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Abstract: The West Texas Intermediate (WTI) spot price shows high volatility and in 2014 and 2015

when quoted prices declined sharply, long-term prices in future markets were less volatile. These

prices are different and diverge depending on how they process fundamental and transitory factors.

US tight oil production has been a major innovation with significant macroeconomic effects. In this

paper we use WTI spot prices and long-term futures prices, the latter calculated as the expected

value with a stochastic model calibrated with the futures quotes of each sample day. These long-term

prices are the long-term equilibrium value under risk neutral measurement. In order to analyze

potential time-scale relationships between spots and future, we perform a wavelet cross-correlation

analysis using a novel wavelet graphical tool recently proposed. To check the direction of the

causality, we apply non-linear causality tests to raw data and log returns as well as to the wavelet

transform of the spot and futures prices. Our results show that in the spot and futures markets for

the period 24 February 2006–2 April 2016 there is a bi-directional causality effect for most time scales

(from intra-week to biannual). This suggests that spot and futures prices react simultaneously to

new information.

Keywords: oil spot prices; futures oil markets; stochastic model; tight oil; time series analysis; wavelet

correlation; Maximal Overlap Discrete Wavelet Transform (MODWT); nonlinear causality test

1. Introduction

The West Texas Intermediate (WTI) spot price, one of the world’s most important crude oil

markets (Deng and Sakurai [1]), usually shows high volatility and in 2015 its prices declined sharply.

At the same time, long-term WTI futures prices were less volatile: They also underwent significant

price declines, but to a lesser extent. These prices are different and diverge depending on how they

process fundamental and transitory factors. For instance, a relevant recent innovation with significant

macroeconomic effects is US tight oil production. This term refers to all low-permeability crude oil

production formations, including shale formations.

Changes in spot and futures prices may be due to fundamental shifts in supply and demand;

but they could also be due to speculation. Knittel and Pindyck [2] show that futures contracts are the

easiest instrument of speculation to use for the lowest cost; moreover a substantial fraction of futures

contracts are held by producers and industrial consumers to hedge risk, e.g., in the case of refineries.

Knittel and Pindyck [2] conclude that the behavior of inventories and the futures-spot spread is simply

inconsistent with the view that speculation has been a significant driver of spot prices. A shift in oil

market fundamentals can affect supply and demand and the effect may be short-term or long-term.
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Extreme cold weather events and an unexpected shutdown of some base power plants are examples

of short-term shifts in fundamentals of demand and supply, respectively. Other shifts have more

permanent effects, such as increase in crude oil demand in China and other developing countries,

along with the development of tight oil extraction technology result in a supply shift.

Figure 1 shows the term structure of WTI Futures Prices for the 2 April 2016, which is the last

day of the sample. The shape of the futures curves is very important for pricing crude oil barrels for

the following reason: this shape enables us to observe the spread between futures and spot prices,

which is equivalent to the storage price. The situation at the end of 2015 and early 2016 is such that

spot prices are lower than long maturity futures prices (contango). The shape of Figure 1 suggests a

mean reverting stochastic model for the crude oil price, because the price on the futures market tends

towards an equilibrium long-term price as maturity periods increase. This behavior is common on

almost all days when futures prices are above spot prices. A similar behavior occurs on almost all days

when spot prices are above the prices of futures markets. In these cases a long-term price equilibrium

can also be found. However, in the sample there are a few days in which no long-term equilibrium

prices can be found using the daily futures term structure because the temporary structure of these

days shows an accelerated rise or decline. In these few cases, the price of the future with the longest

maturity on that day provides information for an alternative estimate using the last spread between

the last future and the long-term equilibrium price.

 

Figure 1. WTI Futures Prices term structure (2 April 2016). Source: our own calculations with ICE

Futures Prices.

It is clearly established that, both spot and futures prices are relevant for the economy, but not

less important is the interrelationship between spot and futures prices. For instance, the lead-lag

relationship between crude oil spot and futures markets is a debatable issue, as can be corroborated in

the many publications on this topic since the seminal 1999 paper by Silvapulle and Moosa [3].

Most studies of the relationship between spot and long-term future prices on the crude oil

market are based mainly on the estimation of Pearson’s and Spearman’s correlation coefficients, the

cross-correlation function, cointegration theory (bi- and multivariate) or the use of generalized VAR

or (G)ARCH models [3–7]. However, cointegration theory can only tackle short-run vs. long-run

time horizons and the VAR and (G)ARCH approaches are sensitive to model specifications [8].

By contrast, from a practical point of view, oil time series can be not stationary and involve
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heterogeneous agents who make decisions over different time horizons and operate on different

time scales (frequencies) [9–12]. A mathematical tool that can handle non-stationaries time series, study

interrelationships between time series and it is able to work in the combined time-and-scale domain, it

is the wavelet cross-correlation via the Maximal Overlap Discrete Wavelet Transform (MODWT) [13,14].

Furthermore, the MODWT obtain an overview of the temporal changes in spectral dynamics of a

time series under study. For all these reasons, this statistical tool is adequate to analyze the long-term

futures and spot prices. Furthermore, to date the wavelet cross-correlation (via MODWT) has not been

widely used to study the correlation and co-movements between spot and long-term futures oil prices.

Inspired by Chang and Lee [12] and Alzahrani et al. [15], in this paper we contribute to the

literature on the lead–lag relationship between spot and futures crude oil prices in the following

way. We use all the futures contracts of each day and we estimate the long-term equilibrium price

to which the price of the futures markets when the maturity period increases in such a way that our

sample has futures price quotes with a maximum maturity of 8.92 years. To estimate the long-term

equilibrium price we use a recently proposed stochastic model (Section 2.2). As a first approach,

potential relationships between spot and long-term futures prices estimated with the stochastic

model are studied by means of the classical cross-correlation function. Then we estimate the wavelet

cross-correlation between the time series under study. We also apply non-parametric and non-linear

causality tests (Diks and Panchenko [16]) to the wavelet decomposition of the spot and futures prices.

Lastly, we use a useful, novel graphical tool proposed by Polanco-Martínez and Fernández-Macho [17]

that helps with the interpretation of wavelet cross-correlation analysis.

The rest of the paper is organized as follows: Section 2 describes the sample data, the stochastic

diffusion model, the wavelet methodology and the causality tests. The results and their discussion are

presented in Section 3. Finally, Section 4 concludes the paper.

2. Material and Methods

2.1. Data Description

Our sample consists of 161,274 daily futures prices from the Intercontinental Exchange (ICE).

We focus on the period from 24 February 2006 to 2 April 2016, i.e., nearly ten years. Table 1 shows

some market specifications. Crude oil futures prices are determined by the expectations of producers,

consumers and speculators for a future date.

Table 1. WTI Crude Futures Market Specifications. Source: Intercontinental Exchange (ICE).

Contract Size 1000 barrels

Units of Trading Any multiple of 1000 barrels

Currency US dollars and cents

Clearing

ICE Clear Europe guarantees financial performance of all ICE Futures Europe contracts
registered with it by its clearing Members. All ICE Futures Europe Member companies
are either members of ICE Clear Europe, or have a clearing agreement with a Member
who is a member of ICE Clear Europe.

Contract Listing Up to 108 consecutive months

Last trading day

Trading shall cease at the end of the designated settlement period on the 4th US
business day prior to the 25th calendar day of the month preceding the contract month.
If the 25th calendar day of the month is not a US business day the Final Trade Day shall
be the Trading Day which is the fourth US business day prior to the last US business
day preceding the 25th calendar day of the month preceding the contract month.

Settlement

The West Texas Intermediate Light Sweet Crude Oil futures contract is cash settled
against the prevailing market price for US light sweet crude. It is a price in USD per
barrel equal to the penultimate settlement price for WTI crude futures as made public
by NYMEX for the month of production per 2005 ISDA Commodity Definitions.
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Table 2 shows the number of observations and the volatility of returns of some futures contracts

from the data sample classified according to their maturity. As can be seen, the volatility decreases as

maturity increases: This is known as the Samuelson effect. That is, energy futures contracts usually

show decreasing volatility as a function of the remaining lifetime of the contract T-t, as T-t decreases,

volatility increases and the spot price converges with the futures contract price so that F(T, T) = ST.

This effect/behavior can be observed more easily in Figure 2. Crude oil futures prices are determined

by the expectations of producers, consumers and speculators for a future date.

Table 2. Some Futures Contract volatility levels according to their maturity.

Maturity Number of Observations Volatility of Returns

~1 month 2571 0.3175
6 Months 2571 0.2859

12 Months 2571 0.2602
18 Months 2571 0.2452
24 Months 2571 0.2324
30 Months 2548 0.2250
36 Months 2420 0.2201
42 Months 2246 0.2176
48 Months 2189 0.2155

 

σ

σ ε
ε λ

σλ

Figure 2. Volatility of returns on contracts with nearest maturity. Source: Our own calculations with

ICE futures prices.

2.2. The Stochastic Model

The crude oil spot price denoted by S can be assumed to evolve stochastically in accordance with

a mean-reverting process (MR) as per Equation (1):

dSt = k(Sm − St)dt + σStdW (1)

In this equation Sm is the long-term equilibrium value towards which the spot price St tends

to revert in the long-term, k is the speed of reversion that determines how the expected value of St

approximates in time to the long-term equilibrium value Sm, σ is the volatility and dW = ε(t)
√

dt is
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the increment of a Wiener process with ε(t):N(0, 1). Let λ be the market price of risk, then the behavior

in the risk-neutral word (this is the futures market case) is:

dSt = [k(Sm − St)− λSt]dt + σStdW (2)

Abadie and Chamorro (2013) [18] show that in the risk-neutral world the expected value under

the equivalent martingale measure or risk-neutral measure in the moment t for the future price with

maturity T is:

F(t, T) =
kSm

k + λ
+ [St −

kSm

k + λ
]e−(k+λ)(T−t) (3)

A similar Equation (4) can be used with the future with the nearest maturity denoted by T1 to

estimate the future price with maturity T2:

F(t, T2) =
kSm

k + λ
+ [F(t, T1)−

kSm

k + λ
]e−(k+λ)(T2−T1) (4)

Equation (4) enables estimates for each day to be drawn up for the values k + λ and kSm
k+λ .

In the long-term there is a long-term equilibrium value given by Equation (5):

F(t, ∞) =
kSm

k + λ
= S∗ (5)

Initially we calculate k + λ and S* for each day using nonlinear least squares, which results in

2571 values of each parameter. More information about the parameters calculation can be found

in Appendix A. We obtain the time-series S∗
t , but there are some outliers, so we refine it using the

procedure described in Appendix B.

Figure 3 shows the lower volatility of futures contracts with long maturity periods on every

day. Since 2008 these futures prices have been higher than spot prices when the latter have fallen

considerably, and below them when spot prices have been very high. Figure 3 also shows a peak

of $145 and a rise in oil prices in July 2008. According to Kaufmann and Ullman [4], this rise was

caused by changes in market fundamentals and speculation. These authors conclude that the increase

anticipated by prices set in futures markets, exacerbated by speculators, was transmitted to the spot

market. On the other hand, in 2015 futures prices were above the spot price, reflecting a situation of

contango in the market.

Table 3 reports the descriptive statistics for spot and futures prices obtained as the longest

maturities and estimated by a stochastic model, Jarque-Bera test for normality (Jarque and Bera [19])

as implemented in the R package tseries (Trapletti and Hornik [20]) as well as the Augmented

Dickey-Fuller (ADF) unit-root test (Dickey and Fuller [21]) as implemented in the R package tseries

(Trapletti and Hornik [20]) with structural breaks. A first glance, the skewness shows that in all cases

the data sets have a slight asymmetric probability distribution. On the other hand, the kurtosis values

show that none of them have a value close to 3 (the theoretical value for a Gaussian probability

distribution), except the log returns for the futures prices estimated by a stochastic model. However,

the Jarque-Bera test indicates that none of the probability distributions of these time series appear to be

normally distributed. Table 3 also reports the results of ADF unit-root test for the levels of the series as

well as the log returns. When the ADF test is applied to the raw data, we fail to reject to reject the null

hypothesis for all the time series. Nevertheless, when the test is applied to the log returns, all nulls are

rejected consistently. Thus, the test reveals that all the raw data sets are integrated of order one, that

is, are non-stationaries whereas the log returns do not contain a unit-root indicating that these series

are stationaries.
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Figure 3. WTI spot and futures prices (obtained as the longest maturities and estimated by a stochastic

model) covering the time interval from 24 February 2006 to 2 April 2016 and where each time

series contain 2571 elements. Source: own work with spot price data from US Energy Information

Administration (EIA) and Last Futures Price from Intercontinental Exchange (ICE).

Table 3. Descriptive statistics for spot and long-term futures prices.

Statistics Spot Futures (Stochastic Model) Futures (Longest Maturities)

Raw Data Log Returns Raw Data Log Returns Raw Data Log Returns

Mean 80.663 −3 × 10−4 83.592 −1 × 10−4 81.252 −1 × 10−4

Median 82.800 2 × 10−4 84.300 1 × 10−4 80.145 2 × 10−4

Max. 145.310 0.164 142.770 0.067 140.283 0.066
Min. 26.680 −0.128 47.150 −0.071 46.276 −0.074

Std. Dev. 21.626 0.024 15.081 0.013 15.993 0.014
Skewness −0.128 0.129 0.625 −0.199 0.501 −0.095
Kurtosis −0.375 5.025 1.231 3.319 0.612 1.842

Jarque-Bera 21.954 2717.811 330.759 1199.947 148.398 368.677
p-value 0.000 0.000 0.000 0.000 0.000 0.000

Dickey-Fuller −1.553 −12.721 −1.801 −14.186 −1.888 −13.943
p-value 0.767 0.010 0.663 0.010 0.626 0.010

2.3. The Wavelet Methodology

Discrete Wavelet Transform (DWT) [13,14] is a mathematical tool that can handle non-stationary

time series and which works in the combined time-and-scale domain. There are various algorithms for

computing the DWT. In this paper we use the Maximal Overlap Discrete Wavelet Transform (MODWT)

because of its advantages over the classical DWT. To begin with, the MODWT can tackle any sample

size N, while the DWT of level J restricts the sample size to a multiple of 2J. Also, more importantly,

the MODWT is invariant to circular shifting of the time series under study, while the DWT is not.

Furthermore, both the DWT and MODWT can be used to analyze variance based on wavelet and scaling

coefficients, but the MODWT wavelet variance estimator of the wavelet coefficients is asymptotically

more efficient than the equivalent estimator based on DWT [13,14,22]. The MODWT is used to

compute wavelet variances, wavelet correlations (WC) and cross-correlations (WCC) of bivariate

time series [13,14]. Several applications of the DWT and MODWT can be found in economic and

financial literature (see e.g., [8,13,23,24]) and to a lesser extent in energy studies [25–27]. Nevertheless,

to date the WCC (via MODWT) has not been widely used to study the correlation and co-movements

between spot and long-term futures oil prices (though some exceptions are discussed below).
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Yousefi et al. [9] propose the wavelet analysis approach as a possible vehicle for investigating

market efficiency in futures markets for oil (prediction of oil prices). More recently, Naccache [10],

Aguiar-Conraria and Soares [28], Benhmad (2012) [25] and Reboredo and Rivera-Castro [11], among

others, address the question of the link between oil prices and the macroeconomy using world data and

a time scale decomposition based on the theory of wavelets. However, the first study of the relationship

between spot and futures prices of crude oil using wavelet analysis was not performed until 2015

by Chang and Lee [12]. They investigate the time-varying correlation and the causal relationship

between crude oil spot and futures prices using wavelet coherency analysis. Chang and Lee) [12] find

significant dynamic correlations between these variables in the time–frequency domain, in a such way

that spot and futures prices contribute to the dynamics of the long-run equilibrium. They recommend

that future studies focusing on the behavior of oil prices should consider the characteristics of the

time–frequency space and lead–lag dynamic relationships. However, Chang and Lee [12] use futures

contracts with one, two, three, and four months, i.e., futures contracts with a very short-term maturity

(around 0.33 years). They do not take into account the causal relationship between oil spot and futures

prices. This task was tackled more recently by Alzahrani et al. [15] in the first combined study that

mixes wavelet analysis and non-linear causality. Alzahrani et al. [15] find consistent bidirectional

causality between spot and futures oil markets on different time scales.

In order to decompose the daily oil time series (Figure C1; Appendix C) in this work, we have

applied the MODWT with a Daubechies least asymmetric (LA) wavelet filter of length L = 8, commonly

denoted as LA(8) [13,29]. The maximum decomposition level J is given by log2(N) [13,14], which in

this case is J = 8, so the MODWT produces eight wavelet coefficients and one scaling coefficient, that

is, w̃1,t, . . . , w̃8,t and ṽ8,t, respectively.

Note that the level of the transform defines the scale of the respective wavelet coefficients w̃t,j.

In particular, for all families of Daubechies compactly supported wavelets the level j wavelet coefficients

are associated with changes at an effective scale of λj = 2j−1 days (in our case) [23]. Moreover,

the MODWT utilizes approximate ideal bandpass filters with bandpass given by the frequency

interval
[
1/2j+1, 1/2j

)
for scale levels 1 ≤ j ≤ J. Inverting the frequency range and multiplying

by the appropriate time units ∆t (one day in our case) gives the equivalent periods of
(
2j, 2j+1

]
∆t

days for scale levels 1 ≤ j ≤ J [29]. This means that in our case study, with daily data, the scales λj,

j = 1, 2, . . . , 8 (associated with changes of 1, 2, 4, 8, 16, 32, 64 and 128 days) of the wavelet coefficients

are associated with day periods of, respectively, 2–4 (includes most intraweek scales), 4–8 (including

the weekly scale), 8–16 (fortnightly scale), 16–32 (monthly scale), 32–64 (monthly to quarterly scale),

64–128 (quarterly to biannual scale), 128–256 (biannual scale), and 256–512 days (annual scale).

In order to analyze the relationship between spot and long-term futures prices from the crude oil

market time series at different time/period horizons, we compute the wavelet cross-correlation (WCC).

We follow the methodology for computing the wavelet transform (MODWT) and WCC given by

Gencay et al. [13], as implemented in the R package Waveslim [30]. To obtain a graphical interpretation

of wavelet correlation and cross-correlation analysis, we use the R package W2CWM2C [17,31].

The MODWT unbiased estimator of the wavelet correlation for scale λj between two time series

X and Y can be expressed as follows [13]:

ρ̃XY =
cov(W̃X,j,t, W̃Y,j,t)√

var{W̃X,j,t}var{W̃Y,j,t}
=

γ̃XY

(
λj

)

σ̃X

(
λj

)
σ̃Y

(
λj

) (6)

where γ̃XY

(
λj

)
is the unbiased estimator of the wavelet covariance between wavelet coefficients W̃X,j,t

and W̃Y,j,t, and σ̃X

(
λj

)
and σ̃Y

(
λj

)
are the unbiased estimators of the wavelet variances for X and Y

respectively, associated with scale λj. An unbiased estimator of the wavelet variance based on the

MODWT is defined [13] by:

σ̃2
X

(
λj

)
=

1

Ñj

N−1

∑
t = Lj−1

W̃2
j,t (7)
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where {W̃j,t} is the jth level MODWT wavelet coefficients for the time series X,Lj = (2j − 1)(L − 1)+ 1

is the length of scale λj wavelet filter, and Nj = N − Lj + 1 is the number of the coefficients not

affected by the boundary.

The MODWT unbiased estimator of the wavelet cross-correlation for scale λj and lag τ between

two times series X and Y is defined by [13]:

ρ̃XY,τ

(
λj

)
=

cov(W̃X,j,t, W̃Y,j,t+τ)√
var{W̃X,j,t}var{W̃Y,j,t+τ}

=
γ̃XY,τ

(
λj

)

σ̃X

(
λj

)
σ̃Y

(
λj

) (8)

where γ̃XY,τ is the unbiased estimator of the wavelet cross-covariance, and σ̃X

(
λj

)
and σ̃Y

(
λj

)
are the

unbiased estimators of the wavelet variances of X and Y, respectively. Note that the WCC is roughly

analogous to its Fourier counterpart, the magnitude squared coherence, but the WCC is related to

bands of scales (frequencies) [32]. The WCC ρ̃XY,τ

(
λj

)
∈ [−1, 1], and is used to determine lead/lag

relationships between two time series on different scales λj.

The confidence interval for the WCC is based on an extension of the classical result on the Fisher’s

Z-transformation of the correlation coefficient [32]. Thus, an approximate 100(1−2p)% confidence

interval for the WCC is given by tanh{h
[
ρ̃XY

(
λj

)]
± φ−1(1 − p)/

√
Ñj − 3}, where N̂j = Nj −

(L − 2)
(
1 − 2−j

)
, φ−1(p) is the 100p% percentage point for the standard normal distribution, and

h(ρ̃XY) = tanh−1(ρ̃XY) [13,32].

2.4. Nonlinear Causality Tests

Savit [33] argued that financial and commodity markets are dynamical systems that could manifest

nonlinearities, and he also argued that these elude common linear statistical tests (including linear

causality tests). Baek and Brock [34] proposed a nonparametric test for detecting nonlinear causal

relationships based on the correlation integral, which is an estimator of spatial dependence across time.

Later on, Hiemstra and Jones [35] provided an improved version of Baek and Brock [34]. However,

despite the test of Hiemstra and Jones [35] is (probably) the most used nonlinear causality test in

economics and finance (there are others nonlinear causality tests developed to analyze this kind of data,

but these are not commonly used, e.g., Bell et al. [36]; Su and White [37]; among others). However,

it tends to over-reject the null hypothesis if it is true (Diks and Panchenko [16,38]). For this reason,

Diks and Panchenko [16] proposed a new nonparametric and nonlinear Granger causality test to avoid

the over-rejection. In our work, we use the causality test of Diks and Panchenko [16], as implemented

in the C program GCTtest, which is freely available on the Internet [39]. In addition, we use the test

of Toda and Yamamoto [40] only to analyze potential causal relationships in raw data. This test is

implemented in the R language and it is available freely on the web [41].

3. Results and Discussion

The cross-correlation analysis (Figure 4) between long-term futures prices estimated by means of

a stochastic model and spot prices reveals a relatively strong positive correlation that is statistically

significant around lag-0 (r = 0.62) and a right-side asymmetry (other lags are present but are disregarded

due to the difficulty of interpretating them). These features are also found in the cross-correlation

between “last future prices” (the price of the future with the longest maturity period on that day) and

spot prices, although the correlation coefficient around lag-0 is a little larger (r = 0.71) than the one

when the stochastic model is used to compute the futures. Cross-correlation is a useful statistical tool

for looking for correlation between two time series. However, due to the fact that correlation does not

necessarily imply causation, it is not the best tool for analyzing potential cause-effect relationships.

That is why we apply a non-linear causality test (Tables 4 and 5) to the raw data and log-returns.

The test reveals that there is a bidirectional causality effect between the futures (both modeled and

not modeled) and spot prices for log-returns, although for the case of raw data the causality is
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unidirectional—from futures to spot prices. Our results are in accordance with several other papers

(Silvapulle & Moosa [3]; Bekiros and Diks [6]; Alzahrani et al. [15], among others), although in those

publications the authors use futures contracts with different maturities (one, two, three, four and

six months) instead of long-term futures obtained by a stochastic model and they used other different

kinds of causality tests.

 

 

Figure 4. Cross-correlation between long-term futures prices estimated by a stochastic model and spot

prices (top), and futures prices obtained as the longest maturity on that day and spot prices (bottom).
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Table 4. Non-linear Granger causality test between long-term futures prices estimated by a stochastic

model and spot prices.

(a) Futures Do Not Cause Spot Prices

Raw Data Log Returns

Wald Statistics p-Value T Statistics p-Value

20.1 0.0027 *** 3.609 0.0001 ***

(b) Spot Does Not Cause Futures Prices

Raw Data Log Returns

Wald Statistics p-Value T Statistics p-Value

6.4 0.38 3.758 0.0000 ***

Embedding dimension = 1. Bandwidth = 1

Note: *** indicates statistical significance at the 1% level.

Table 5. Non-linear Granger causality test between futures prices obtained as the longest maturity on

that day and spot prices.

(a) Futures Do Not Cause Spot Prices

Raw Data Log Returns

Wald Statistics p-Value T Statistics p-Value

34.7 0.0000 *** 5.219 0.0000 ***

(b) Spot Does Not Cause Futures Prices

Raw Data Log Returns

Wald Statistics p-Value T Statistics p-Value

5.4 0.50 4.693 0.0000 ***

Embedding dimension = 1. Bandwidth = 1

Note: *** indicates statistical significance at the 10%, 5% and 1% levels.

The wavelet cross-correlation between long-term futures prices estimated by a stochastic model

and spot prices (Figure 5) shows a high degree of correlation (from 0.46 to 0.76) for all the wavelet

scales except for scale six (we so not discuss the results for this scale because there are few statistically

significant wavelet correlation coefficients), where the correlation is relatively low (0.30). The maximum

wavelet correlations for the first four wavelet scales (from intra-week to monthly scale) take place at

lag-0, indicating that futures (spots) do not lead or lag spots (futures). At this point it is important

to note that for wavelet scale four and for the price of the future with the longest maturity on that

day (Figure 5) the wavelet correlation values show an asymmetry with respect to lag-0 (the maximum

correlation takes place at lag-1). This means that futures lead spot prices on a monthly scale. Indeed,

there are other wavelet scales (from 5 to 8, for both modeled and non-modeled futures (Figure 5)) that

show asymmetries one with another. However, the most noticeable asymmetry appears in scale seven

(biannual scale), which can be interpreted as one leading to the other but it cannot be determined

which is the leader. Furthermore, one should be cautions when applying the wavelet cross-correlation

methodology because although it does give a clue to potential lead-lag relationships it does not include

an estimation of causality. For this reason, it is necessary to apply some sort of causality test to the

wavelet decomposition of the time series under analysis to corroborate these guesses—these analyses

are presented and discussed in the following paragraphs.
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Figure 5. Wavelet cross-correlation for the long-term futures prices estimated by a stochastic model

and spot prices (top) and futures prices obtained as the longest maturity on that day and spot

prices (bottom).

Table 6 provides the non-linear Granger causality test between the (modeled and not modeled)

futures and spot prices for the MODWT decomposition of this data set. The first noteworthy result is

that 4 wavelet scales (one, two, three, and seven) out of 8 show bidirectional causality (note that for

scales six and eight—modeled future prices—the number of wavelet coefficients is too low to run the

causality test properly; Figure C1, Appendix C). These wavelet scales are related to day-periods that

range from intraweek to fortnightly, and one longer scale (seven) which is associated with a biannual

day-period. These results are robust due to the fact that bidirectional causality is found for both futures

(the price of the future with the longest maturity on that day and the futures prices obtained by means

of the stochastic model). On the other hand, there exists a unidirectional causality in the scales four

(monthly scale) and five (monthly and quarterly scale), running from futures (both modeled and not

modeled) to spot prices and from spot to futures (both modeled and not modeled) prices, respectively.

These means that for monthly scale, futures lead spot prices whereas for monthly and quarterly scales

spots prices lead futures (both modeled and not modeled)
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Table 6. Non-linear Granger causality test (MODWT decomposition).

(a) Futures * Do Not Cause Spot Prices Spot Prices Do Not Cause Futures *

Wavelet Scale T Statistics p-Value T Statistics p-Value

1 2.747 0.0030 2.637 0.0042
2 3.245 0.0006 1.996 0.0229
3 2.777 0.0027 2.359 0.0092
4 2.806 0.0025 1.501 0.0667
5 0.961 0.1683 2.546 0.0054
6 1.899 0.0288 1.017 0.1545
7 2.025 0.0214 1.914 0.0278
8 1.746 0.0404 3.520 0.0002

(b) Futures* Do Not Cause Spot Prices Spot Prices Do Not Cause Futures *

Wavelet Scale T Statistics p-Value T Statistics p-Value

1 3.672 0.0001 3.050 0.0011
2 3.926 0.0000 1.658 0.0486
3 3.255 0.0006 2.900 0.0019
4 2.939 0.0016 1.205 0.1141
5 1.507 0.0659 2.127 0.0167
6 1.566 0.0587 1.192 0.1166
7 1.766 0.0387 2.417 0.0078
8 −1.590 0.9441 3.196 0.0007

Note:* indicates Long-Term Futures Obtained by the Stochastic Model.

Our causality test results between the futures and spot prices are in fairly close agreement with

Alzahrani et al. [15], although our sample is larger than that analyzed by Alzahrani et al. (we use

24 February 2006–2 April 2016 and they use 20 February 2003–19 April 2011) and the causality tests are

not exactly the same. We use the test proposed by Diks and Panchenko [16] whereas Alzahrani et al. use

a modified version of the test proposed by Baek and Brock [34]. Alzahrani et al. [15], unlike our work,

find bidirectional causality for all wavelet scales (from one to eight). However, Alzahrani et al. [15]

apply the causality test to the residuals of the VAR models fitted to the future and spot prices and

use daily future prices as well as futures contracts with different maturity periods (one, two, three,

and four months). On the other hand, the nonlinear causality test used by Alzahrani et al. tends to

detect causality too often (Shu and Zhang [42]) and ours is a little conservative (Wolski and Diks [43],

Chiou-Wei et al. [44]). Therefore, we do not expect our results to be identical to those of [15].

The bidirectional causality in the wavelet decomposition of crude oil futures and spot prices

suggests that spot and futures prices react concurrently to new information, i.e., neither market leads

the other in terms of price discovery, at least for intraweek, weekly, fortnightly, and biannual scales.

Thus, there is no arbitrage opportunity between these markets for these time horizons. The most

plausible explanation for why we find a not bidirectional causality between futures and spot prices

for the monthly and quarterly scales may be that for the monthly scale nonlinear arbitrage activity

(e.g., structural breaks, regime shifts between backwardation and contango, extreme volatility, etc.

such as was suggested by diverse authors e.g., Wang and Wu [45]; Savit [33]; Wilson et al. [46]; among

others. As we can see, all these characteristics can be observed in Figures 3 and D1 and Table 3) is

very low and the change in fundamentals supporting market condition switching is not completed

within a one month period. That is, the effects of these factors which can result in the nonlinearity

explanation for why oil market are weaker (Wang and Wu [45]), and for this reason the non-linear

Granger causality test is not able to detect bidirectional causalities for the monthly and quarterly scales.

4. Conclusions

The crude oil spot price is a fundamental variable for the worldwide economy, and the WTI Spot

price is one of the most widely used indexes. No less important are crude oil futures prices. It is well
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known that both prices are affected by fundamental and transitory factors. One fundamental factor is

tight production, while transitory factors such as periods of very cold weather can mainly affect spot

prices. Many energy intensive sectors such as transport, refineries, energy-intensive industries and

others use the spot and futures prices to make decisions on production and/or investment. Therefore,

both spot and futures prices and indeed the interrelationship between them are relevant for the

economy. For instance, the lead-lag relationship between crude oil spot and futures markets is a

debatable issue, as can be corroborated in the many publications on this topic since the seminal 1999

paper by Silvapulle and Moosa [3].

In this paper we propose for the first time the use of a stochastic model (Abadie and Chamorro [18])

to estimate long-term futures in order to study the relationships between futures and spot prices for

different time-scales (short, medium, and long-term scales) using a novel wavelet correlation graphical

tool (Polanco-Martínez and Fernández-Macho [17]) and a nonlinear causality test. In order to obtain

the long-term future prices, which are a fundamental variable for investment decisions, we calibrate a

stochastic model of crude oil prices using market quotes.

Our findings suggest that for the period studied (from 24 February 2006–2 April 2016) the spot and

long-term futures prices show bidirectional causality for intraweek, weekly, fortnightly, and biannual

scales, thus indicating that the two markets react simultaneously to new information on those time

scales. On the other hand, for monthly scale futures lead spot prices whereas for monthly-quaterly

scale spots pries lead futures. Our results confirm quite well the findings of Silvapulle and Moosa [3];

Bekiros and Diks [6]; Alzahrani et al. [15]; Chang and Lee [12], but we highlight the use of a stochastic

model to obtain long-term futures prices.
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Appendix A

The first work with crude oil stochastic diffusion models was done using a geometric

Brownian motion model (GBM), e.g., in the cases of Brennan and Schwartz [47] and McDonald

and Siegel [48]. Almost all later one factor stochastic diffusion models were mean-reverting, e.g.,

the Ornstein–Uhlenbeck process used by Bjerksund and Ekern [49]. More sophisticated two- and

three-factor diffusion models can be found in Schwartz [50], Pilipovic [51], Abadie and Chamorro [52],

Abadie et al. [53], among others.

The crude oil price behavior in the risk-neutral word (this is the futures market case) is assumed

to evolve in accordance with Equation (A1):

dSt = [k(Sm − St)− λSt]dt + σStdW (A1)

In this equation Sm is the long-term equilibrium value towards which St tends to revert in the

long-term, k is the speed of reversion that determines how the expected value of St approximates in

time to the long-term equilibrium value Sm, σ is the volatility, dW = ε(t)
√

dt is the increment of a

Wiener process with ε(t):N(0, 1) and λ is the market price of risk.

The Equation (A2) can be used with the future with the nearest maturity denoted by T1 to estimate

the future price with maturity T2:
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F(t, T2) =
kSm

k + λ
+ [F(t, T1)−

kSm

k + λ
]e−(k+λ)(T2−T1) (A2)

This Equation (A2) enables estimates for each day to be drawn up for the values k + λ and kSm
k+λ .

Initially we calculate k + λ and S* for each day using nonlinear least squares, which results

in 2571 values of each parameter. Table A1 shows the quotes and the estimated parameters for

2 April 2016, the last day of the sample.

Table A1. Parameter Values 2 April 2016.

Parameter Value

S0 ($/barrel) 31.63
Nearest Future: F(0, T1) ($/barrel) 31.72
Last Future: F(0, T106) ($/barrel) 51.87

K + λ 0.6824
S∗ ($/barrel) 49.94

σ 0.389

We are interested in the time-series S∗
t , initially we obtain this time-series S∗

t , but there are some

outliers, so we refine it using the procedure described in Appendix B.

Given a time series of crude oil spot prices (WTI) St at intervals ∆t it is possible to calculate the

return as in Equation (A3):

Rt =
St+∆t − St

St
(A3)

or as follows:

Rt = ln(
St+∆t

St
) (A4)

Historical volatility can be calculated using Formula (A5):

σ∆t =

√√√√ 1

∆t(n − 1)

k = n

∑
k = 1

(Rt − R) (A5)

It is customary to work with annualized volatility figures, so the conversion in formula (A6) is

carried out:

σ =
σ∆t√

∆t
(A6)

To obtain the annualized volatility σ Equation (A7) is used:

σ = σ∆t

√
252 (A7)

where 252 is the number of trading days. Using spot price data from 24 February 2006 to 2 April 2016,

this method can be used to calculate σ, which works out at 0.3887.

Appendix B

The following procedure is based on Abadie and Chamorro [54]. We have the futures contracts

prices Lt with the longest maturity for each day. Assuming that these prices behave according to a

mean-reverting process as in Equation (B1):

dLt = θ(L − Lt)dt + ωLtdWL (B1)

where L* is the long-term equilibrium value towards which Lt tends to revert in the long-term, θ is the

speed of reversion that determines how the expected value of Lt approximates in time to the long-term
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equilibrium value L*, ω is the volatility and dWL = εL(t)
√

dt is the increment of a standard Wiener

process with εL(t):N(0, 1).

Equation (B1) can be put in terms of differences, which gives Equation (B2):

Lt+∆t − Lt

Lt
= −θ∆t + θL∆t

1

Lt
+ ω

√
∆tε4

t (B2)

With Equation (B2) we calculate the volatility and obtain ω = 0.2028. We accept the original

time-series values in interval of Equation (B3):

−3ω√
252

≤
S∗

t+∆ − S∗
t

S∗
t

≤ +3ω√
252

(B3)

For the outliers we replace the original S∗
t+∆ by the Lt+∆t + last spread value, with the last spread

being the difference on the same day between the last long-term equilibrium price calculated and the

future price of with the longest maturity.

Appendix C

 

 
Figure C1. Cont.
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Figure C1. MODWT decomposition for the futures estimated by a stochastic model (top), futures

obtained as the longest maturity (middle) and spot prices (bottom). The wavelet coefficient vectors,

d1, d2, . . . , d8 are associated with variations on scales of 1, 2, 1024 days.

Appendix D

 

 

Figure D1. Cont.
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Figure D1. Significant structural breaks for the spot (top), futures estimated by a stochastic model

(middle), futures obtained as the longest maturity (bottom), which were estimated by the change point

method (Zeileis et al. 2003; 2015 [55,56]). Red bars indicate the confidence interval (95%) for each

change point (dashed lines).
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