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Abstract. State equations of aircraft engine dynamics usually required for controller design, are not available in
closed form, so the dynamic models are commonly linearized numerically. Development of model-based
controllers for aeroengine in the recent years necessitates the use of accurate linear models. However, there is no
comprehensive study about the accuracy of the linear models obtained from nonlinear engine models. In this
paper, the accuracy of different numerical linearization methods for linearizing the dynamic model of a turbofan
engine is investigated. For this objective, a thermodynamic model of a two-spool turbofan engine is considered
and three various numerical linearization methods are defined. The first method is based on the perturbation
technique, including ordinary and central difference perturbation. The second one is a system identification
method and the third one is tuning the elements of the matrices of the linear state-space model using genetic
algorithm. The accuracy analysis of the presented procedures is performed for both single-input and double-
input cases. In the single-input case, the fuel mass flow rate and in the double-input, in addition to the fuel, the
bleed air taken from between the two compressors are considered as control variables. Finally, by defining
different error criterions, the accuracy of the linearization methods is evaluated. The results show that the linear
model obtained from system identification and central difference perturbation methods have higher percentage
of compliances compared to the others.

Keywords: Turbofan engine / thermodynamic model / linearization / perturbation / system identification /
genetic algorithm

1 Introduction

A turbofan engine includes various complicated dynamics
and behaviors such as the gas flow dynamics in the
compressor and turbine, combustion dynamics, the heat
transfer dynamics between the gas and the body, the
inertia of the shafts, losses, delays and environmental
factors [1–3]. Among the dynamics existing in the engine,
those resulting from gas dynamics (temperature and
pressure), those of sensors and actuators and ignition
dynamics are much faster than the others, which are often
ignored, but are considered in very accurate and complete
models [4,5]. The heat transfer dynamics between the gas
and the body (especially in turbines) is also usually ignored
in simple models. The engine shafts dynamics are the most
important dynamics, which are commonly used, in
transient models for controller design [6]. However, there

are no specific state equations for the nonlinear dynamics of
the engine. Because the characteristic curves of the engine
components are generally required for thermodynamic
modeling of the engine, this model is highly iterative [7].
Therefore, the thermodynamic model should be linearized
at desired operating points to generate linear state-space
models for the engine controller design [8].

Many studies have been conducted about the control of
turbofan engines using various control methods [9–11].
Recently, model-based controllers are extensively consid-
ered by researchers [12–14]. Since, in these controllers, the
model parameters are directly present in the designed
control signal, the accuracy of the model is of great
importance. Sugiyama [15] presented a method to extract
linear model matrices and used a series of correction factors
to develop a linear model to entirely cover the flight
envelope. Also, Chung et al. [16] presented an analytical
method to linearize the engine equations in each time step,
with the purpose of extracting a precise linear model to be
used for design of controllers, especially model-based
controllers. However, the linearization of thermodynamic* e-mail: montazeri@iust.ac.ir
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models has commonly been performed using the perturba-
tion method without presenting an analysis about the
accuracy of the linear model [17–20]. Careful studies show
that no comprehensive study has been published in the
literature about the accuracy of different numerical
linearization methods.

In this research, the accuracy of different numerical
linearization methods that can be used in linearizing the
thermodynamic model of a turbofan engine is investigated.
This analysis is performed by defining different error
indices in the single-input and double-input cases.

2 The engine model

A two-spool high-bypass-ratio turbofan engine is studied in
this research. Figure 1 shows a schematic of the engine
components and the station numbering of the engine gas
path in proper sequence. Its thermodynamic nonlinear
structure is similar to TMATS offered by NASA’s Glenn
Research Center (GRC) [21]. The engine performance
modeling is based on the matching of the components
operating points. It means that each component operating
point should be matched to the others, which is highly
iterative. Therefore, it requires several matching guesses of
the operating point on the component maps and an equal
number of matching constraints. In a turbofan engine
dynamic model, the values of inlet air mass flow, bypass
ratio and components beta are commonly considered as the
matching guesses. Turbofan engine bypass ratio is the ratio
of the air mass flow passing through the bypass duct to the
air mass flow entering the core. Beta lines are hypothetical
lines and the use of beta values is just a mathematical
scheme and therefore has no physical interpretation. In
Figure 2, beta lines are illustrated on HPC and HPTmaps.

The guesses are updated through an iteration process
until the matching constraints are satisfied. Generally, this
iteration is achieved via matrix solution. In matrix
iteration the overall interaction is distinguished and the
error equations are solved simultaneously. For this
purpose, Jacobian calculation technique is needed to
evaluate matrix of partial derivatives, which contains
the partial derivatives of the errors in each matching
constraint with respect to each matching guess. Also, a
numerical method is required in order to update all
matching guesses in each iteration. This process is
commonly enhanced by Newton-Raphson iterative solving

technique. Figure 3 depicts the flow diagram of this
methodology. In dynamic modeling, the values of the fuel
flow rate and other control variables, which are calculated
via the engine control system, are applied as inputs to the
model. The above procedure is repeated in each time step.

The details of the design point of the engine are
presented in Table 1. The design point of this engine is
obtained by assuming sea level static (SLS) and interna-
tional standard atmosphere (ISA) conditions.

Fig. 1. Modules and typical stations numbering of a two-spool turbofan engine.
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Fig. 2. Characteristic curves of HPC and HPT.
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Generally, the state-space equations for the engine
dynamic system are as follows:

_NLP ¼
1

ILP
� f1 NLP ;NHP ; u; hð Þ

_NHP ¼
1

IHP

� f2 NLP ;NHP ; u; hð Þ

yi ¼ gi NLP ;NHP ; u; hð Þ;

ð1Þ

whereNLP andNHP represent the fan speed and core speed,
respectively, _N_

LP and _N_HP are the angular accelera-
tions of the low-pressure and high-pressure shafts and ILP
and IHP are the moments of inertia of the moving parts of
the low-pressure and high-pressure spools, respectively.
Also, f1 and f2 are the net torques produced by low and high
pressure turbines, respectively. Vector u contains control
input variables. In a turbofan engine, vector u generally
includes the fuel mass flow rate, Wf, and other actuators

Fig. 3. Matrix iteration approach for transient thermodynamic modeling of two-spool turbofan engine.
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such as VBV, VSV, HPTACC and LPTACC. In addition,
vector h contains the health parameters of the engine,
which represents the engine health conditions at any time
and is a function of engine degradation. In this research,
fuel flow rate and the bleed air taken from between the two
compressors are considered as the control variables and the
engine is assumed to be in a healthy condition. In addition,
gi equations represent the engine outputs and according to
the designer requirements, each operating parameter of the
engine may be selected as an output.

3 Linearization of the model

3.1 Linearization using the perturbation methods

A steady-state operating point of an aeroengine is a
condition that the values of inputs and flight conditions are
constant and power equilibrium between the components
of a spool exists. According to the perturbation method,
when the engine parameters deviated from their equilibri-
um conditions, the expansion of equation (1) can be written
as follows [22]:

D _NLP¼
1

ILP
�

∂f1
∂NLP

DNLP þ
∂f1

∂NHP

DNHP þ
∂f1
∂u1

�

Du2 þ
∂f1
∂u2

Du2þ :::þ
∂f1
∂h1

Dh1 þ
∂f1
∂h2

Dh1 þ ::::

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

�
;

D _NHP¼
1

IHP

�
∂f2
∂NLP

DNLP þ
∂f2

∂NHP

DNHP þ
∂f2
∂u1

�

Du1 þ
∂f2
∂u2

Du2þ ::þ :
∂f1
∂h1

Dh1 þ
∂f1
∂h2

Dh1 þ ::::

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

�
;

Dyi ¼
∂gi

∂NLP

DNLP þ
∂gi

∂NHP

DNHP þ
∂gi
∂u1

Du1 þ
∂gi
∂u2

Du2 þ :::þ
∂gi
∂h1

Dh1 þ
∂gi
∂h2

Dh2 þ :::

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

: ð2Þ

In order to calculate the approximate values of the
partial derivatives, the states and inputs in the equation (2)
are slightly deviated from their steady values. In each step,
the dependent variable of one partial derivative is
perturbed while the other variables are kept constant
and the change in the angular accelerations and the
required outputs are collected. By dividing these two
values and repeating the process for every variable, the
value of each partial derivative is obtained one by one.
Ultimately, the linear time-invariant model can be
presented in the following state-space form:

_x ¼ AxþBu

y ¼ CxþDu;
ð3Þ

where xT ¼ DNLP DNHP½ �, yT ¼ Dy1 Dy2 ⋯½ � and
matrices A, B, C and D contain the partial derivatives as
below:

A ¼

∂f1
∂NLP

∂f1
∂NHP

∂f2
∂NLP

∂f2
∂NHP

2

664

3

775;B ¼

∂f1
∂u1

∂f1
∂u2

⋯

∂f2
∂u1

∂f2
∂u2

⋯

2

664

3

775;

C ¼

∂y1
∂NLP

∂y1
∂NHP

∂y2
∂NLP

∂y2
∂NHP

.

.

.
.
.
.

2

666664

3

777775
;D ¼

∂y1
∂u1

∂y1
∂u2

⋯

∂y2
∂u1

∂y2
∂u2

⋯

.

.

.
.
.
.

.

.

.

2

666664

3

777775
:

ð4Þ

Another way to derive the linearized model with
perturbation scheme is central differencemethod [23,24]. In
the central difference perturbation (CDP), the opposite
values of deviations are applied to the nonlinear model and
the average values of the partial derivatives in equation (4)
are computed. In this approach, the components of
equation (4) can be derived as follows:

∂fi
∂NLP

¼
DfijNLPþDNLP

�DfijNLP�DNLP

2DNLP

;

∂fi
∂NHP

¼
DfijNHPþDNHP

�DfijNHP�DNHP

2DNHP

∂yi
∂NLP

¼
DyijNLPþDNLP

�DyijNLP�DNLP

2DNLP

;

∂yi
∂NHP

¼
DyijNHPþDNHP

�DyijNHP�DNHP

2DNHP

: ð5Þ

This method should significantly increase the percent-
age of compliance (PC) of the linear model.

The dynamic models of the engine, which are valid in all
the operating points within the flight envelope and can be
used for control engineers, are generally a set of linearized
models, each of which is valid in a neighborhood of an
operating point in certain flight conditions (Mach, altitude,
weather conditions, etc.).

Table 1. Values of the design point of the studied engine.

Parameter Value

Bypass ratio 5.5

Overall pressure ratio 34

Max. thrust (kN) 134

Inlet air mass flow (kg/s) 427

Fuel mass flow (kg/s) 1.307

Inlet HPT temperature (K) 1580

LPS & HPS speeds (rpm) 5000, 14460

Mach, Altitude 0, 0
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3.2 Linearization using evolutionary optimization

algorithms

Another method that can be utilized for the linearization of
an engine thermodynamic model is to adjust the
parameters of the linear state-space model using evolu-
tionary optimization algorithms [25–28]. Evolutionary
algorithms are randomized heuristic search methods based
on the principles of natural evolution [29]. Due to the
affinity to biology, many biological metaphors are used.
Genetic algorithms (GA) are certainly the largest andmost
popular representative of the class of evolutionary
algorithms [29]. The details of the method are described
in the next section.

In this approach, in order to encompass all the input
frequencies and amplitudes in the desired neighborhood of
the operating point, the input signal given to the
thermodynamic model should be a persistent excitation.
So, the input signal can be an amplitude-modulated pseudo
random binary sequence (APRBS) signal or a variable-
frequency sinusoidal knownas chirp signal.These signals are
commonly applied for identification of nonlinear systems.
The cost function of the desired optimization algorithm is
defined as the difference between responses of the linear and
nonlinear systems to the input signal. The cost function can
be defined based on the normalized root mean square error
(NRMSE). This criterion is described as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
Y�bY
� �2

N

r

NRMSE ¼
RMSE

Y max � Y min

; ð6Þ

whereY is the output signal from the nonlinear model, bY is
the output signal from the linear model and N is the
number of sampling times.

3.3 Linearization using system identification methods

Another approach to obtain a linear model is the use of
system identification methods [30,31]. The basis of this
approach is based on input-output data. Similar to the
previous method, the input signal should be a persistent
excitation. First, the input signal is applied to the
thermodynamic model and the input and output data

are collected. A linear model can then be fitted to these
data. The important point that must surely be considered
in the linearization of the engine model is omitting the
mean value from the data, because the incremental values
of the variables about the operating point are considered in
the linear models. Moreover, if necessary, the data can be
filtered to omit the very high frequency data. The linear
model can be extracted in the state-space form or
continuous/discrete transfer function.

4 Linearization results

The state variables, inputs and outputs are listed in
Table 2. Several outputs can be considered to be present in
the linear model, depending on the designer requirements.
In this study, some outputs which are generally known as
measurable outputs and thrust as one of the important
immeasurable outputs [32] are considered. In the single-
input engine control problems, the fuel flow rate is assumed
as the control input.

4.1 How to implement the linearization

In the perturbation method, the state and input variables
are separately perturbed from their steady-state values by
1 and 3%, respectively. In the CDP method the state
variables are perturbed±1% and the averages are
computed.

Moreover, a genetic algorithm is used for tuning the
parameters of the linear state-space model. This method is
selected because of the large number of elements that
should be obtained. In addition, since system identification
methods in MATLAB are based on least square optimi-
zation, the genetic algorithm is used to compare the effect
of different optimization methods on the accuracy of the
linearization.

Two types of excitation signals are generated; an
APRBS signal during 3000 seconds in the interval of ± 6%
of the mean value of the desired operating point fuel flow
rate, Figure 4, and the chirp sinusoidal signal, Figure 5. As
it is shown in Figure 5, the desired chirp signal is generated
with a variable frequency from 0.1 to 2.5Hz and amplitude
of 5% of the fuel flow rate during 45 seconds. Thus, different
amplitudes and frequencies are covered by these two
signals, so they can be considered as persistent excitations.

Table 2. State variables, control inputs and outputs of the desired engine.

State variables Output variables Input variables

LP shaft speed, NLP LP shaft speed, NLP Fuel flow, Wf

HP shaft speed, NHP HP shaft speed, NHP Variable bleed valve, VBV

HPC inlet total pressure, Pt25

HPC inlet total temperature, Tt25

HPC exit static pressure, Ps3

HPC exit total temperature, Tt3

HPT exit total temperature, Tt45

Thrust

M. Montazeri-Gh and A. Rasti: Mechanics & Industry 20, 303 (2019) 5



Another point is that the defined optimization problem is
multi-objective because it defines one error for each output.
Here, by adding different errors with identical weighted
coefficients, the multi-objective optimization problem
converts to a single-objective one. The parameters of
genetic algorithm are selected as common and are shown in
Table 3.

The other technique for linearization is system
identification. This approach is performed using the system
identification toolbox of MATLAB software [33]. This
method is also tested by the same inputs; APRBS
excitation signal, Figure 4, and the chirp sinusoidal signal,
Figure 5. These signals are given to the thermodynamic
model as input and the required outputs are collected,
which are shown in Figures 6 and 7. In Figure 6, for more
clarity, only 500 of 3000 seconds of the APRBS signal is
displayed. After omitting the mean value from the data,
the type of the linear model must be selected. In this study,
a continuous state-space model of order 2 in a canonical
form and with a feedthrough value equal to one (in order to
generate matrix D) is selected and the noise matrix is
ignored.

Now, to assess the accuracy of linearization, some
indices are defined. For this purpose, another APRBS signal
is generated and given toboth linear andnonlinearmodels as
input. Mean error percentage (mean EP), maximum error
percentage (maxEP)and thepercentageof compliance (PC)
is defined as presented in equation (7) [34].

MaxError ¼
max jY � bY j

� 	

max jY jð Þ
� 100

MeanError ¼

XN

i¼1

jY ðiÞ � bY ðiÞj
� 	

=N

max jY jð Þ
� 100

PC ¼ 1�
‖Y � bY ‖

‖Y � Y ‖

 !

� 100:

ð7Þ

In these equations, Y is the output signal from the
nonlinear model, Y shows the mean output signal from the
nonlinear model, Ŷ is the output signal from the linear
model and N represents the number of sampling times.

4.2 Case 1: the single-input case – 100% of the LP

shaft speed

The design point in SLS and ISA conditions in 100% of the
LP shaft speed is considered as the first operating point. In
this case, the fuel flow rate is the only control input. For
example, thematrices of the linearmodel obtained from the
perturbation method are presented in Table 4.

4.2.1 Effect of the time step and deviation value in the

perturbation method

The deviation value and time step of the solver can be
regarded as two factors that affect the linearization via the
perturbation method. In order to analyze this effect, the
deviation value is changed from�0.05 to�0.01% and from
0.01 to 0.05% and the time step from 0.01 to 0.05 seconds.
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Fig. 4. APRBS signal of the fuel input.

Fig. 5. Chirp signal of the fuel input.

Table 3. Parameters used for genetic algorithm.

Parameter Value

Population size 300

Scaling function Rank

Selection function Tournament (4)

Crossover fraction 0.8

Crossover function Scattered

Mutation function Constraint dependent

Migration fraction 0.2

Migration interval 20

Initial penalty 10

Penalty factor 100

Generation 100
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Since matrix A in the state-space form represents the
inherent characteristics of the system, changes in the
elements of this matrix show the impact of these two
factors on the linear model. Figure 8 indicates that time
step has no effect on the elements of matrix A, because

without changing the initial conditions in each time step
the amount of angular acceleration will not be affected by
the time step. But, as expected, by changing the deviation
value, the values of the elements of matrix A have changed.
In addition, the values of the elements are different for the

Fig. 6. Output parameters of the thermodynamic model due to APRBS input using for linearization.
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deviation values of the same size with opposite signs. These
two facts indicate the nonlinearity of the system. Even with
a small deviation value; e.g.± 1%, this difference will exist,

suggesting that a linear model with high precision cannot
be expected even in a small neighborhood around this
operating point.

Fig. 7. Output parameters of the thermodynamic model due to chirp input using for linearization.
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In this step, a question may be raised that, which
perturbation size will be suitable and more accurate. In
order to answer this question, the percentage of compli-
ances (PCs) for different perturbation sizes of the state
variables and different outputs are presented in Table 5.
According to Table 5, the PCs have not changed
significantly for different perturbation sizes. Thus, the
deviation value does not have an important effect on the
accuracy of the linear model. The selection of the deviation
value depends on the system range of operation and the
range considered for the operation of the linear model
around the operating point.

4.2.2 Analysis of the indices

The values of the defined indices in the single-input case
are outlined in Table 6. First, some considerations should
be explained. The linearization results of some of the
outputs with different PCs are shown in Figure 9. These
outputs are typically displayed in 500 seconds to make a
comparison of different PCs. In this regard, if mean EP is
below 2% or PC is approximately above 95% it can be
called an excellent result, as shown in Figures 9a and 9b. If
mean EP is below 7% and PC is approximately above 85%
it can be called moderate results, as illustrated in
Figures 9c and 9d, and otherwise the results are not
good and can be considered as weak results, as presented
in Figures 9e and 9f.

Table 6 indicates that the perturbation, GAT-chirp and
SID-chirp methods have acted weakly or moderately for
the most outputs. Also, the CDP method has significantly
improved the ordinary perturbation method accuracy. The
PCs in the SID method with APRBS input (SID-APRBS),
GA tuningmethodwith APRBS input (GAT-APRBS) and
CDP method are very close for all output variables and
they have achieved better results compared to other
methods. Figure 10a illustrates that the PCs in these
methods are excellent in the variables; the LP and HP shaft
speeds and temperatures Tt25 and Tt3, moderate in the
variable; temperature Tt45 and weak in the variables;
pressures Pt25 and Ps3.

In addition, for most of the output variables, especially
in the HP shaft speed, the mean EP and themax EP indices
show that the linearization errors in the SID-APRBS,
GAT-APRBS and CDP methods are much smaller than
the ordinary perturbation method, as shown in Figures 10b
and 10c. However, for some outputs such as Ps3 and Tt3, it

Table 4. Matrices of the state-space model linearized
using the perturbation method.

_x ¼

A

x+

B

U

�1:763 0:1881
�1:4001 �1:4461


 �
2164:2
4907:3


 �

y=

C D

1 0

0 1

0:0991 �0:0233
0:0534 �0:0048
0:5359 0:0471
0:0571 0:0376
�0:0378 0:0219

2

666666664

3

777777775

0

0

1:7364
0:3544
598:5835
40:7922
410:7781

2

666666664

3

777777775

Fig. 8. Effect of the time step and deviation value in the perturbation method.
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can be seen that the max EPs are almost the same for all
methods. Moreover, the mean EPs are much smaller than
max EPs which indicates that the error is small in most of
the points which leads to a substantial reduction of the
mean EP.

4.3 Case 2: the single-input case – 80% of the LP

shaft speed

The second operating point is considered in SLS and ISA
conditions in 80% of the LP shaft speed. The values of the
defined indices in this case are listed in Table 7.

As it is shown in Table 7, similar to the first operating
point (case 1), the PCs in the SID-APRBS and GAT-
APRBSmethods are very close for all output variables and
they have achieved better results compared to the other
methods. Figure 11a shows that the PCs in these methods
are excellent for the variables; the HP shaft speed,
temperatures Tt45 and Tt3 and pressure Ps3, moderate
for the variable; the LP shaft speed and weak for the
variables; pressure Pt25 and temperature Tt25. Also, the
CDP method has much better results compared with the
ordinary perturbation method. In this case, opposite
results are obtained for some variables compared to those
in case, that is to say, for the variables in which good PCs
are not achieved in case 1, good results are obtained and
vice versa. The ordinary perturbation method has also
operated very weakly for most outputs except in tempera-
ture Tt45, and thus affects the CDP performance, which,
despite of case 1, is not good enough. The GAT-chirp
method has weak results in this case, too. Compared with
the perturbation method, the mean EP and the max EP
show that the linearization errors in the SID-APRBS and
the GAT-APRBS methods are small for all of the output
variables, as illustrated in Figures 11b and 11c.

4.4 Case 3: the double-input case

In order to analyze the performance of different methods in
the double-input case, the bleed air taken from the end of
LPC is considered as the second input. To this end, the
same conditions of the second operating point are
considered, that is, SLS and ISA conditions and 80% of
the LP shaft speed, in addition to 2.5% of bleed air. The
linearization results in this operating point using different
methods are presented in Table 8.

Figure 12a indicates that the SID-APRBS, GAT-
APRBS and CDP methods have higher PCs than other
methods and the accuracy of the ordinary perturbation
method is moderate or weak as before. However, the
accuracy of the SID method has decreased compared with
the single-input cases, which has made the performance of
the perturbation method comparable with it. Therefore,
the performance of the CDP method is almost the same as
the SID-APRBS method.

In addition, the mean and max EPs in all methods are
close and comparable to each other, as presented in
Figures 12b and 12c. This matter could be explained due to
how these methods work. The identification methods are
based on mathematical rules. So, by increasing the number

Table 5. Values of percentage of compliance for different
perturbation sizes in case 1.

Output variable Perturbation size (%) PC (%)

LP spool speed

1 95.63

2 95.10

3 94.64

4 94.47

5 94.27

HP spool speed

1 73.17

2 73.56

3 73.83

4 74.86

5 82.68

Pt25

1 77.77

2 77.19

3 76.58

4 78.15

5 79.19

Tt25

1 93.38

2 93.70

3 93.90

4 92.76

5 91.50

Pt3

1 79.77

2 79.72

3 79.66

4 79.04

5 78.86

Tt3

1 92.76

2 93.57

3 94.23

4 94.35

5 95.09

Tt45

1 81.50

2 80.79

3 80.19

4 79.40

5 78.70

Thrust

1 79.11

2 79.06

3 79.04

4 79.20

5 79.35
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Table 6. Values of the defined indices in different linearization methods –Case 1.

Output variable Linearization method PC (%) Mean EP (%) Max EP (%)

LP spool speed

Perturbation 95.63 1.7 5.22

CDP 97.63 1.15 2.08

GAT-Chirp 96.08 1.49 4.74

GAT-APRBS 97.59 1.16 2.10

SID-Chirp 95.33 1.81 5.33

SID-APRBS 97.59 1.15 2.17

HP spool speed

Perturbation 73.17 12.31 27.61

CDP 98.01 0.69 7.87

GAT-Chirp 96.14 1.74 7.41

GAT-APRBS 98.02 0.69 7.31

SID-Chirp 91.04 4.05 12.73

SID-APRBS 98.11 0.66 7.37

Pt25

Perturbation 77.77 10.46 57.82

CDP 80.61 10.74 58.01

GAT-Chirp 76.24 11.22 56.61

GAT-APRBS 81.15 10.56 59.25

SID-Chirp 74.56 11.37 56.68

SID-APRBS 81.08 10.62 60.26

Tt25

Perturbation 93.38 2.76 12.17

CDP 94.17 2.65 12.20

GAT-Chirp 94.06 2.67 11.91

GAT-APRBS 94.39 2.60 11.91

SID-Chirp 93.70 2.70 11.92

SID-APRBS 94.38 2.61 12.68

Ps3

Perturbation 79.77 8.63 63.80

CDP 88.71 5.88 64.37

GAT-Chirp 87.73 6.05 63.57

GAT-APRBS 88.71 5.86 64.57

SID-Chirp 87.46 6.08 63.57

SID-APRBS 88.68 5.89 64.92

Tt3

Perturbation 92.76 3.14 23.10

CDP 97.77 1.01 23.39

GAT-Chirp 97.56 1.07 22.85

GAT-APRBS 97.72 1.03 20.77

SID-Chirp 93.60 2.66 23.63

SID-APRBS 97.78 1.01 23.35

Tt45

Perturbation 81.50 5.15 21.65

CDP 90.17 3.28 13.19

GAT-Chirp 89.61 3.36 14.79

GAT-APRBS 90.15 3.27 15.04

SID-Chirp 88.43 3.45 16.38

SID-APRBS 90.15 3.29 14.38
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Table 6. (continued).

Output variable Linearization method PC (%) Mean EP (%) Max EP (%)

Thrust

Perturbation 79.11 8.76 33.31

CDP 87.71 6.45 15.39

GAT-Chirp 87.18 6.57 17.60

GAT-APRBS 87.72 6.41 16.60

SID-Chirp 86.19 6.69 20.75

SID-APRBS 87.70 6.45 16.11

Fig 9. Typical results of linearization of some of the outputs with different percentage of compliances.

12 M. Montazeri-Gh and A. Rasti: Mechanics & Industry 20, 303 (2019)



of tuning parameters, the accuracy of these methods
decreases. But, perturbation method is based on the
physics of the system and it does not relate to the level of
complexity of the linearization case due to the number of
inputs and outputs. Therefore, the accuracy of the
perturbation methods, completely, relates to the location
of the operating point on the component maps. As
mentioned before, because of the complexity of engine
dynamic model which is due to the effect of five
characteristic curves (fan, LPC, HPC, HPT and LPT)
and multiple loops with iterative numerical solutions,
prediction of the behavior of the linear model at each
operating point is difficult. Perhaps, by adding bleed to the
system, the operating point has been transferred to a point
on the maps that the performance of the system around
that point is more similar to a linear operation.

Although GAT-APRBS method performance is com-
parable with the SID-APRBS method but it is very time-
consuming. These calculations have been conducted with a
computer having core 2 Duo of 2.5GHz CPU and 4GB of

RAM using MATLAB R2013a. The runtime of the GAT-
APRBS method program was about 10 hours in each case
while the runtime of the SID-APRBS method was about
17minutes. Thus, depending on the conditions, the proper
numerical linearization method should be selected.

5 Conclusion

In this paper, the accuracy of different numerical
linearization methods for linearizing the dynamic model
of turbofan engine was investigated. Since the explicit state
equations are not available for the dynamic model of
turbofan engine, the nonlinear thermodynamic model of
the engine should be linearized at desired operating points
for controller design. For this purpose, various methods
including the perturbation methods, system identification
method and tuning the parameters of the linear model
using evolutionary optimization algorithms were
employed. According to the analysis, it was illustrated

Fig. 10. Error indices of various linearization methods–Case 1.
Fig. 11. Error indices of various linearization methods–Case 2.
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Table 7. Values of the defined indices in different linearization methods –Case 2.

Output variable Linearization method PC (%) Mean EP (%) Max EP (%)

LP spool speed

Perturbation 67.36 16.57 45.02

CDP 83.61 7.26 25.33

GAT-Chirp 78.69 11.20 35.39

GAT-APRBS 90.79 4.65 12.76

SID-Chirp 89.94 4.82 15.07

SID-APRBS 90.95 4.69 11.09

HP spool speed

Perturbation 92.84 3.08 13.99

CDP 96.20 1.62 6.43

GAT-Chirp 85.22 11.63 25.95

GAT-APRBS 96.55 1.50 8.09

SID-Chirp 96.10 1.58 5.21

SID-APRBS 96.96 1.48 4.88

Pt25

Perturbation 42.41 30.51 77.48

CDP 74.48 12.32 38.67

GAT-Chirp 72.71 15.72 39.69

GAT-APRBS 87.79 6.35 36.38

SID-Chirp 86.75 6.59 34.17

SID-APRBS 88.09 6.40 34.98

Tt25

Perturbation 43.77 30.06 78.30

CDP 73.64 12.71 41.32

GAT-Chirp 76.95 11.79 47.32

GAT-APRBS 86.81 6.93 36.95

SID-Chirp 85.58 7.21 34.65

SID-APRBS 87.10 6.99 35.58

Ps3

Perturbation 77.63 10.94 38.43

CDP 89.55 4.99 38.48

GAT-Chirp 85.52 6.88 43.29

GAT-APRBS 97.30 1.23 38.33

SID-Chirp 97.27 1.27 38.39

SID-APRBS 97.38 1.24 38.53

Tt3

Perturbation 80.45 9.60 38.78

CDP 89.40 4.96 38.76

GAT-Chirp 88.54 5.60 40.52

GAT-APRBS 96.20 1.75 39.48

SID-Chirp 95.95 1.80 38.88

SID-APRBS 96.23 1.76 38.88

Tt45

Perturbation 96.83 0.69 8.16

CDP 96.29 0.91 8.67

GAT-Chirp 88.40 8.02 17.15

GAT-APRBS 98.67 0.23 9.71

SID-Chirp 98.60 0.27 9.26

SID-APRBS 98.75 0.21 9.01
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that the ordinary perturbation method had the lowest
accuracy and the SID-APRBS, GAT-APRBS and CDP
methods generated higher percentage of compliances.
Although, in the single-input cases, the SID-APRBS
method was more reliable and had priority over the other
methods, in the double-input case, the performance of this
method decreased and the CDP method was more reliable.
On the other hand, the percentage of compliances of the
SID-APRBS and GAT-APRBS methods were not very
different, but the evolutionary optimization methods are
very time-consuming. The analysis indicated that the
deviation value in the perturbation method has not a
significant effect on the accuracy of the linear model and it
should be selected due to the range of operation of the
system, as well as the operation range of the linear model
around the operating point.

Nomenclature

APRBS Amplitude Modulated Pseudo Random Binary
Sequence

h Vector of health parameters
HPC High pressure compressor
HPT High pressure turbine
HPTACC HPT active clearance control
ILP, IHP Moment of inertia of LP and HP shafts
LPC Low pressure compressor
LPT Low pressure turbine
LPTACC LPT active clearance control
NLP, NHP LP and HP shaft speeds
_NLP, _NHP LP and HP shaft angular accelerations
Pt25 HPC inlet total pressure
Ps3 HPC exit static pressure
Tt25 HPC inlet total temperature
Tt3 HPC exit total temperature
Tt45 HPT exit total temperature
u Vector of control variables
VBV Variable bleed valve
VSV Variable stator vane
x Vector of state variables
y Vector of output variables

Table 7. (continued).

Output variable Linearization method PC (%) Mean EP (%) Max EP (%)

Thrust

Perturbation 77.50 10.77 24.40

CDP 88.69 5.40 13.25

GAT-Chirp 80.81 8.54 19.84

GAT-APRBS 98.90 0.31 5.56

SID-Chirp 98.88 0.41 6.11

SID-APRBS 99.03 0.30 5.93

Fig. 12. Error indices of various linearization methods –
Case 3.
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Table 8. Values of the defined indices in different linearization methods � Case 3.

Output variable Linearization method PC (%) Mean EP (%) Max EP (%)

LP spool speed

Perturbation 83.94 6.23 27.09

CDP 88.76 5.53 14.76

GAT-Chirp 82.34 7.47 28.18

GAT-APRBS 88.42 5.40 18.54

SID-Chirp 87.49 5.87 20.97

SID-APRBS 88.79 5.48 16.23

HP spool speed

Perturbation 78.61 6.20 28.86

CDP 86.59 4.34 14.41

GAT-Chirp 84.75 4.44 26.60

GAT-APRBS 85.19 4.26 25.45

SID-Chirp 82.01 5.53 23.48

SID-APRBS 86.49 4.26 16.35

Pt25

Perturbation 70.96 9.46 45.99

CDP 80.36 7.70 43.66

GAT-Chirp 74.74 7.73 41.27

GAT-APRBS 79.41 7.24 42.22

SID-Chirp 75.98 8.34 44.17

SID-APRBS 80.55 7.51 43.67

Tt25

Perturbation 80.79 5.79 36.30

CDP 87.11 4.99 37.95

GAT-Chirp 79.89 6.60 39.89

GAT-APRBS 86.84 4.72 37.01

SID-Chirp 84.31 5.29 38.16

SID-APRBS 87.41 4.87 37.91

Ps3

Perturbation 89.50 3.47 18.21

CDP 92.67 2.76 10.40

GAT-Chirp 82.16 5.38 29.00

GAT-APRBS 92.00 2.71 13.84

SID-Chirp 91.59 3.02 14.31

SID-APRBS 92.69 2.71 11.65

Tt3

Perturbation 94.01 2.18 13.56

CDP 95.71 1.59 12.06

GAT-Chirp 86.75 7.62 22.50

GAT-APRBS 95.06 1.80 9.53

SID-Chirp 94.93 1.98 12.33

SID-APRBS 95.67 1.60 12.43

Tt45

Perturbation 84.88 3.43 16.04

CDP 90.46 2.24 10.38

GAT-Chirp 87.23 3.45 14.42

GAT-APRBS 89.80 2.27 13.11

SID-Chirp 89.09 2.54 11.25

SID-APRBS 90.46 2.18 11.50
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