
Analyzing CUDA Workloads Using a Detailed GPU Simulator

Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong and Tor M. Aamodt
University of British Columbia,

Vancouver, BC, Canada
{bakhoda,gyuan,wwlfung,henryw,aamodt}@ece.ubc.ca

Abstract
Modern Graphic Processing Units (GPUs) provide suffi-

ciently flexible programming models that understanding their
performance can provide insight in designing tomorrow’s
manycore processors, whether those are GPUs or other-
wise. The combination of multiple, multithreaded, SIMD cores
makes studying these GPUs useful in understanding trade-
offs among memory, data, and thread level parallelism. While
modern GPUs offer orders of magnitude more raw comput-
ing power than contemporary CPUs, many important ap-
plications, even those with abundant data level parallelism,
do not achieve peak performance. This paper characterizes
several non-graphics applications written in NVIDIA’s CUDA
programming model by running them on a novel detailed
microarchitecture performance simulator that runs NVIDIA’s
parallel thread execution (PTX) virtual instruction set. For
this study, we selected twelve non-trivial CUDA applications
demonstrating varying levels of performance improvement on
GPU hardware (versus a CPU-only sequential version of
the application). We study the performance of these applica-
tions on our GPU performance simulator with configurations
comparable to contemporary high-end graphics cards. We
characterize the performance impact of several microarchitec-
ture design choices including choice of interconnect topology,
use of caches, design of memory controller, parallel work-
load distribution mechanisms, and memory request coalescing
hardware. Two observations we make are (1) that for the appli-
cations we study, performance is more sensitive to interconnect
bisection bandwidth rather than latency, and (2) that, for some
applications, running fewer threads concurrently than on-chip
resources might otherwise allow can improve performance by
reducing contention in the memory system.

1. Introduction
While single-thread performance of commercial superscalar

microprocessors is still increasing, a clear trend today is for
computer manufacturers to provide multithreaded hardware
that strongly encourages software developers to provide ex-
plicit parallelism when possible. One important class of paral-
lel computer hardware is the modern graphics processing unit
(GPU) [22,25]. With contemporary GPUs recently crossing the
teraflop barrier [2,34] and specific efforts to make GPUs easier
to program for non-graphics applications [1, 29, 33], there is

widespread interest in using GPU hardware to accelerate non-
graphics applications.

Since its introduction by NVIDIA Corporation in February
2007, the CUDA programming model [29,33] has been used to
develop many applications for GPUs. CUDA provides an easy
to learn extension of the ANSI C language. The programmer
specifies parallel threads, each of which runs scalar code.
While short vector data types are available, their use by the
programmer is not required to achieve peak performance, thus
making CUDA a more attractive programming model to those
less familiar with traditional data parallel architectures. This
execution model has been dubbed a single instruction, multiple
thread (SIMT) model [22] to distinguish it from the more
traditional single instruction, multiple data (SIMD) model.
As of February 2009, NVIDIA has listed 209 third-party
applications on their CUDA Zone website [30]. Of the 136
applications listed with performance claims, 52 are reported to
obtain a speedup of 50× or more, and of these 29 are reported
to obtain a speedup of 100× or more. As these applications
already achieve tremendous benefits, this paper instead focuses
on evaluating CUDA applications with reported speedups
below 50× since this group of applications appears most in
need of software tuning or changes to hardware design.

This paper makes the following contributions:
• It presents data characterizing the performance of twelve

existing CUDA applications collected on a research GPU
simulator (GPGPU-Sim).

• It shows that the non-graphics applications we study
tend to be more sensitive to bisection bandwidth versus
latency.

• It shows that, for certain applications, decreasing the
number of threads running concurrently on the hardware
can improve performance by reducing contention for on-
chip resources.

• It provides an analysis of application characteristics in-
cluding the dynamic instruction mix, SIMD warp branch
divergence properties, and DRAM locality characteristics.

We believe the observations made in this paper will provide
useful guidance for directing future architecture and software
research.

The rest of this paper is organized as follows. In Section 2
we describe our baseline architecture and the microarchitecture
design choices that we explore before describing our simu-
lation infrastructure and the benchmarks used in this study.



DRAM DRAM DRAM

Memory
Controller

Memory
Controller

Memory
Controller

Memory

Application
Custom
libcuda

GPGPU-Sim

CPU Shader Cores

kernel
PTX code

cudaMemcpy

Statistics
Interconnection Network

Core Core Core Core Core Core

L2 L2 L2

(a) Overview

RF RF RF RF

Fetch

Decode

Writeback

local/global access
(or L1 miss); texture 
or const cache miss

All threads
hit in L1?

To interconnect

MSHRs

Thread Warp

Thread Warp

Thread Warp

Thread Warp

Thread Warp

Data

Scheduler

SIMD
Pipeline

Shader Core

Shared
Mem.

L1 
const

L1 
local&
global

L1 
tex

(b) Detail of Shader Core

Figure 1. Modeled system and GPU architecture [11]. Dashed portions (L1 and L2 for local/global accesses) omitted from baseline.

Our experimental methodology is described in Section 3 and
Section 4 presents and analyzes results. Section 5 reviews
related work and Section 6 concludes the paper.

2. Design and Implementation
In this section we describe the GPU architecture we simu-

lated, provide an overview of our simulator infrastructure and
then describe the benchmarks we selected for our study.

2.1. Baseline Architecture

Figure 1(a) shows an overview of the system we simulated.
The applications evaluated in this paper were written using
CUDA [29, 33]. In the CUDA programming model, the GPU
is treated as a co-processor onto which an application running
on a CPU can launch a massively parallel compute kernel. The
kernel is comprised of a grid of scalar threads. Each thread is
given an unique identifier which can be used to help divide up
work among the threads. Within a grid, threads are grouped
into blocks, which are also referred to as cooperative thread
arrays (CTAs) [22]. Within a single CTA threads have access
to a common fast memory called the shared memory and can,
if desired, perform barrier synchronizations.

Figure 1(a) also shows our baseline GPU architecture. The
GPU consists of a collection of small data-parallel compute
cores, labeled shader cores in Figure 1, connected by an
interconnection network to multiple memory modules (each
labeled memory controller). Each shader core is a unit similar
in scope to a streaming multiprocessor (SM) in NVIDIA
terminology [33]. Threads are distributed to shader cores at
the granularity of entire CTAs, while per-CTA resources, such
as registers, shared memory space, and thread slots, are not
freed until all threads within a CTA have completed execution.
If resources permit, multiple CTAs can be assigned to a
single shader core, thus sharing a common pipeline for their

execution. Our simulator omits graphics specific hardware not
exposed to CUDA.

Figure 1(b) shows the detailed implementation of a single
shader core. In this paper, each shader core has a SIMD
width of 8 and uses a 24-stage, in-order pipeline without
forwarding. The 24-stage pipeline is motivated by details in the
CUDA Programming Guide [33], which indicates that at least
192 active threads are needed to avoid stalling for true data
dependencies between consecutive instructions from a single
thread (in the absence of long latency memory operations).
We model this pipeline with six logical pipeline stages (fetch,
decode, execute, memory1, memory2, writeback) with super-
pipelining of degree 4 (memory1 is an empty stage in our
model). Threads are scheduled to the SIMD pipeline in a fixed
group of 32 threads called a warp [22]. All 32 threads in a
given warp execute the same instruction with different data
values over four consecutive clock cycles in all pipelines (the
SIMD cores are effectively 8-wide). We use the immediate
post-dominator reconvergence mechanism described in [11] to
handle branch divergence where some scalar threads within a
warp evaluate a branch as “taken” and others evaluate it as
“not taken”.

Threads running on the GPU in the CUDA programming
model have access to several memory regions (global, local,
constant, texture, and shared [33]) and our simulator models
accesses to each of these memory spaces. In particular, each
shader core has access to a 16KB low latency, highly-banked
per-core shared memory; to global texture memory with a per-
core texture cache; and to global constant memory with a
per-core constant cache. Local and global memory accesses
always require off chip memory accesses in our baseline
configuration. For the per-core texture cache, we implement
a 4D blocking address scheme as described in [14], which
essentially permutes the bits in requested addresses to promote



Shader Core

Memory Controller

Figure 2. Layout of memory controller nodes in mesh3

spatial locality in a 2D space rather than in linear space. For
the constant cache, we allow single cycle access as long as all
threads in a warp are requesting the same data. Otherwise, a
port conflict occurs, forcing data to be sent out over multiple
cycles and resulting in pipeline stalls [33]. Multiple memory
accesses from threads within a single warp to a localized
region are coalesced into fewer wide memory accesses to im-
prove DRAM efficiency1. To alleviate the DRAM bandwidth
bottleneck that many applications face, a common technique
used by CUDA programmers is to load frequently accessed
data into the fast on-chip shared memory [40].

Thread scheduling inside a shader core is performed with
zero overhead on a fine-grained basis. Every 4 cycles, warps
ready for execution are selected by the warp scheduler and
issued to the SIMD pipelines in a loose round robin fashion
that skips non-ready warps, such as those waiting on global
memory accesses. In other words, whenever any thread inside
a warp faces a long latency operation, all the threads in the
warp are taken out of the scheduling pool until the long
latency operation is over. Meanwhile, other warps that are
not waiting are sent to the pipeline for execution in a round
robin order. The many threads running on each shader core
thus allow a shader core to tolerate long latency operations
without reducing throughput.

In order to access global memory, memory requests must
be sent via an interconnection network to the corresponding
memory controllers, which are physically distributed over
the chip. To avoid protocol deadlock, we model physically
separate send and receive interconnection networks. Using
separate logical networks to break protocol deadlock is another
alternative, but one we did not explore. Each on-chip memory
controller then interfaces to two off-chip GDDR3 DRAM
chips2. Figure 2 shows the physical layout of the memory
controllers in our 6x6 mesh configuration as shaded areas3.
The address decoding scheme is designed in a way such
that successive 2KB DRAM pages [19] are distributed across
different banks and different chips to maximize row locality
while spreading the load among the memory controllers.

1. When memory accesses within a warp cannot be coalesced into a single
memory access, the memory stage will stall until all memory accesses are
issued from the shader core. In our design, the shader core can issue a
maximum of 1 access every 2 cycles.

2. GDDR3 stands for Graphics Double Data Rate 3 [19]. Graphics DRAM
is typically optimized to provide higher peak data bandwidth.

3. Note that with area-array (i.e., “flip-chip”) designs it is possible to place
I/O buffers anywhere on the die [6].

2.2. GPU Architectural Exploration

This section describes some of the GPU architectural design
options explored in this paper. Evaluations of these design
options are presented in Section 4.

2.2.1. Interconnect. The on-chip interconnection network can
be designed in various ways based on its cost and performance.
Cost is determined by complexity and number of routers as
well as density and length of wires. Performance depends on
latency, bandwidth and path diversity of the network [9]. (Path
diversity indicates the number of routes a message can take
from the source to the destination.)

Butterfly networks offer minimal hop count for a given
router radix while having no path diversity and requiring very
long wires. A crossbar interconnect can be seen as a 1-stage
butterfly and scales quadratically in area as the number of
ports increase. A 2D torus interconnect can be implemented
on chip with nearly uniformly short wires and offers good path
diversity, which can lead to a more load balanced network.
Ring and mesh interconnects are both special types of torus
interconnects. The main drawback of a mesh network is its
relatively higher latency due to a larger hop count. As we
will show in Section 4, our benchmarks are not particularly
sensitive to latency so we chose a mesh network as our
baseline while exploring the other choices for interconnect
topology.

2.2.2. CTA distribution. GPUs can use the abundance of par-
allelism in data-parallel applications to tolerate memory access
latency by interleaving the execution of warps. These warps
may either be from the same CTA or from different CTAs
running on the same shader core. One advantage of running
multiple smaller CTAs on a shader core rather than using a
single larger CTA relates to the use of barrier synchronization
points within a CTA [40]. Threads from one CTA can make
progress while threads from another CTA are waiting at a
barrier. For a given number of threads per CTA, allowing more
CTAs to run on a shader core provides additional memory
latency tolerance, though it may imply increasing register
and shared memory resource use. However, even if sufficient
on-chip resources exist to allow more CTAs per core, if a
compute kernel is memory-intensive, completely filling up all
CTA slots may reduce performance by increasing contention in
the interconnection network and DRAM controllers. We issue
CTAs in a breadth-first manner across shader cores, selecting
a shader core that has a minimum number of CTAs running on
it, so as to spread the workload as evenly as possible among
all cores.

2.2.3. Memory Access Coalescing. The minimum granularity
access for GDDR3 memory is 16 bytes and typically scalar
threads in CUDA applications access 4 bytes per scalar
thread [19]. To improve memory system efficiency, it thus
makes sense to group accesses from multiple, concurrently-
issued, scalar threads into a single access to a small, contigu-
ous memory region. The CUDA programming guide indicates
that parallel memory accesses from every half-warp of 16



NVIDIA
GPU

cudafe + nvopencc

C/C++ compiler

ptxas

Tool

File

Nvidia Toolkit

GPGPU-Sim

User-specific
tool/file

Source code
(.cu)

Host C
code

Executable

PCI-E

.ptx

cubin.bin
libcuda.a

libcuda

Source code
(.cpp)

Application

(a) CUDA Flow with GPU Hardware

GPGPU-Sim

cudafe + nvopencc

C/C++ compiler

Executable

.ptx

Custom
libcuda.a

Custom
libcuda Statistics

Function
call

ptxas

per thread 
register
usage

Source code
(.cu)

Source code
(.cpp)

Application

Host C
code

(b) GPGPU-Sim

Figure 3. Compilation Flow for GPGPU-Sim from a CUDA application in comparison to the normal CUDA compilation flow.

threads can be coalesced into fewer wide memory accesses if
they all access a contiguous memory region [33]. Our baseline
models similar intra-warp memory coalescing behavior (we
attempt to coalesce memory accesses from all 32 threads in a
warp).

A related issue is that since the GPU is heavily multi-
threaded a balanced design must support many outstanding
memory requests at once. While microprocessors typically
employ miss-status holding registers (MSHRs) [21] that use
associative comparison logic merge simultaneous requests for
the same cache block, the number of outstanding misses that
can be supported is typically small (e.g., the original Intel
Pentium 4 used four MSHRs [16]). One way to support a
far greater number of outstanding memory requests is to use
a FIFO for outstanding memory requests [17]. Similarly, our
baseline does not attempt to eliminate multiple requests for
the same block of memory on cache misses or local/global
memory accesses. However, we also explore the possibility of
improving performance by coalescing read memory requests
from later warps that require access to data for which a mem-
ory request is already in progress due to another warp running
on the same shader core. We call this inter-warp memory
coalescing. We observe that inter-warp memory coalescing
can significantly reduce memory traffic for applications that
contain data dependent accesses to memory. The data for
inter-warp merging quantifies the benefit of supporting large
capacity MSHRs that can detect a secondary access to an
outstanding request [45].

2.2.4. Caching. While coalescing memory requests captures
spatial locality among threads, memory bandwidth require-
ments may be further reduced with caching if an application
contains temporal locality or spatial locality within the access
pattern of individual threads. We evaluate the performance
impact of adding first level, per-core L1 caches for local and
global memory access to the design described in Section 2.1.
We also evaluate the effects of adding a shared L2 cache
on the memory side of the interconnection network at the

memory controller. While threads can only read from texture
and constant memory, they can both read and write to local
and global memory. In our evaluation of caches for local and
global memory we model non-coherent caches. (Note that
threads from different CTAs in the applications we study do
not communicate through global memory.)

2.3. Extending GPGPU-Sim to Support CUDA

We extended GPGPU-Sim, the cycle-accurate simulator we
developed for our earlier work [11]. GPGPU-Sim models
various aspects of a massively parallel architecture with highly
programmable pipelines similar to contemporary GPU archi-
tectures. A drawback of the previous version of GPGPU-
Sim was the difficult and time-consuming process of convert-
ing/parallelizing existing applications [11]. We overcome this
difficulty by extending GPGPU-Sim to support the CUDA
Parallel Thread Execution (PTX) [35] instruction set. This
enables us to simulate the numerous existing, optimized
CUDA applications on GPGPU-Sim. Our current simulator
infrastructure runs CUDA applications without source code
modifications on Linux based platforms, but does require
access to the application’s source code. To build a CUDA
application for our simulator, we replace the common.mk
makefile used in the CUDA SDK with a version that builds the
application to run on our microarchitecture simulator (while
other more complex build scenarios may require more complex
makefile changes).

Figure 3 shows how a CUDA application can be compiled
for simulation on GPGPU-Sim and compares this compila-
tion flow to the normal CUDA compilation flow [33]. Both
compilation flows use cudafe to transform the source code of
a CUDA application into host C code running on the CPU
and device C code running on the GPU. The GPU C code is
then compiled into PTX assembly (labeled “.ptx” in Figure 3)
by nvopencc, an open source compiler provided by NVIDIA
based on Open64 [28, 36]. The PTX assembler (ptxas) then
assembles the PTX assembly code into the target GPU’s native



ISA (labeled “cubin.bin” in Figure 3(a)). The assembled code
is then combined with the host C code and compiled into a
single executable linked with the CUDA Runtime API library
(labeled “libcuda.a” in Figure 3) by a standard C compiler. In
the normal CUDA compilation flow (used with NVIDIA GPU
hardware), the resulting executable calls the CUDA Runtime
API to set up and invoke compute kernels onto the GPU via
the NVIDIA CUDA driver.

When a CUDA application is compiled to use GPGPU-Sim,
many steps remain the same. However, rather than linking
against the NVIDIA supplied libcuda.a binary, we link against
our own libcuda.a binary. Our libcuda.a implements “stub”
functions for the interface defined by the header files supplied
with CUDA. These stub functions set up and invoke simulation
sessions of the compute kernels on GPGPU-Sim (as shown
in Figure 3(b)). Before the first simulation session, GPGPU-
Sim parses the text format PTX assembly code generated by
nvopencc to obtain code for the compute kernels. Because
the PTX assembly code has no restriction on register usage
(to improve portability between different GPU architectures),
nvopencc performs register allocation using far more registers
than typically required to avoid spilling. To improve the
realism of our performance model, we determine the register
usage per thread and shared memory used per CTA using
ptxas4. We then use this information to limit the number
of CTAs that can run concurrently on a shader core. The
GPU binary (cubin.bin) produced by ptxas is not used by
GPGPU-Sim. After parsing the PTX assembly code, but before
beginning simulation, GPGPU-Sim performs an immediate
post-dominator analysis on each kernel to annotate branch
instructions with reconvergence points for the stack-based
SIMD control flow handling mechanism described by Fung
et al. [11]. During a simulation, a PTX functional simulator
executes instructions from multiple threads according to their
scheduling order as specified by the performance simulator.
When the simulation completes, the host CPU code is then
allowed to resume execution. In our current implementation,
host code runs on a normal CPU, thus our performance
measurements are for the GPU code only.

2.4. Benchmarks

Our benchmarks are listed in Table 1 along with the main
application properties, such as the organization of threads into
CTAs and grids as well as the different memory spaces on the
GPU exploited by each application. Multiple entries separated
by semi-colons in the grid and CTA dimensions indicate the
application runs multiple kernels.

For comparison purposes we also simulated the following
benchmarks from NVIDIA’s CUDA software development
kit (SDK) [32]: Black-Scholes Option Pricing, Fast Walsh

4. By default, the version of ptxas in CUDA 1.1 appears to attempt to avoid
spilling registers provided the number of registers per thread is less than 128
and none of the applications we studied reached this limit. Directing ptxas to
further restrict the number of registers leads to an increase in local memory
usage above that explicitly used in the PTX assembly, while increasing the
register limit does not increase the number of registers used.

Transform, Binomial Option Pricing, Separable Convolution,
64-bin Histogram, Matrix Multiply, Parallel Reduction, Scalar
Product, Scan of Large Arrays, and Matrix Transpose. Due to
space limitations, and since most of these benchmarks already
perform well on GPUs, we only report details for Black-
Scholes (BLK), a financial options pricing application, and
Fast Walsh Transform (FWT), widely used in signal and image
processing and compression. We also report the harmonic
mean of all SDK applications simulated, denoted as SDK in
the data bar charts in Section 4.

Below, we describe the CUDA applications not in the SDK
that we use as benchmarks in our study. These applications
were developed by the researchers cited below and run un-
modified on our simulator.

AES Encryption (AES) [24] This application, developed
by Manavski [24], implements the Advanced Encryption Stan-
dard (AES) algorithm in CUDA to encrypt and decrypt files.
The application has been optimized by the developer so that
constants are stored in constant memory, the expanded key
stored in texture memory, and the input data processed in
shared memory. We encrypt a 256KB picture using 128-bit
encryption.

Graph Algorithm: Breadth-First Search (BFS) [15]
Developed by Harish and Narayanan [15], this application
performs breadth-first search on a graph. As each node in
the graph is mapped to a different thread, the amount of
parallelism in this applications scales with the size of the input
graph. BFS suffers from performance loss due to heavy global
memory traffic and branch divergence. We perform breadth-
first search on a random graph with 65,536 nodes and an
average of 6 edges per node.

Coulombic Potential (CP) [18,41] CP is part of the Parboil
Benchmark suite developed by the IMPACT research group at
UIUC [18,41]. CP is useful in the field of molecular dynamics.
Loops are manually unrolled to reduce loop overheads and
the point charge data is stored in constant memory to take
advantage of caching. CP has been heavily optimized (it
has been shown to achieve a 647× speedup versus a CPU
version [40]). We simulate 200 atoms on a grid size of
256×256.

gpuDG (DG) [46] gpuDG is a discontinuous Galerkin
time-domain solver, used in the field of electromagnetics to
calculate radar scattering from 3D objects and analyze wave
guides, particle accelerators, and EM compatibility [46]. Data
is loaded into shared memory from texture memory. The inner
loop consists mainly of matrix-vector products. We use the 3D
version with polynomial order of N=6 and reduce time steps
to 2 to reduce simulation time.

3D Laplace Solver (LPS) [12] Laplace is a highly parallel
finance application [12]. As well as using shared memory, care
was taken by the application developer to ensure coalesced
global memory accesses. We observe that this benchmark
suffers some performance loss due to branch divergence. We
run one iteration on a 100x100x100 grid.

LIBOR Monte Carlo (LIB) [13] LIBOR performs Monte



Table 1. Benchmark Properties

Benchmark Abr. Grid CTA Concurrent Total Instruction Shared Constant Texture Barriers?
Dimensions Dimensions CTAs/core Threads Count Memory? Memory? Memory?

AES Cryptography [24] AES (257,1,1) (256,1,1) 2 65792 28M Yes Yes 1D Yes
Graph Algorithm: BFS (128,1,1) (512,1,1) 4 65536 17M No No No No
Breadth First Search [15]
Coulombic Potential [18, 41] CP (8,32,1) (16,8,1) 8 32768 126M No Yes No No
gpuDG [46] DG (268,1,1); (84,1,1); 5 22512; 596M Yes No 1D Yes

(268,1,1); (112,1,1); 6 30016; Yes
(603,1,1) (256,1,1) 4 154368 No

3D Laplace Solver [12] LPS (4,25,1) (32,4,1) 6 12800 82M Yes No No Yes
LIBOR Monte Carlo [13] LIB (64,1,1) (64,1,1) 8 4096 907M No Yes No No
MUMmerGPU [42] MUM (782,1,1) (64,1,1) 3 50000 77M No No 2D No
Neural Network NN (6,28,1); (13,13,1); 5 28392; 68M No No No No
Digit Recognition [5] (50,28,1); (5,5,1); 8 35000; No

(100,28,1); (1,1,1); 8 2800; No
(10,28,1) (1,1,1) 8 280 No

N-Queens Solver [37] NQU (223,1,1) (96,1,1) 1 21408 2M Yes No No Yes
Ray Tracing [26] RAY (16,32,1) (16,8,1) 3 65536 71M No Yes No Yes
StoreGPU [4] STO (384,1,1) (128,1,1) 1 49152 134M Yes No No No
Weather Prediction [27] WP (9,8,1) (8,8,1) 3 4608 215M No No No No
Black-Scholes BLK (256,1,1) (256,1,1) 3 65536 236M No No No No
option pricing [32]
Fast Walsh Transform [32] FWT (512,1,1); (256,1,1); 4 131072; 240M Yes No No Yes

(256,1,1); (512,1,1) 2 131072 Yes

Carlo simulations based on the London Interbank Offered
Rate Market Model [13]. Each thread reads a large number
of variables stored in constant memory. We find the working
set for constant memory fits inside the 8KB constant cache
per shader core that we model. However, we find memory
bandwidth is still a bottleneck due to a large fraction of local
memory accesses. We use the default inputs, simulating 4096
paths for 15 options.

MUMmerGPU (MUM) [42] MUMmerGPU is a parallel
pairwise local sequence alignment program that matches query
strings consisting of standard DNA nucleotides (A,C,T,G) to
a reference string for purposes such as genotyping, genome
resequencing, and metagenomics [42]. The reference string
is stored as a suffix tree in texture memory and has been
arranged to exploit the texture cache’s optimization for 2D
locality. Nevertheless, the sheer size of the tree means high
cache miss rates, causing MUM to be memory bandwidth-
bound. Since each thread performs its own query, the nature
of the search algorithm makes performance also susceptible
to branch divergence. We use the first 140,000 characters of
the Bacillus anthracis str. Ames genome as the reference string
and 50,000 25-character queries generated randomly using the
complete genome as the seed.

Neural Network (NN) [5] Neural network uses a convo-
lutional neural network to recognize handwritten digits [5].
Pre-determined neuron weights are loaded into global memory
along with the input digits. We modified the original source
code to allow recognition of multiple digits at once to increase
parallelism. Nevertheless, the last two kernels utilize blocks
of only a single thread each, which results in severe under-
utilization of the shader core pipelines. We simulate recog-
nition of 28 digits from the Modified National Institute of
Standards Technology database of handwritten digits.

N-Queens Solver (NQU) [37] The N-Queen solver tackles
a classic puzzle of placing N queens on a NxN chess board
such that no queen can capture another [37]. It uses a simple
backtracking algorithm to try to determine all possible solu-

tions. The search space implies that the execution time grows
exponentially with N. Our analysis shows that most of the
computation is performed by a single thread, which explains
the low IPC. We simulate N=10.

Ray Tracing (RAY) [26] Ray-tracing is a method of
rendering graphics with near photo-realism. In this implemen-
tation, each pixel rendered corresponds to a scalar thread in
CUDA [26]. Up to 5 levels of reflections and shadows are
taken into account, so thread behavior depends on what object
the ray hits (if it hits any at all), making the kernel susceptible
to branch divergence. We simulate rendering of a 256x256
image.

StoreGPU (STO) [4] StoreGPU is a library that accelerates
hashing-based primitives designed for middleware [4]. We
chose to use the sliding-window implementation of the MD5
algorithm on an input file of size 192KB. The developers
minimize off-chip memory traffic by using the fast shared
memory. We find STO performs relatively well.

Weather Prediction (WP) [27] Numerical weather pre-
diction uses the GPU to accelerate a portion of the Weather
Research and Forcast model (WRF), which can model and pre-
dict condensation, fallout of various precipitation and related
thermodynamic effects of latent heat release [27]. The kernel
has been optimized to reduce redundant memory transfer by
storing the temporary results for each altitude level in the cell
in registers. However, this requires a large amount of registers,
thus limiting the maximum allowed number of threads per
shader core to 192, which is not enough to cover global and
local memory access latencies. We simulate the kernel using
the default test sample for 10 timesteps.

3. Methodology
Table 2 shows the simulator’s configuration. Rows with

multiple entries show the different configurations that we have
simulated. Bold values show our baseline. To simulate the
mesh network, we used a detailed interconnection network
model, incorporating the configurable interconnection network



Table 2. Hardware Configuration

Number of Shader Cores 28
Warp Size 32
SIMD Pipeline Width 8
Number of Threads / Core 256 / 512 / 1024 / 1536 / 2048
Number of CTAs / Core 2 / 4 / 8 / 12 / 16
Number of Registers / Core 4096 / 8192 / 16384 / 24576 / 32768
Shared Memory / Core (KB) 4/8/16/24/32 (16 banks, 1 access/cycle/bank)5

Constant Cache Size / Core 8KB (2-way set assoc. 64B lines LRU)
Texture Cache Size / Core 64KB (2-way set assoc. 64B lines LRU)
Number of Memory Channels 8
L1 Cache None / 16KB / 32KB / 64KB

4-way set assoc. 64B lines LRU
L2 Cache None / 128KB / 256KB

8-way set assoc. 64B lines LRU
GDDR3 Memory Timing tCL=9, tRP =13, tRC=34

tRAS=21, tRCD=12, tRRD=8
Bandwidth per Memory Module 8 (Bytes/Cycle)
DRAM request queue capacity 32 / 128
Memory Controller out of order (FR-FCFS) /

in order (FIFO) [39]
Branch Divergence Method Immediate Post Dominator [11]
Warp Scheduling Policy Round Robin among ready warps

Table 3. Interconnect Configuration

Topology Mesh / Torus / Butterfly / Crossbar / Ring
Routing Mechanism Dimension Order / Destination Tag
Routing delay 1
Virtual channels 2
Virtual channel buffers 4
Virtual channel allocator iSLIP / PIM
Alloc iters 1
VC alloc delay 1
Input Speedup 2
Flit size (Bytes) 8 / 16 / 32 / 64

simulator introduced by Dally et al. [9]. Table 3 shows the
interconnection configuration used in our simulations.

We simulate all benchmarks to completion to capture all the
distinct phases of each kernel in the benchmarks, especially
the behavior at the tail end of the kernels, which can vary
drastically compared to the beginning. If the kernels are
relatively short and are frequently launched, the difference in
performance when not simulating the benchmark to comple-
tion can be significant.

We note that the breadth-first CTA distribution heuristic
described in Section 2.2.2 can occasionally lead to counter-
intuitive performance results due to a phenomina we will refer
to as CTA load imbalance. This CTA load imbalance can occur
when the number of CTAs in a grid exceeds the number that
can run concurrently on the GPU. For example, consider six
CTAs on a GPU with two shader cores where at most two
CTAs can run concurrently on a shader core. Assume running
one CTA on one core takes time T and running two CTAs
on one core takes time 2T (e.g., no off-chip accesses and six
or more warps per CTA—enough for one CTA to keep our
24 stage pipeline full). If each CTA in isolation takes equal
time T, total time is 3T (2T for the first round of four CTAs
plus T for the last two CTAs which run on separate shader
cores). Suppose we introduce an enhancement that causes
CTAs to run in time 0.90T to 0.91T when run alone (i.e.,
faster). If both CTAs on the first core now finish ahead of
those on the other core at time 1.80T versus 1.82T, then our
CTA distributor will issue the remaining 2 CTAs onto the first
core, causing the load imbalance. With the enhancement, this

actually causes an overall slowdown since now 4 CTAs need
to be completed by the first core, requiring a total time of at
least 3.6T. We carefully verified that this behavior occurs by
plotting the distribution of CTAs to shader cores versus time
for both configurations being compared. This effect would
be less significant in a real system with larger data sets and
therefore grids with a larger number of CTAs. Rather than
attempt to eliminate the effect by modifying the scheduler (or
the benchmarks) we simply note where it occurs.

In Section 4.7 we measure the impact of running greater
or fewer numbers of threads. We model this by varying the
number of concurrent CTAs permitted by the shader cores,
which is possible by scaling the amount of on-chip resources
available to each shader core. There are four such resources:
Number of concurrent threads, number of registers, amount
of shared memory, and number of CTAs. The values we use
are shown in Table 2. The amount of resources available per
shader core is a configurable simulation option, while the
amount of resources required by each kernel is extracted using
ptxas.

4. Experimental Results

In this section we evaluate the designs introduced in Sec-
tion 2. Figure 4.1 shows the classification of each benchmark’s
instruction type (dynamic instruction frequency). The Fused
Multiply-Add and ALU Ops (other) sections of each bar show
the proportion of total ALU operations for each benchmark
(which varies from 58% for NQU to 87% for BLK). Only
DG, CP and NN utilize the Fused Multiply-Add operations
extensively. Special Function Unit (SFU)6 instructions are also
only used by a few benchmarks. CP is the only benchmark that
has more than 10% SFU instructions.

The memory operations portion of Figure 4.1 is further
broken down in terms of type as shown in Figure 5. Note that
“param” memory refers to parameters passed through the GPU
kernel call, which we always treat as cache hits. There is a
large variation in the memory instruction types used among
benchmarks: for CP over 99% of accesses are to constant
memory while for NN most accesses are to global memory.

4.1. Baseline

We first simulated our baseline GPU configuration with
the bolded parameters shown in Table 2. Figure 6 shows
the performance of our baseline configuration (for the GPU
only) measured in terms of scalar instructions per cycle (IPC).
For comparison, we also show the performance assuming
a perfect memory system with zero memory latency. Note
that the maximum achievable IPC for our configuration is

5. We model the shared memory to service up to 1 access per cycle in each
bank. This may be more optimistic than what can be inferred from the CUDA
Programming Guide (1 access/2 cycles/bank) [33].

6. The architecture of the NVIDIA GeForce 8 Series GPUs includes a spe-
cial function unit for transcendental and attribute interpolation operations [22].
We include the following PTX instructions in our SFU Ops classification:
cos, ex2, lg2, rcp, rsqrt, sin, sqrt.



0%
20%
40%
60%
80%

100%

AES BFS CP DG LPS LIB MUM NN NQU RAY STO WP BLK FWT

In
st

ru
ct

io
n

C
la

ss
ifi

ca
tio

n
SFU Ops Control Flow Fused Multiply-Add ALU Ops (other) Mem Ops 

Figure 4. Instruction Classification.

0%

25%

50%

75%

100%

AES BFS CP DG LPS LIB MUM NN NQU RAY STO WP BLK FWTM
em

or
y 

In
st

ru
ct

io
n 

C
la

ss
ifi

ca
tio

n

Shared Tex Const Param Local Global

Figure 5. Memory Instructions Breakdown

0
32
64
96

128
160
192
224

AES BFS CP DG LPS LIB MUM NN NQU RAY STO WP HM BLK FWT SDK 

IP
C

Baseline Perfect Memory Maximum IPC = 224

Figure 6. Baseline performance (HM=Harmonic Mean)

0%
20%
40%
60%
80%

100%

AES BFS CP DG LPS LIB MUM NN NQU RAY STO WP BLK FWTW
ar

p 
O

cc
up

an
cy 1-4 5-8 9-12 13-16 17-20 21-24 25-28 29-32

Figure 7. Warp Occupancy

224 (28 shader cores x 8-wide pipelines). We also validated
our simulator against an Nvidia Geforce 8600GTS (a “low
end” graphics card) by configuring our simulator to use 4
shaders and two memory controllers. The IPC of the GPU
hardware, as shown in Figure 8(a), was estimated by dividing
the dynamic instruction count measured (in PTX instructions)
in simulation by the product of the measured runtime on
hardware and the shader clock frequency [31]. Figure 8(b)
shows the scatter plot of IPC obtained with our simulations
mimicking the 8600GTS normalized to the theoretical peak
IPC versus the normalized IPC data measured using the
8600GTS. The correlation coefficient was calculated to be
0.899. One source of difference, as highlighted by the data
for CP which actually achieves a normalized IPC over 1,
is likely due to compiler optimizations in ptxas which may
reduce the instruction count on real hardware7. Overall, the
data shows that applications that perform well in real GPU
hardware perform well in our simulator and applications that
perform poorly in real GPU hardware also perform poorly in
our simulator. In the following sections, we explore reasons
why some benchmarks do not achieve peak performance.

4.2. Branch Divergence

Branch divergence was highlighted by Fung et al. as a
major source of performance loss for multithreaded SIMD

7. We only simulate the input PTX code which, in CUDA, ptxas then
assembles into a proprietary binary format that we are unable to simulate.

architectures with intra-warp branch divergence [11]. Figure 7
shows warp occupancies (number of active threads in an issued
warp) over the entire runtime of the benchmarks. This metric
can be seen as a measure of how much GPU throughput
potential is wasted due to unfilled warps. The control flow
portion of the bars in Figure 4 shows that BFS, LPS, and NQU
contain from 13% to 28% control flow operations. However,
intensive control flow does not necessarily translate into high
branch divergence; it depends more on whether or not all
threads in a warp branch in the same direction. NN has the
lowest warp occupancy while it contains only 7% control flow
operations. On the other hand, LPS with 19% control flow has
full warp occupancy 75% of the time. It is best to analyze
Figure 7 with Table 1 in mind, particularly in the case of
NN. In NN, two of the four kernels have only a single thread
in a block and they take up the bulk of the execution time,
meaning that the unfilled warps in NN are not due to branch
divergence. Some benchmarks (such as AES, CP, LIB, and
STO) do not incur significant branch divergence, while others
do. MUM experiences severe performance loss in particular
because more than 60% of its warps have less than 5 active
threads. BFS also performs poorly since threads in adjacent
nodes in the graph (which are grouped into warps) behave
differently, causing more than 75% of its warps to have less
than 50% occupancy. Warp occupancy for NN and NQU is
low due to large portions of the code being spent in a single
thread.

4.3. Interconnect Topology

Figure 9 shows the speedup of various interconnection
network topologies compared to a mesh with 16 Byte channel
bandwidth. On average our baseline mesh interconnect per-
forms comparable to a crossbar with input speedup of two
for the workloads that we consider. We also have evaluated
two torus topologies: “Torus - 16 Byte Channel BW”, which
has double the bisection bandwidth of the baseline “Mesh” (a
determining factor in the implementation cost of a network);
and “Torus - 8 Byte Channel BW”, which has the same
bisection bandwidth as “Mesh”. The “Ring” topology that
we evaluated has a channel bandwidth of 64. The “Crossbar”
topology has a parallel iterative matching (PIM) allocator as
opposed to an iSLIP allocator for other topologies. The two-
stage butterfly and crossbar employ destination tag routing
while others use dimension-order routing. The ring and mesh
networks are the simplest and least expensive networks to build
in terms of area.

As Figure 9 suggests, most of the benchmarks are fairly
insensitive to the topology used. In most cases, a change in
topology results in less than 20% change in performance from
the baseline, with the exception of the Ring and Torus with
8 Byte channel bandwidth. BLK experiences a performance
gain with Ring due to the CTA load imbalance phenomena
described in Section 3. BLK has 256 CTAs. For the Ring
configuration, the number of CTAs executed per shader core
varies from 9 to 10. However, for the baseline configuration,



0
8

16
24
32
40
48

AES BFS CP DG LPS LIB MUM NN NQU RAY STO WP 

IP
C

Estimated 8600GTS (HW) Simulated 8600GTS

Max IPC = 32 

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Si
m

ul
at

ed
 8

60
0 

G
TS

 
N

or
m

al
iz

ed
 IP

C
 

8600GTS Normalized IPC 

CP

BFS, NN, NQU 

DG

LPS
LIB

RAY

STO

WP

AES

MUM

(b)

Figure 8. Performance Comparison with 8600GTS

0.2

0.4

0.6

0.8

1

1.2

AES BFS CP DG LPS LIB MUM NN NQU RAY STO WP HM BLK FWT SDK 

Sp
ee

du
p

Crossbar - 16 Byte Channel BW 2 Stage Butterfly - 16 Byte Channel BW 
Torus - 16 Byte Channel BW Torus - 8 Byte Channel BW 
Ring - 64 Byte Channel BW 

Figure 9. Interconnection Network Topology

one of the shader cores is assigned 11 CTAs due to small
variations in time coupled with our greedy CTA distribution
heuristic. When more CTAs run on a shader core, all CTAs
on that shader core take longer to complete, resulting in a
performance loss for the baseline configuration for BLK.

As we will show in the next section, one of the reasons
why different topologies do not change the performance of
most benchmarks dramatically is that the benchmarks are
not sensitive to small variations in latency, as long as the
interconnection network provides sufficient bandwidth.

4.4. Interconnection Latency and Bandwidth

Figure 10 shows the IPC results for various mesh network
router latencies. Without affecting peak throughput, we add
an extra pipelined latency of 4, 8, or 16 cycles to each router
on top of our baseline router’s 2-cycle latency. An extra 4
cycle latency per router is easily tolerated for most benchmarks
and causes only 3.5% performance loss when harmonically
averaged across all benchmarks. BLK and CP experience a
performance gain due to the CTA load imbalance phenomena
described in Section 3. With 8 extra cycles of latency per
router, the performance degradation is noticeable (slowdown
by 9% on average) and becomes much worse (slowdown by
25% on average) at 16 cycles of extra latency. Note that these
experiments are only intended to show the latency sensitivity
of benchmarks.

We also modify the mesh interconnect bandwidth by varying
the channel bandwidth from 8 bytes to 64 bytes. Figure 11
shows that halving the channel bandwidth from 16 bytes to 8
bytes has a noticeable negative impact on most benchmarks,
but doubling and quadrupling channel bandwidth only results
in a small gain for a few workloads i.e., BFS and DG.

DG is the most bandwidth sensitive workload, getting a
31% speedup and 53% slowdown for flit sizes of 32 and 8
respectively. The reason why DG does not exhibit further
speedup with flit size of 64 is because at this point, the

0.4
0.6
0.8

1
1.2

AES BFS CP DG LPS LIB MUM NN NQU RAY STO WP HM BLK FWT SDK 

Sp
ee

du
p

Extra 4 cycles Extra 8 cycles Extra 16 cycles 

Figure 10. Interconnection Network Latency Sensitivity

0.4
0.6
0.8

1
1.2
1.4

AES BFS CP DG LPS LIB MUM NN NQU RAY STO WP HM BLK FWT SDK 

Sp
ee

du
p

8B 16B (Baseline) 32B 64B

Figure 11. Interconnection Network Bandwidth Sensitivity

interconnect has already been overprovisioned. Our analysis
shows that for the baseline configuration, the input port to
the return interconnect from memory to the shader cores is
stalled 16% of the time on average. Increasing the flit size to
32 completely eliminates these stalls, which is why there is no
further speedup for interconnect flit size of 64. Note that our
memory read request packet sizes are 8 bytes, allowing them
to be sent to the memory controllers in a single flit for all of
the configurations shown in Figure 11.

Overall, the above data suggests that performance is more
sensitive to interconnect bandwidth than to latency for the non-
graphics workloads that we study. In other words, restricting
channel bandwidth causes the interconnect to become a bot-
tleneck.

4.5. DRAM Utilization and Efficiency

In this section we explore the impact that memory controller
design has on performance. Our baseline configuration uses an
Out-of-Order (OoO) First-Ready First-Come First-Serve (FR-
FCFS) [39] memory controller with a capacity of 32 memory
requests. Each cycle, the OoO memory controller prioritizes
memory requests that hit an open row in the DRAM over
requests that require a precharge and activate to open a new
row. Against this baseline, we compare a simple First-In First-
Out (FIFO) memory controller that services memory requests
in the order that they are received, as well as a more aggressive
FR-FCFS OoO controller with an input buffer capacity of
128 (OoO128). We measure two metrics besides performance:
The first is DRAM efficiency, which is the percentage of time
spent sending data across the pins of DRAM over the time
when there are any memory requests being serviced or pending
in the memory controller input buffer; the second is DRAM



0.4
0.6
0.8

1
1.2
1.4

AES BFS CP DG LPS LIB MUM NN NQU RAY STO WP HM BLK FWT SDK 

Sp
ee

du
p

First-In First-Out Out-of-Order 128 

Figure 12. Impact of DRAM memory controller optimizations

0%

20%

40%

60%

AES BFS CP DG LPS LIB MUM NN NQU RAY STO WP BLK FWT

D
R

A
M

 U
til

iz
at

io
n First-In First-Out Out-of-Order 32 Out-of-Order 128 

Figure 13. DRAM Utilization

20%

40%

60%

80%

100%

AES BFS CP DG LPS LIB MUM NN NQU RAY STO WP BLK FWT

D
R

A
M

 E
ffi

ci
en

cy First-In First-Out Out-of-Order 32 Out-of-Order 128 

Figure 14. DRAM Efficiency

utilization, which is the percentage of time spent sending data
across the DRAM data pins over the entire kernel execution
time. These two measures can differ if an application contains
GPU computation phases during which it does not access
DRAM (e.g., if it has been heavily optimized to use “shared
memory”).

Figure 12 compares the performance of our baseline to
FIFO and OoO128. We observe that AES, CP, NQU, and
STO exhibit almost no slowdown for FIFO. Figure 14 shows
AES and STO obtain over 75% DRAM efficiency. Close
examination reveals that at any point in time all threads access
at most two rows in each bank of each DRAM, meaning that
a simple DRAM controller policy suffices. Furthermore, Fig-
ure 13 shows that AES and STO have low DRAM utilization
despite the fact that they process large amounts of data. Both
these applications make extensive use of shared memory (see
Figure 5). NQU and CP have very low DRAM utilization,
making them insensitive to memory controller optimizations
(CP slows down for OoO128 due to variations in CTA load
distribution). Performance is reduced by over 40% when using
FIFO for BFS, LIB, MUM, RAY, and WP. These benchmarks
all show drastically reduced DRAM efficiency and utilization
with this simple controller.

4.6. Cache Effects

Figure 15 shows the effects on IPC of adding caches to the
system. The first 3 bars show the relative speedup of adding
a 16KB, 32KB or 64KB cache to each shader core. The last
two bars show the effects of adding a 128KB or 256KB L2
cache to each memory controller in addition to a 64KB L1
cache in each shader. CP, RAY and FWT exhibit a slowdown
with the addition of L1 caches. Close examination shows that
CP experiences a slowdown due to the CTA load imbalance
phenomena described in Section 3, whereas RAY and FWT
experience a slowdown due to the way write misses and
evictions of dirty lines are handled. For the baseline (without

0.5
1

1.5
2

2.5
3

3.5

AES BFS CP DG LPS LIB MUM NN NQU RAY STO WP HM BLK FWT SDK 

Sp
ee

du
p

None 16kB L1 32kB L1 64kB L1 64kB L1; 128kB L2 64kB L1; 256kB L2 

Figure 15. Effects of adding an L1 or L2

0.5

0.75

1

1.25

1.5

AES BFS CP DG LPS LIB MUM NN NQU RAY STO WP HM BLK FWT SDK 

Sp
ee

du
p

25% 50% 100% (Baseline) 150% 200%

Figure 16. Effects of varying number of CTAs

caches for local/global accesses) writes to memory only cause
the memory controller to read data out of DRAM if a portion
of a 16B is modified due to writes that are not coalesced. When
caches are added for local and global accesses, for simplicity,
a write miss prevents a warp from being scheduled until the
cache block is read from DRAM. Furthermore, when a dirty
line is evicted, the entire line is written to DRAM even if only
a single word of that line is modified. We leave exploration
of better cache policies to future work.

Benchmarks that make extensive use of “shared memory”,
namely AES, LPS, NQU, and STO, do not respond signifi-
cantly to caches. On the other hand, BFS and NN have the
highest ratio of global memory instructions to all instructions
(at 19% and 27% respectively) and so they experience the
highest speedup among workloads.

4.7. Are More Threads Better?

Increasing the number of simultaneously running threads
can improve performance by having a greater ability to hide
memory access latencies. However, doing so may result in
higher contention for shared resources, such as interconnect
and memory. We explored the effects of varying the resources
that limit the number of threads and hence CTAs that can run
concurrently on a shader core, without modifying the source
code for the benchmarks. We vary the amount of registers,
shared memory, threads, and CTAs between 25% to 200% of
those available to the baseline. The results are shown in Figure
16. For the baseline configuration, some benchmarks are
already resource-constrained to only 1 or 2 CTAs per shader
core, making them unable to run using a configuration with
less resources. We do not show bars for configurations that for
this reason are unable to run. NQU shows little change when
varying the number of CTAs since it has very few memory
operations. For LPS, NN, and STO, performance increases
as more CTAs per core are used. LPS cannot take advantage
of additional resources beyond the baseline (100%) because
all CTAs in the benchmark can run simultaneously for the
baseline configuration. Each CTA in STO uses all the shared
memory in the baseline configuration, therefore increasing
shared memory by half for the 150% configuration results
in no increase in the number of concurrently running CTAs.
AES and MUM show clear trends in decreasing performance



0.8

1

1.2

1.4

AES BFS CP DG LPS LIB MUM NN NQU RAY STO WP HM BLK FWT SDK 

Sp
ee

du
p

Figure 17. Inter-Warp Memory Coalescing

as the number of CTAs increases. We observed that with
more concurrent CTAs, AES and MUM experience increased
contention in the memory system resulting in 8.6× and 5.4×
worse average memory latency, respectively comparing 200%
resources vs. 50%. BFS, RAY, and WP show distinct optima
in performance when the CTA limit is at 100%, 100%, and
150% of the baseline shader, respectively. Above these limits,
we observe DRAM efficiencies decrease and memory latencies
increase, again suggesting increased contention in the memory
system. For configuration with limits below the optima, the
lack of warps to hide memory latencies reduces performance.
CP suffers CTA load imbalance due to CTA scheduling for
the 50% and 100% configurations. Similarly, DG suffers CTA
load imbalance in the 150% configuration.

Given the widely-varying workload-dependent behavior, al-
ways scheduling the maximal number of CTAs supported by a
shader core is not always the best scheduling policy. We leave
for future work the design of dynamic scheduling algorithms
to adapt to the workload behavior.

4.8. Memory Request Coalescing

Figure 17 presents data showing the improvement in perfor-
mance when enabling inter-warp memory coalescing described
in Section 2.2.3. The harmonic mean speedup versus intra-
warp coalescing is 6.1%. CP’s slowdown with inter-warp
coalescing is due to load imbalance in CTA distribution.
Accesses in AES, DG, and MUM are to data dependent
locations which makes it harder to use the explicitly managed
shared memory to capture locality. These applications use the
texture cache to capture this locality and inter-warp merging
effectively eliminates additional requests for the same cache
block at the expense of associative search hardware.

It is interesting to observe that the harmonic mean speedup
of the CUDA SDK benchmarks is less than 1%, showing that
these highly optimized benchmarks do not benefit from inter-
warp memory coalescing. Their careful program optimizations
ensure less redundancy in memory requests generated by each
thread.

5. Related Work

Existing graphics-oriented GPU simulators include Qsil-
ver [43], which does not model programmable shaders, and
ATTILLA [10], which focuses on graphics specific features.
Ryoo et al. [41] use CUDA to speedup a variety of relatively
easily parallelizable scientific applications. They explore the
use of conventional code optimization techniques and take ad-
vantage of the different memory types available on NVIDIA’s
8800GTX to obtain speedup. While their analysis is performed

by writing and optimizing applications to run on actual CUDA
hardware, we use our novel performance simulator to observe
the detailed behavior of CUDA applications upon varying
architectural parameters.

There have been acceleration architectures proposed besides
the GPU model that we analyze in this paper. Mahesri et al.
introduce a class of applications for visualization, interaction,
and simulation [23]. They propose using an accelerator ar-
chitecture (xPU) separate from the GPU to improve perfor-
mance of their benchmark suite. The Cell processor [7, 38]
is a hardware architecture that can function like a stream
processor with appropriate software support. It consists of a
controlling processor and a set of SIMD co-processors each
with independent program counters and instruction memory.
Merrimac [8] and Imagine [3] are both streaming processor
architectures developed at Stanford.

Khailany et al. [20] explore VLSI costs and performance
of a stream processor as the number of streaming clusters
and ALUs per cluster scales. They use an analytical cost
model. The benchmarks they use also have a high ratio of
ALU operations to memory references, which is a property
that eases memory requirements of streaming applications.
The UltraSPARC T2 [44] microprocessor is a multithreading,
multicore CPU which is a member of the SPARC family and
comes in 4, 6, and 8 core variations, with each core capable of
running 8 threads concurrently. They have a crossbar between
the L2 and the processor cores (similar to our placement
of the L2 in Figure 1(a)). Although the T1 and T2 support
many concurrent threads (32 and 64, respectively) compared to
other contemporary CPUs, this number is very small compared
to the number on a high end contemporary GPU (e.g., the
Geforce 8800 GTX supports 12,288 threads per chip).

We quantified the effects of varying cache size, DRAM
bandwidth and other parameters which, to our knowledge,
has not been published previously. While the authors of
the CUDA applications which we use as benchmarks have
published work, the emphasis of their papers was not on
how changes in the GPU architecture can affect their appli-
cations [4, 5, 12, 13, 15, 24, 26, 27, 37, 41, 42, 46]. In terms of
streaming multiprocessor design, all of the above-mentioned
works have different programming models from the CUDA
programming model that we employ.

6. Conclusions

In this paper we studied the performance of twelve con-
temporary CUDA applications by running them on a detailed
performance simulator that simulates NVIDIA’s parallel thread
execution (PTX) virtual instruction set architecture. We pre-
sented performance data and detailed analysis of performance
bottlenecks, which differ in type and scope from application
to application. First, we found that generally performance of
these applications is more sensitive to interconnection network
bisection bandwidth rather than (zero load) latency: Reducing
interconnect bandwidth by 50% is even more harmful than
increasing the per-router latency by 5.3× from 3 cycles



to 19 cycles. Second, we showed that caching global and
local memory accesses can cause performance degradation for
benchmarks where these accesses do not exhibit temporal or
spatial locality. Third, we observed that sometimes running
fewer CTAs concurrently than the limit imposed by on-chip
resources can improve performance by reducing contention in
the memory system. Finally, aggressive inter-warp memory
coalescing can improve performance in some applications by
up to 41%.

Acknowledgments
We thank Kevin Skadron, Michael Shebanow, John Kim,

Andreas Moshovos, Xi Chen, Johnny Kuan and the anonymous
reviewers for their valuable comments on this work. This work
was partly supported by the Natural Sciences and Engineering
Research Council of Canada.

References
[1] Advanced Micro Devices, Inc. ATI CTM Guide, 1.01 edition, 2006.
[2] Advanced Micro Devices, Inc. Press Release: AMD Delivers Enthusiast

Performance Leadership with the Introduction of the ATI Radeon HD
3870 X2, 28 January 2008.

[3] J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das. Evaluating
the Imagine stream architecture. In Proc. 31st Int’l Symp. on Computer
Architecture, page 14, 2004.

[4] S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G. Yuan, and M. Ripeanu.
StoreGPU: exploiting graphics processing units to accelerate distributed
storage systems. In Proc. 17th Int’l Symp. on High Performance
Distributed Computing, pages 165–174, 2008.

[5] Billconan and Kavinguy. A Neural Network on GPU.
http://www.codeproject.com/KB/graphics/GPUNN.aspx.

[6] P. Buffet, J. Natonio, R. Proctor, Y. Sun, and G. Yasar. Methodology
for I/O cell placement and checking in ASIC designs using area-array
power grid. In IEEE Custom Integrated Circuits Conference, 2000.

[7] S. Clark, K. Haselhorst, K. Imming, J. Irish, D. Krolak, and T. Ozguner.
Cell Broadband Engine interconnect and memory interface. In Hot Chips
17, Palo Alto, CA, August 2005.

[8] W. J. Dally, F. Labonte, A. Das, P. Hanrahan, J.-H. Ahn, J. Gummaraju,
M. Erez, N. Jayasena, I. Buck, T. J. Knight, and U. J. Kapasi. Merrimac:
Supercomputing with streams. In SC ’03: Proc. 2003 ACM/IEEE Conf.
on Supercomputing, page 35, 2003.

[9] W. J. Dally and B. Towles. Interconnection Networks. Morgan
Kaufmann, 2004.

[10] V. del Barrio, C. Gonzalez, J. Roca, A. Fernandez, and E. E. ATTILA:
a cycle-level execution-driven simulator for modern GPU architectures.
Int’l Symp. on Performance Analysis of Systems and Software, pages
231–241, March 2006.

[11] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic warp
formation and scheduling for efficient GPU control flow. In Proc. 40th
IEEE/ACM Int’l Symp. on Microarchitecture, 2007.

[12] M. Giles. Jacobi iteration for a Laplace discretisation on a 3D structured
grid. http://people.maths.ox.ac.uk/˜gilesm/hpc/NVIDIA/laplace3d.pdf.

[13] M. Giles and S. Xiaoke. Notes on using the NVIDIA 8800 GTX graphics
card. http://people.maths.ox.ac.uk/˜gilesm/hpc/.

[14] Z. S. Hakura and A. Gupta. The design and analysis of a cache
architecture for texture mapping. In Proc. 24th Int’l Symp. on Computer
Architecture, pages 108–120, 1997.

[15] P. Harish and P. J. Narayanan. Accelerating Large Graph Algorithms
on the GPU Using CUDA. In HiPC, pages 197–208, 2007.

[16] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and
P. Roussel. The Microarchitecture of the Pentium R© 4 Processor. Intel R©
Technology Journal, 5(1), 2001.

[17] H. Igehy, M. Eldridge, and K. Proudfoot. Prefetching in a texture
cache architecture. In Proc. SIGGRAPH/EUROGRAPHICS Workshop
on Graphics Hardware, 1998.

[18] Illinois Microarchitecture Project utilizing Advanced Compiler
Technology Research Group. Parboil benchmark suite.
http://www.crhc.uiuc.edu/IMPACT/parboil.php.

[19] Infineon. 256Mbit GDDR3 DRAM, Revision 1.03 (Part No.
HYB18H256321AF). http://www.infineon.com, December 2005.

[20] B. Khailany, W. J. Dally, S. Rixner, U. J. Kapasi, J. D. Owens, and
B. Towles. Exploring the VLSI scalability of stream processors. In Proc.
9th Int’l Symp. on High Performance Computer Architecture, page 153,
2003.

[21] D. Kroft. Lockup-free Instruction Fetch/Prefetch Cache Organization.
In Proc. 8th Int’l Symp. Computer Architecture, pages 81–87, 1981.

[22] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla:
A Unified Graphics and Computing Architecture. IEEE Micro, 28(2):39–
55, 2008.

[23] A. Mahesri, D. Johnson, N. Crago, and S. J. Patel. Tradeoffs in designing
accelerator architectures for visual computing. In Proc. 41st IEEE/ACM
Int’l Symp. on Microarchitecture, 2008.

[24] S. A. Manavski. CUDA compatible GPU as an efficient hardware
accelerator for AES cryptography. In ICSPC 2007: Proc. of IEEE Int’l
Conf. on Signal Processing and Communication, pages 65–68, 2007.

[25] Marco Chiappetta. ATI Radeon HD 2900 XT - R600 Has Arrived.
http://www.hothardware.com/printarticle.aspx?articleid=966.

[26] Maxime. Ray tracing. http://www.nvidia.com/cuda.
[27] J. Michalakes and M. Vachharajani. GPU acceleration of numerical

weather prediction. IPDPS 2008: IEEE Int’l Symp. on Parallel and
Distributed Processing, pages 1–7, April 2008.

[28] M. Murphy. NVIDIA’s Experience with Open64. In 1st Annual
Workshop on Open64, 2008.

[29] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable Parallel
Programming with CUDA. ACM Queue, 6(2):40–53, Mar.-Apr. 2008.

[30] NVIDIA. CUDA ZONE. http://www.nvidia.com/cuda.
[31] NVIDIA. Geforce 8 series. http://www.nvidia.com/page/geforce8.html.
[32] NVIDIA Corporation. NVIDIA CUDA SDK code

samples. http://developer.download.nvidia.com/compute/cuda/
sdk/website/samples.html.

[33] NVIDIA Corporation. NVIDIA CUDA Programming Guide, 1.1 edition,
2007.

[34] NVIDIA Corporation. Press Release: NVIDIA Tesla GPU Computing
Processor Ushers In the Era of Personal Supercomputing, 20 June 2007.

[35] NVIDIA Corporation. PTX: Parallel Thread Execution ISA, 1.1 edition,
2007.

[36] Open64. The open research compiler. http://www.open64.net/.
[37] Pcchen. N-Queens Solver.

http://forums.nvidia.com/index.php?showtopic=76893.
[38] D. Pham, S. Asano, M. Bolliger, M. D. , H. Hofstee, C. Johns, J. Kahle,

A.Kameyama, J. Keaty, Y. Masubuchi, D. S. M. Riley, D. Stasiak,
M. Suzuoki, M. Wang, J. Warnock, S. W. D. Wendel, T.Yamazaki, and
K. Yazawa. The design and implementation of a first-generation Cell
processor. Digest of Technical Papers, IEEE Int’l Solid-State Circuits
Conference (ISSCC), pages 184–592 Vol. 1, 10-10 Feb. 2005.

[39] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens.
Memory access scheduling. In Proc. 27th Int’l Symp. on Computer
Architecture, pages 128–138, 2000.

[40] S. Ryoo, C. Rodrigues, S. Stone, S. Baghsorkhi, S.-Z. Ueng, J. Stratton,
and W. W. Hwu. Program optimization space pruning for a multithreaded
GPU. In Proc. 6th Int’l Symp. on Code Generation and Optimization
(CGO), pages 195–204, April 2008.

[41] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,
and W. W. Hwu. Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA. In Proc. 13th ACM
SIGPLAN Symp. on Principles and Practice of Parallel Programming,
pages 73–82, 2008.

[42] M. Schatz, C. Trapnell, A. Delcher, and A. Varshney. High-throughput
sequence alignment using Graphics Processing Units. BMC Bioinfor-
matics, 8(1):474, 2007.

[43] J. W. Sheaffer, D. Luebke, and K. Skadron. A flexible simu-
lation framework for graphics architectures. In Proc. ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware, pages
85–94, 2004.

[44] Sun Microsystems, Inc. OpenSPARCT M T2 Core Microarchitecture
Specification, 2007.

[45] J. Tuck, L. Ceze, and J. Torrellas. Scalable Cache Miss Handling for
High Memory-Level Parallelism. In Proc. 39th IEEE/ACM Int’l Symp.
on Microarchitecture, pages 409–422, 2006.

[46] T. C. Warburton. Mini Discontinuous Galerkin Solvers.
http://www.caam.rice.edu/˜timwar/RMMC/MIDG.html.


