Analyzing Distributed Denial of Service Tools:

The Shaft Case

Sven Dietrich NASA GSFC/Raytheon ITSS spock@netsec.gsfc.nasa.gov

Neil Long Oxford University neil.long@computing-services.oxford.acuk

> David Dittrich University of Washington dittrich@cac.washington.edu

December 8, 2000

Overview

- Terminology
- Evolution of DoS into DDoS
- DDoS impact overview
- Shaft
- Defensive measures
- Summary
- Future trends

Terminology

- Denial of Service
 - Overwhelming the victim to the point of unresponsiveness to the legitimate user
 - By carefully constructing a sequence of packets with certain characteristics, an intruder can cause vulnerable systems to crash, hang, or behave in unpredictable ways

Evolution of DoS

- Simple DoS
- Smurf DoS
- Coordinated DoS
- Distributed DoS

Simple Denial of Service (DoS)

- Point to point, direct phenomenon
- Examples:
 - ► TCP SYN flooding
 - ► ICMP flooding
 - ► UDP flooding
 - ► Ping of Death

Smurf-type Denial of Service

- Indirect phenomenon
- Requires help from a (misconfigured) third party
 Amplifier
 Amplifier
 Victim
 Victim

Coordinated Denial of Service

- Collaborative phenomenon
- Requires help from and coordination with multiple parties

Distributed Denial of Service (DDoS)

DDoS 101

- One single thread, attacker to victim
- Handler: the program that controls the agents
- Agent: performing the actual DoS attack on behalf of the handler
- Command sets for attacker-handler and handler-agent communications

So what's the big deal with DDoS?

- Problem recognized at CERT DSIT workshop (November 1999)
- Higher complexity
- Greater distance from victim to attacker
 - ► Traceback problem
- Offensive capabilities of a "single attacker" enhanced
 - Attacks can be sized accordingly (e.g. 25, 250, 2500, 25000 agents), dynamically, if necessary
- Attacks are quite effective (U of MN August 1999, February 2000 events, etc.)

DDoS impacts

- Packet payloads
- TCP SYN packets
 - ► Fill state tables, buffers
- UDP packets
 - ► Bandwidth consumption
- ICMP packets
 - Ping floods, malformed packets, oversized packets
- TCP options, fragments, etc.
- IP Spoofing
 - ► None whatsoever
 - ► Spoofing at subnet boundaries
 - ► Full spoofing

The network level

- Determining whether you are under attack or attacking someone else
 - ► Anomaly detection
 - ► Performance
 - ► Gateways
 - ► Uplinks/ISP(s)
- More signs
 - ► Network failure
 - ► Complaints

The host level

- Host performance impacted
- Agent/handler binaries sometimes hidden
 - ► by rootkits, at times for months!!!
 - ► Trying to 'blend', by naming schemes:
 - I /usr/bin/rpc.listen
 - I /usr/bin/rpc.bind
 - I httpd
 - I idle.so
- Need for good forensics
 - ► find_ddos [NIPC]
 - ► TCT [Venema, Farmer]
 - ≻ Isof

Where does Shaft fit in?

- Trinoo [Dittrich, 1999]
- Tribe Flood Network [Dittrich, 1999]
- Stacheldraht [Dittrich, 1999]
- TFN2K [Barlow, Thrower, 2000]
- Shaft [Dietrich, Long, Dittrich, LISA 2000]
- Mstream [Dittrich, Weaver, Dietrich, Long, 2000]
- Stacheldraht 1.666 [Dittrich, Dietrich, Long, unpublished] [NIPC2000]
- Omega [Dittrich, Weaver, Long, Dietrich, unpublished]
- Trinity, Entitee, Plague, myServer, ...

Shaft analysis goals

Know thy enemy

Dietrich, Long & Dittrich

The Shaft incident

- Data shown as seen by an agent network
- Observed data 28 November 1999 4 December 1999
 - ► Data sampling rather coarse
 - ► Various tools: Argus, NeTraMet, tcpdump
- The handler
 - ► Taken offline in March 2000 (!)
 - ► Online since ???

Shaft floods

More Shaft floods

Dietrich, Long & Dittrich

USENIX LISA 2000 - New Orleans, LA

Multi-target Shaft flood

Dietrich, Long & Dittrich USENIX LISA 2000 - New Orleans, LA

Challenges in the Shaft analysis

- Reconstructing the tool command set
- Passwords for commands encrypted with Caesar cipher
- Access passwords were super-encrypted
 - String in binary looked like crypt() string, e.g.
 mk-Nw/TTjr4n1
 - But '-' is not in the 64-character output set of crypt()! Shifting the string by 1 character gives

nl.Ox0UUks5o2

which is a valid crypt() string

► Decrypts to fisa2000'

Network defenses

- Network analysis tools overwhelmed or confused
 - Accuracy of data, dropped packets, better log raw packets
 - Differentiate flood and control traffic
- Impact reduction
 - ► Traffic limiting, redundant pathways, deflection
- Source of IP packets
 - ► Need to trace spoofed packets to find agents
 - ► Traceback efforts
 - I ICMP Traceback [Bellovin 2000]
 - I Packet marking scheme [Savage et al. 2000]
 - Advanced packet marking scheme [Song, Perrig, 2000]
 - I Tracing anonymous packets [Cheswick, Burch, 2000]

• Guidelines in CERT DSIT Report

Host defenses

- Protecting the host as a target
 - Host hardening against network attack [Schuba et al., Oakland 1997]
 - ► Kernel tuning
- Protecting the host as a source
 - ► Host hardening against compromise
 - ► Integrity checking
 - ► Removing host offensiveness [Rosti et al, ACSAC 2000]

What can we do?

- Commercial solutions?
 - ► Bigger, better IDS?
- Anomaly detection
 - ► Free tools work fine, but difficult to maintain
 - Must know what is 'normal'
- Check networks for known DDoS tools
- Coordinate efforts
 - ► Interdisciplinary
 - National/international
- Forensics
 - ► Recover as much as possible

Summary

- The DDoS problem is not going away
 - ► Political/cyberwarfare consequences
 - ► No silver bull et
 - Even crude, buggy DDoS code has tremendous impact
 I Trinoo
- Education is the key
 - ➤ The earlier this gets recognized/stopped, the better
- Tracking/tracing
 - ► Need is obvious
 - ► Legal and privacy issues

Future trends

- Sophistication
 - ► Hybrid tools
 - ► Anonymization
 - Encryption of communication channels
 - ► Use of 'non-removable'' channels
 - ► Hidden channels
 - Combination/probabilistic attacks
 - I "whack-a-mole" attacks [Longstaff, NISSC 2000]
- Simplification
 - ➤ Disposable, one-time use DDoS tools
 - ► Fire and forget

Acknowledgements & Contact info

- Special thanks to:
 - ► CERT/CC
 - ► FIRST
 - ► NASIRC
- Contact info:
 - http://netsec.gsfc.nasa.gov/~spock/
 - http://staff.washington.edu/dittrich/