 and 19 and no police contact before or thereafter, appears 292

15 A similar strategy was employed by Loughran and Nagin (2006) in their analysis of the full data set.
16 Unlike in the Cambridge analysis, the model here has one inflation parameter per time point, held equal
across classes.
17 For LCGA and the non-parametric GMM those can be computed by hand. For GMM with random
effects, numerical integration was used.

J Quant Criminol (2008) 24:1–31 23

123



times in the data. The conventional growth model would overestimate its appearance by 60

respondents. The conventional growth model has in total five significant residuals. With

two additional classes and random effects for all growth factors the 3-class GMM has only

one significant residual and the 4-class GMM has none.

In contrast, the 4-class LCGA model has four significant residuals and the 5-class model

has three. An 8-class LCGA is needed to reduce this to one significant residual. Not

surprisingly did we see a better BIC value for the 3- and 4-class GMM compared to the

LCGA models with 8 or fewer classes. The residual analysis supports the earlier notion of a

better model fit to the data for the GMM compared to NPGMM and LCGA.

Comparison to the Cambridge Data

Both the comparison of BIC across models as well as the standardized residuals supported

the GMM choice for the Philadelphia data. The 3-class and 4-class GMM were estimated

with random effects for the intercept, the linear slope and the quadratic slope parameters.

The large number of observations in the Philadelphia data compared to the Cambridge data

increased the power to detect differences in model fit between the different models pre-

sented here. For the Cambridge data, the lack of power in detecting significant differences

in model fit turned out to not be problematic. The resulting trajectory curves showed

comparable location, form, and size across the different models.18 The question is would

the same be true for the Philadelphia data? Would the model comparison have led to a

Table 9 Summary of the modeling results for the Philadelphia cohort study

Model Classes Random effect Log-likelihood Number of parameters BIC

Conventional Growth (zip) 1 I S Q @40,606 17 81,373

GMM (zip) 3 I S Q @40,283 25 80,803

GMM (zip) 4 I S Q @40,237 29 80,748

GMM np zip 3(2) @40,458 23 81,133

LCGA (zip) 4 @40,643 23 81,503

LCGA (zip) 5 @40,483 27 81,222

1
2

3

10/11 12/13 14/15 16/17 18/19 20/21 22/23 24/25

Age

64.6%                     15.8%                    19.5%

N
um

be
r 

of
 p

ol
ic

e 
co

nt
ac

tsFig. 8 Estimated mean
trajectories for the Philadelphia
cohort study. Results from the 3-
class GMM

18 Going through the different modeling steps, the non-parametric GMM nicely bridged the results from
LCGA and GMM for the Cambridge data. Without having yet looked at covariates or predictive power, the
case can be made that there are only three overall patterns in the Cambridge data with high and low
variations on the themes.
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different conclusion with a smaller sample size? And would the inference drawn from the

resulting model estimates have been comparable? Or would the significant random effects

for the linear and especially the quadratic slope have led to different conclusions?

To answer these questions, we selected a random sample of n = 500 of the Philadelphia

cohort study. This sample size is comparable to that of the Cambridge data. After reducing

the sample size, the random effect for the quadratic growth factor is no longer significant

and does not provide any improvement in model fit.19 This is true for the conventional

growth model as well as for growth mixture models with random effects. Second, unlike in

the full data, the growth mixture model with three classes has a better BIC value

(BIC = 2,945) than the 4-class model (BIC = 2,966). Interestingly, the conventional

growth model with random effects for the intercept and slope has a better BIC (=2,937)

than the growth mixture models for this restricted data set. The 4-class LCGA has a better

BIC than both the 3- and the 5-class LCGA models (BIC = 2,978 compared to BIC =

3,000 and BIC = 2,982 respectively), but not as good as any of the growth models with

random effects. Third, the log-likelihood values of all these models are very close and

differences are comparable in size to what we have seen in the modeling results for the

Cambridge data. Based solely on the subsample of n = 500, it would be difficult to make a

definite judgment on the superiority of one model over the other based on the statistical

measures available. Had one only used LCGA, the decision would have been to settle on a

4-class model. Looking at Fig. 9 however, one can see that the resulting mean trajectories

differ in shape and size for two of the LCGA classes compared to the 3-class GMM model

(which was found to fit best for the full data set). The two estimated trajectories for the

largest class and the low peaking class (solid line in both graphs) are very similar in both

models. The higher peaking GMM trajectory type seems to subsume the variation of the

additional two estimated trajectory types from the 4-class LCGA.

It appears that the combination of random intercept and random slope for the GMM

models makes the results across the modeling types less similar. A small sample size will

also make it difficult to evaluate significant differences in model fit. For the n = 500

Philadelphia data—just looking at BIC for model fit—a conventional growth model with

random intercept and slope would have been the choice. The analysis for the full Phila-

delphia cohort study showed however, that the growth mixture model had an improved

model fit. In situations with a sample of this size, one can only hope (or plan before the

data collection) that covariates are available that allow for an examination of predictive

validity and correlations to antecedents.

Summary and Discussion

This article illustrates how four different modeling approaches can be used to analyze

growth trajectories. The approaches considered included both the two dominant models

used in the criminological literature—growth curve models and latent class growth anal-

ysis—and parametric and non-parametric versions of growth mixture models. These

models were applied to two data sets. The application of all of these models within a

general latent variable framework allowed for a straightforward comparison of the models,

while the use of the same data permits direct comparison of the modeling results in terms

of the models’ ability to capture the heterogeneity in trajectories. We demonstrated that

19 BIC with random effect for the quadratic slope factor was 2951.3 compared to 2936.5 with just random
effects on the intercept and linear slope.
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researchers do not have to make a priori decisions on whether to assume continuously

varied growth or to rely entirely on substantive classes to capture the variation in growth. A

growth mixture model where random effects are allowed within classes can be an alter-

native. Or, if the normality assumption is questioned, a non-parametric growth mixture

model version can be considered before the variation is modeled entirely group-based.

For the Cambridge data, substantive researchers can take heart in the essentially

equivalent results of the models compared here. For the Philadelphia cohort study, the

results differ across the models and substantively different conclusions are likely to be

drawn if only one of the different modeling approaches would be used (especially with a

reduced sample size). The model comparison in this article was largely based on BIC as

well as an examination of the standardized residuals to address model fit to data. For

substantive researchers this model comparison should only be the beginning. Ultimately,

model choices should be supported if not guided by arguments related to substantive

theory, auxiliary information, predictive validity, and practical usefulness. Especially in

cases were power is limited due to sample size. To this point we want to emphasize three

issues to be considered in applying any of the models discussed in this article.

First, an important part of mixture models is the prediction of class membership

probabilities from covariates. This gives the profiles of the individuals in the classes. If

theories differentially relate auxiliary information in the form of covariates of class

membership and growth factors, those should be included in the set of covariates to

correctly specify the model, find the proper number of classes, and correctly estimate class

proportions and class membership (Muthén 2002). The fact that the ‘‘unconditional model’’

without covariates is not always suitable for finding the number of classes has not been

fully appreciated (Muthén 2004).

Second, similar to the examination of covariates, the predictive power of different

trajectory types for later outcomes should be considered in the modeling. For example, if

the fit criteria used here point to a mixture model, but all classes have the same predictive

power for later outcomes and are predicted by the same covariates in the same way, there is

strong support for interpreting the mixture components as non-parametric versions of a

general growth model. For the Cambridge data, the question is: Do the sub-classes that are

used for the non-parametric representation of the variation in the growth factor intercept

show different effects on the number of convictions in later time points? In the Cambridge

example this question is especially interesting for the NP-GMM and the LCGA solution. It
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would be harder to argue that these sub-classes are solely used to represent a non-normal

distribution of the growth factor(s) in the GMM model if they show different predictive

power for convictions at for example age 38–40. A model including the distal outcome

(convictions at age 38–40) showed indications of such a situation. In the non-parametric

model, one of the three sub-classes (represented by the solid line with 9.6% class pro-

portion in Fig. 6) had a higher probability of conviction in their late 30s than those in the

other two sub-classes.20 In the LCGA model, only one class has a probability that is

significantly different from zero for convictions in the respondents’ late 30’s, and that is

one of the two late-peaking classes (represented by the dot-dash pattern in Fig. 7).

However, one should note that being able to predict a distal outcome from trajectory

class memberships does not necessarily constitute evidence for multiple classes (Muthén

2003). For example, if data have been generated by a conventional single-class growth

model where increasing growth factor intercept and slope values gives an increasing

probability of the distal outcome, a mixture model (here GMM, NP-GMM or LCGA)

might point to a 2-class solution with a high and a low class where the high class has a

higher distal outcome probability. The same can be said for the high and low classes that

split the classes found with the GMM model for the Cambridge data. When statistical

evidence is lacking, here too, substantive considerations are key in the analysis.

Finally, researchers should also keep in mind that a model comparison can lead to quite

different results for different data, and differently scaled outcome variables. Modeling

comparisons for ordered categorical and continuous outcomes can be found in Muthén

(2001a, 2001b, 2004). More research needs to be done on binary outcomes and counts.

Hopefully this article gives guidance and inspiration on how such modeling comparisons

can be approached.

Acknowledgments We like to acknowledge everyone who discussed this article with us during the last
5 years at various meetings and conferences. In particular we thank Tihomir Asparouhov for ongoing
discussions that shaped our perspective on this article. Shawn Bushway, Booil Jo, John Laub, Katherine
Masyn, Daniel Nagin, Paul Nieuwbeerta and three anonymous reviewers provided critical comments to
earlier versions of this manuscript that we gladly took into account. Michael Lemay was of great help in data
preparation and analysis. The work on this article was partially supported by grant K02 AA 00230 from
National Institute on Alcohol Abuse and Alcoholism.

Appendix

Zero-inflated Poisson Model

Note that the ZIP model is already a special case of a finite mixture model with two classes.

Treating the count outcome variable as zero-inflated at each time point means that a

probability is estimated for the observation to be either in the ‘‘zero-class’’ or not. For the

zero class a zero count occurs with probability one. For the non-zero class, the probability

of a conviction is expressed with a Poisson process.

The interesting feature for the ZIP, or its expression as a two-class model, is that the

probability of being in the zero class can be modeled by covariates that are different from

20 The non-parametric GMM in which the three sub-classes are constrained to have equal probability for
later conviction shows a slight decrease in fit. The log-likelihood value for the restricted model is @1467.8
with 19 parameters compared to @1462.0 with 21 parameters in the unrestricted model.
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those that predict the counts for the Poisson class. The same is true when allowing for a

zero class in the growth trajectory modeling.

More formally, for the present application this model can be represented as follows: At

each individual time point a count outcome variable Uti (the number of conviction at each

time point t for individual i) is distributed as ZIP (Roeder et al. 1999).

Uti�
0 with probability qij

PoissonðktiÞ with probability 1� qij

(

The parameters qit and kit can be represented with logit(qti) = log[qti/1� qti] = Xtict and

logðktiÞ ¼ Xtibi.

Notice that the mixture model within the zero-inflated Poisson is a mixture at each time

point. The mixture models we discuss in the different growth models are mixtures of

different growth trajectories (across all time points).
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