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Abstract-By adopting a suggestion made by Thomason, a new failure criterion for the Gurson- 
Tvergaard model has been recently introduced by the authors. In this study, a method based on the 
Gurson-Tvergaard constitutive model and the new failure criterion is applied to the analysis of ductile 
fracture. The main features of the method are that the material failure is a natural process of the 
development of Thomason’s dual dilational constitutive responses, and the void volume fraction 
corresponding to the failure by void coalescence is not necessarily a material constant and is not needed 
to be fitted beforehand. Furthermore, void nucleation parameter(s) can be numerically fitted from 
experimental tension results. This method has been implemented into the ABAQUS finite element 
program via a user material subroutine and is applied to the prediction of tension problems conducted 
by the authors. In the analyses, two strain-controlled void nucleation models have been studied and 
compared. The void nucleation parameters corresponding to the two models have been calibrated. The 
crack initiation of both smooth and notched axisymmetric tensile specimens are well predicted by the 
method. Finally, several critical issues in the analysis of ductile fracture are discussed. 

INTRODUCTION 

It is known that ductile fracture occurs in plastic deforming metals through the nucleation, 
growth and coalescence of small voids or cavities. Considerable effort has been expended in the 
past two decades in the development of ductile fracture characterization of engineering materials; 
such as J-integral, COD, etc. However, applications of these criteria addressed to the whole history 
and the fracture from the initiation to rapid crack growth have caused concern when large 
irreversible plastic deformation is developed at the crack tip. Due to the limitations of the 
conventional global fracture criteria, there has recently been considerable interest and research on 
“local approaches” to fracture [ 1-51. 

A micro-mechanical model based yield function introduced by Gurson [6,7] and modified by 
Tvergaard [ 8,9] has been applied more than any other models as a dilational constitutive equation. 
In the Gurson-Tvergaard model, the void volume fraction of the material has been incorporated 
into the yield function. Although the Gurson-Tvergaard model, therefore, demonstrates the soften- 
ing effect of the material, the model itself does not constitute a fracture criterion. Hence, a criterion 
for void coalescence has to be used to simulate the material failure. 

In line with pure mathematical convenience, a criterion (Fc) using a constant critical void 
volume fraction, f,, has almost always been used in theoretical analyses and practical applications 
using the Gurson-Tvergaard model [ 10-151. However, whether the critical void volume fraction 
is a material constant, or whether the critical void volume fraction is independent of the stress 
state, is questionable, On the other hand, the constant critical void volume fraction is difficult to 
determine and there is a possible discrepancy in Fc when the void nucleation is taken into account. 
A detailed discussion of this problem will be presented in the next section. 
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Recently, based on a proposal made by Thomason [ 161 and by modifying Thomason’s plastic 
limit-load criterion (Sc) [ 16-18] for void coalescence, a new failure criterion (NSc) which is fully 
compatible with the Gurson-Tvergaard model has been introduced by the authors [ 191. The 
criterion is a natural result of the development of dual, stable and unstable, constitutive responses 
introduced by Thomason [ 16,171. According to Thomason’s theory [ 16,171, in the beginning of 
plastic loading, the deformation is homogeneous and the material is controlled by the stable 
dilational constitutive response. During the loading, once the unstable dilational response, which 
signifies the void coalescence mode, prevails, then the material starts to fail. 

In this study, the Gruson-Tvergaard model and the new failure criterion have been implemented 
into the commercial finite element program ABAQUS via the user material subroutine. This 
method is applied to the analysis of ductile fracture of tension specimens tested by the authors. It 
will be shown that this method can well predict the crack initiation and fracture behaviour of 
smooth and notched axisymmetric tensile specimens. The main features of this method are that 
the critical void volume fraction, f,, which signifies the material failure by void coalescence need 
not be predetermined. On the other hand, the void nucleation parameter(s) which is difficult to 
monitor in experiments and is usually “arbitrarily” chosen, can be numerically calibrated from, 
for example, notched axisymmetric tension tests. The final purpose of our studies is to simulate 
the ductile fracture behaviour of welded T-joints by using this method. The parameters calibrated 
from this study together with the parameters for heat-affected-zone (HAZ) material will be used 
in the analysis of welded joints. 

GURSON-TVERGAARD MODEL AND ITS FAILURE CRITERIA 
Gurson-Tvergaard model 

The Gurson-Tvergaard model [ 6-91 has recently been increasingly popular for simulating 
plastic flow localization and ductile fracture problems. A detailed description of the model can be 
seen in [6,9]. In the following text only a brief overview of the model is provided. 

Gurson [6,7] proposed the following approximate yield function (ql = 1, q2 = 1) for a porous 
solid with a randomly distributed volume fraction f of voids: 

where constants q1 and q2 were introduced by Tvergaard [8,9] to bring predictions of the model 
into closer agreement with full numerical analyses of a periodic array of voids. Here (T, and q are 
the mean normal and effective part of the average macroscopic Cauchy stress c, and 5 is the yield 
stress of the matrix material. The void volume fraction increase in the model is written: 

df = dfgrowth + dfnucleation 

The void growth law is described by: 

dfgrowth = ( 1 -f)deP : I ( 3 )  
which is an outcome of plastic incompressibility of the matrix material. In Eq. (3), de* and I are 
the plastic strain increment tensor and the second order unit tensor, respectively. In reality, void 
nucleation is a very complicated and difficult matter. Nevertheless, the nucleation of new voids in 
the Gurson-Tvergaard model is usually taken to be either strain-controlled or stress-controlled 
[ 61. Because they are relatively easy to handle, strain-controlled nucleation models are widely 
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used in the literature [8,9,13-151 

dfnuclearion = AdEP (4) 
where Ep is the equivalent plastic strain in the matrix material. Parameter A depends on the void 
nucleation model used. Two strain-controlled void nucleation models have been seen in the 
literature. One is the continuous nucleation model by Gurland [20J with a Iinear relation to 
equivalent plastic strain ( A  is kept constant). Another one was proposed by Chu and Needleman 
[21] where the void nucleation is assumed to follow a normal distribution as suggested: 

with fN = volume fraction of void nucleating particles, cN = mean strain for void nucleation, 
SN = corresponding standard deviation. In general, for the strain-controlled nucleation case, the 
coefficient A in Eq. (4) can be written 

A = A,  + A1 (6) 

Furthermore, the equivalence of the overall rate of plastic work and that in the matrix material 

(7) 

where A, is the constant or void nucleation intensity of the continuous void nucleation model. 

leads to 

d : d & P  = ( 1 - f )8dE*.  

The flow rule is usually assumed to obey macroscopic normality, so that, 

It can be easily seen that the Gurson-Tvergaard model itself does not constitute any fracture 
criterion. An extra failure criterion should be used to signify the material failure by void coalescence. 
Once the failure by void coalescence appears according to a specific criterion, numerically it is 
preferred to simulate the material separation gradually, rather than suddenly. Therefore, a modifi- 
cation using the following f * to replace f in Eq. (1) has been proposed by Tvergaard and 
Needleman [lo] and applied in our study: 

Here, f, is the critical void volume fraction at which voids coalesce, which in the present study 
was determined by the new criterion, and K is a constant determined from the void volume 
fraction, fF, which is the void volume fraction at final failure of the material: 

where f :  is the ultimate void volume fraction and f: = l /ql .  

Failure criteria 
Two failure criteria, namely Fc and Sc for the Gurson-Tvergaard model have been identified 

by the authors [ 19,22,23]. Here Fc is the criterion using a constant critical void volume fraction 
f , ,  which can be either determined by a cell model analysis [24] or by a method proposed by Sun 
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et al. [14,15]. Here, “constant” means that the critical void volume fraction is independent of 
stress triaxiality and can be applied to other stress states, once determined from one stress state. 
It has been pointed out [19,22] that even in the absence of void nucleation, f, is difficult to 
determine. When void nucleation is taken into account, f ,  depends on the choice of the nucleation 
parameter(s). Because of the difficulty in measuring the nucleation parameter@) in practice, usually 
an approximate void nucleation model and parameter(s) are used. There is a possible discrepancy 
in Fc when void nucleation is considered, which can be illustrated in the following simple numerical 
example. In the numerical example, two pairs of parameters were used: case 1, f o  = 0.0, fN = 0.04, 
gN = 0.3 and the calibrated f, = 0.104; case 2, fo = 0.0, fN = 0.04, cN = 0.25 and the calibrated 
f c  = 0.109. In these two pairs, there is only a slight difference in E ~ .  Case 1 was probably first used 
in [ lo] and lately widely used in the literature. 

The two f, values were calibrated from a smooth axisymmetric tensile specimen which is 
approximately simulated by one element with stress triaxility T =  0.333 ( T  is defined as the ratio 
of o,/q) and stopped at axial strain 1.2. A power-hardening matrix material with power 0.11 was 
used in the numerical example. Figure l(a) shows that the two pairs of parameters give virtually 
identical predictions but different critical void volume fractions. Then these two pairs of parameters 
were applied to a high stress triaxility ( T =  2) case. It can be found that there are considerable 
differences both in the ductility and load-carrying behaviour, see Fig. 1 (b). Therefore, the non- 
unique nature of Fc would in certain cases yield large differences in practical applications. Here 
we only slightly changed the value of E ~ ;  similarly or possibly even worse behaviour may be 
expected if other parameter(s) are varied. 

Thomason [ 16- 181 has developed a dual dilational-plastic response theory for ductile fracture 
by void coalescence. According to his theory, Thomason [ 161 has also suggested two modifications 
to the Gurson-Tvergaard model. Based on one of the suggestions and by modifying Thomason’s 
[ 161 micro-mechanical plastic limit-load model for void coalescence (Sc), a new failure criterion 
(NSc), for the Gurson-Tvergaard model has been recently introduced by the authors [ 19,221. In 
Sc and NSc, ductile fracture is interpreted as an unstable bifurcation of the macroscopic plastic 
flow field in the model bulk material. This bifurcation is the transition from a homogeneous flow 
field to one in which deformation is concentrated in a thin band. Two dilational yield surfaces 
have been defined by Thomason [ 161. They are: the weak dilational yield surface, which represents 
the stable homogeneous plastic flow field, and the strong dilational surface, which signifies the 
virtual unstable mode of incipient void coalescence. Thomason [ 161 observed that a necessary 
condition for continuing homogeneous ductile flow in a 2D void-containing body (see Fig. 2(a)) is 
that the virtual mode of incipient void coalescence cannot develop in the intervoid matrix, 

6 1  
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Fig. 1. Normalized stress-strain in axial direction for the case with stress triaxiality (a) T=0.333, 
(b) T = 2.0. 
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o y k  < oitrong. Therefore, the critical condition for the failure by void coalescence can be written: 

(11) 

where o y k  is the current maximum principal stress for the homogeneous flow field on the weak 
dilational-plastic yield surface, which for a real problem can be calculated by any analytical or 
numerical method, eg. the finite element method; and o y g  is the incipient void coalescence stress 
on the strong dilational-plastic yield surface [ 161 which is directly related to the plastic constraint 
factor by: 

oweak - @rang 
1 -  1 

where oJr7 is the plastic constraint factor presented by Thomason [16] and A, is the net area 
fraction of intervoid matrix in the maximum principal stress direction which in this case is the z 
direction (Fig. 2). It must be noted that o y k  depends on the material model adopted, current 
stress state and internal state variables, while o;trong is solely determined by the current void-matrix 
dimensions and the yield stress of the matrix material. 

The original plastic limit-load model [ 161 was based on the void shape (elliptical) calculated 
using the Rice-Tracy theory [ 251 and real void-matrix dimensions. Furthermore, von Mises yield 
model was adopted as the weak dilational yield surface. The macroscopic yield stress was approxi- 
mately decreased using a “law of mixtures” [16] to consider the dilational effect caused by the 
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void. With these limitations in mind, the following modifications have been tested by the authors 
[ 19,231: as originally suggested by Thomason [ 161, use the Gurson-Tvergaard model to charac- 
terize the material as the weak yield surface; furthermore, assume that the void grows spherically 
and calculate the void and matrix geometry changes using the current strain and void volume 
fraction from the Gurson-Tvergaard model. These modifications, illustrated in Fig. 2( b), lead to 
a new failure criterion [ 19,221 which is fully compatible with the Gurson-Tvergaard model. By 
comparing the predictions by the new failure criterion with the finite element results of Koplik 
and Needleman [24], the authors [19,22] concluded that the new failure criterion is not only 
accurate, but also versatile. According to these modifications, the void-matrix geometry for the 
2D problem shown in Fig. 2( b) can be calculated: 

R = R,E~x (14) 
where E, and E, are the strains in x and z axes, R, is the initial value of R and f is the current 
void volume fraction. After the modification, the plastic constraint factor is solely determined by 
r /R  as 

for the plane strain problem. Equation ( 15) was presented by Thomason [ 161 and is derived from 
plane-strain slip-line field solutions for the microvoid coalescence problem. 

Then the plastic limit-load condition, Eq. (ll),  after modification can be rewritten as: 

With Eqs (131, (14) and the maximum principal stress which can be calculated from the Gurson- 
Tvergaard model, the plastic limit-load condition Eq. (16) can be evaluated. Once the condition 
is satisfied, the void coalescence starts to occur and the void volume fraction at this point is the 
critical void volume fraction, f,, in the Gurson-Tvergaard model. 

The above work makes the plastic limit-load model fully compatible with the Gurson-Tvergaard 
model, such that no extra work is necessary, except the evaluation of the void coalescence condition. 
From Eqs (13) and (14), it can be seen that the left hand side of Eq. (16) is a function o f 5  E, and E,. 

NUMERICAL PROCEDURES 

The method described above has been incorporated into the ABAQUS program, via the user 
material subroutine. The non-linear equations were solved using the Newton method. The numeri- 
cal integration was efficiently performed using the generalized mid-point algorithms and their 
explicit seven-constant consistent tangent moduli for pressure-dependent material models recently 
developed by the authors [22,26,27]. It has been found that for the Gurson-Tvergaard model, the 
true mid-point algorithm is usually the most accurate one, and the one-step Euler forward algorithm 
has the poorest accuracy. However, considering the extra non-symmetric property of consistent 
tangent moduli of the true mid-point algorithm, in general the Euler backward algorithm is 
recommended [22,27]. The following sequence is used in the method. First in the user subroutine, 
the stress was updated using the Euler backward algorithm [20,27]. During the stress updating, 
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the maximum principal stress and strains are evaluated. After the stress has been updated, the 
plastic limit-load constraint factor was calculated and compared with the maximum principal 
stress to test the void coalescence condition. Once the failure condition is satisfied, the modification 
to take into account the void coalescence effect, Eq. (9), is used. Finally, the linearization or 
consistent tangent moduli is obtained. It should be noted that the value of the ultimate void 
volume fraction f: has no physical meaning but the product q l f :  in the yield function may not 
equal to 1, in order to keep numerical stability. For this reason, qlf: % 0.9 was used. 

APPLICATIONS 

In order to test the present method and obtain the necessary parameters for the simulation of 
welded T-joints, axial tensile specimens were tested by the authors, which included smooth and 
notched specimens. The experiments were performed with a Finnish steel, Fe510. The main elements 
of the chemical composition (wt.%) of the steel were: 0.136 C,  1.47 Mn, 0.15 Si, 0.0065 S and 0.016 P. 

A wide series of tests for (cold-formed) rectangular hollow section K-joints have been performed 
[28]. This study is one step in an attempt to explain the fracture behaviour of these specimens. 
Because raw material was not available, the material of the tensile specimens was cut from an 
undeformed area of the cold-formed rectangular hollow section chords (made of hot-rolled plate) 
of the joint specimens. The nominal thickness of the hollow section is 8 mm. The diameter of the 
smooth bar and maximum and minimum diameters of the notched ones are 4, 7 and 4mm, 
respectively. Two notch radii, 1.75 (mesh AX1) and 0.875 (mesh AX2) mm were used. The finite 
element meshes for the smooth (AXO) and two notched specimens are shown in Fig. 3. In order 
to test the mesh size effect, very fine meshes for the two notched specimens were created, with one 
for notched specimen 1, shown in Fig. 3, for comparison purposes. An initial imperfection of 
0.01 mm in diameter was used at the bottom of model AX0 in order to initiate the necking. An 
important step in the analysis of a smooth bar is the simulation of the necking which usually 
occurs at maximum load during the displacement-controlled test [ 151. It has been shown by many 
researchers that the Bridgman approach [ 16,291 can well calibrate the true stress-strain relation. 
The Bridgman-corrected true stress-strain relation of the present material was used in all the 
analyses. The elastic parameters used were Young’s modulus E = 206 GPa and Poisson’s ratio 0.3. 
The initial yield stress of the steel was 480 MPa. Below 0.195 strain, the true stress - true strain 
was approximated by multi-linear curves. No hardening was available after a strain of 0.5. Between 
0.195 and 0.5, an extrapolation a = 6858°.085 was used. In the following analysis, fF = 0.125 and 

Fig. 3. Axisymmetric finite element meshes for smooth and notched specimens, (a) AXO, (b) AX1, (c) AX2 
and (d) FAX1. 
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1- 

f:=0.605 in Eq.(lO) were used, except for the cases otherwise mentioned. As proposed by 
Tvergaard [8,9], q1 = 1.5 and q2 = 1.0 were used in Eq. (1). 

The main chemical composition of the steel is similar to the steel in [30]. A metallographic 
analysis of the inclusions, mainly manganese sulphides, gave the average size in the length direction 
of 5.7 pm, with minimum size 2.8 pm and maximum 42.5 pm. The metallographic data for the area 
or volume fraction of the inclusions was not available. However, the inclusion dimensions of 
present material is very close to those of the material studied in [3]. Both Refs [30] and [33, 
where metallographic data for inclusion volume fraction was available, have shown that an 
approximate formula by Franklin [31] can well estimate the volume fraction of MnS inclusions. 
So, as a first approximation, the initial void volume fraction is taken to be the volume fraction of 
MnS inclusions [3,30] estimated from the formula by Franklin [31] 

I 

For the present steel S = 0.0065% and Mn = 1.47% and so fo = f v  = 0.00031, which is reasonable 
compared with values given in [3,14,15,30]. As is normal practice, the initial void volume fraction 
is assumed to be present at the beginning of plastic loading. This initial void volume fraction fo, 
has been applied in all the analyses of the specimens, with results shown in Fig. 4. It has been 
clearly shown that with fo alone, the predicted diameter-reductions corresponding to crack in- 
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Fig. 4. Load-diameter reduction curves of (a) 
smooth specimen, mesh AXO, (b) notched speci- 
men 1, mesh AX1 and (c) notched specimen 2, 
mesh AX2. The continuous void nucleation 

model was used in the calculation. 

0 
0 0.4 0.6 1.2 1.6 2 

0 0.4 0.8 1.2 

0 0.4 0.8 

CiAMETER REDUCTION mm 

Fig. 5. Load-diameter reduction curves of (a) 
smooth specimen, mesh AXO, (b) notched speci- 
men 1. mesh AX1 and (c) notched specimen 2, 
mesh AX2. The void nucleation model by Chu 
and Needleman [21] was used in the calculation. 
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itiation are too large compared with the experimental ones in all the three cases. Therefore, it 
means the nucleation of new voids during the loading should be taken into account in the analyses. 
The two void nucleation models introduced early were tested. The typical shapes of the two models 
are shown in Fig. 6. As described before, one main feature of the present method is that the critical 
void volume fraction does not need to be determined beforehand and the nucleation parameters 
A, or Al can be fitted from experimental results. In the following, we shall try to fit the void 
nucleation parameters. 

At first, the continuous void nucleation model was adopted. Three values of A,, 0.0, 0.001 and 
0.002 were tested. The predicted results are compared with experimental ones for the three 
specimens in Fig. 4. It can be seen that the difference in crack initiation caused by the difference 
in .Ao is larger for the smooth specimen than for the notched specimens. On average, the value 
A, = 0.002 gives the best predictions for the three cases. 

Then the void nucleation model by Chu and Needleman [21] with E~ = 0.3 and SN = 0.1 was 
tried. Also three values of fN, 0.0, 0.001 and 0.002 were tested. The predicted results are shown in 
Fig. 5. Although the nucleation intensity of this model is very different to that of the continuous 
model (see Fig. 6 ) ,  it is interesting to find that the predictions by this model are quite similar to 
those by the continuous model. As in the continuous model, the value 0.002 for fN generally gives 
the best fit to the experimental results. 

DISCUSSION 

Void nucleation modelling 
There are two kinds of void nucleation in the Gurson-Tvergaard model the initial void 

nucleation of large inclusions and the intermediate void nucleation of secondary particles or small 
carbides. As mentioned earlier, in line with convenience, it is usually assumed that the initial voids 
nucleate at the beginning of plastic deformation, although nothing prohibits the introduction of a 
nucleation criterion for the initial voids. It has been shown that the modelling of intermediate 
nucleation is necessary and important in the analysis using the Gurson-Tvergaard model, at least 
for this steel. The use of the strain-controlled nucleation model has several advantages, it is easy 
to handle and no extra term added to the asymmetry of the tangent moduli. In practice, it is very 
difficult to determine the void nucleation model and its parameters. In failure criterion Fc, the 
nucleation parameter(s) is usually selected beforehand and the critical void volume fraction is 
determined later, or vice versa. Because there is no mechanism for void coalescence available in 
Fc, for any strain-controlled nucleation model, either the nucleation parameter(s) or the critical 
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Fig. 6. Void nucleation intensities as a function of equivalent plastic strain for two void nucleation 
models. Mod A0 is the continuous void nucleation model and Mod A1 denotes the void nucleation 

model by Chu and Needleman [ 2 1 ] .  
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void volume fraction can be taken as independent variables. Thus the non-consistency problem 
described earlier occurs in Fc. However, in the new criterion NSc, a coalescence mechanism which 
is fully compatible with the Gurson-Tvergaard model has been installed into the Gurson-Tvergaard 
model. Void coalescence is therefore a natural development of the stable and unstable responses. 
In contrast with Fc, in NSc the void nucleation parameter(s) is the only independent variable 
which can be fitted from experimental results. In nature, the discrepancy problem has not been 
absolutely eliminated in NSc, because of the inability to determine accurately the void nucleation 
model and select its parameters, for example, the values of E~ and S,. However, for a simple 
nucleation model such as the continuous void nucleation model, the nucleation parameter is solely 
determined without any ambiguity. Two nucleation models have been compared in the previous 
section. It was interesting to find that the simple continuous nucleation model works equally as 
well as the more complicated model by Chu and Needleman [21]. This finding may suggest that 
by using the simple nucleation model and the new failure criterion, the risk of a non-consistency 
problem could be reduced to as small as possible. 

Effect of mesh size 
One of the important aspects in continuum damage mechanics is the so-called critical length 

effect. Because the finite element method is usually involved in continuum damage mechanics, so 
the critical length is directly related to the finite element mesh size. It is essential to note that the 
mesh size effect is effective only when the stress distribution is uneven. Two meshes, FAX1 (shown 
in Fig. 3) and FAX2 which use half of the mesh size of AX1 and AX2 were created in order to 
study the mesh size effect. Figure 7 shows the stress triaxiality results near the minimum section 
at the nearest integration point to the centre and at the nearest integration point to the surface as 
a function of the macroscopic equivalent strain, 2 ln(Do/D,), where Do and D, are the initial and 
current diameter at the notch. It should be mentioned that in Fig. 7, von Mises yield model was 
used. It can be seen that in both cases studied the mesh size has negligible effect on the stress 
triaxiality, especially at the centre. As well as the mesh size effect on stress triaxiality, the effect on 
the fracture behaviour has also been studied, which is shown in Fig. 8. It can be observed that 
crack initiation in the fine mesh, FAX1, occurred slightly earlier than that in AX1. The only 
significant effect of the mesh size is the post initiation load diameter-reduction behaviour, which 
is not very important in the calibration of nucleation parameters. A similar finding has been 
reported by Batisse et al. [ 301. In conclusion, the mesh size effect in the notched tension specimens 
studied is not significant and the finite element meshes used in this study are accurate enough for 

0 0.1 0.2 0.S 0.4 0.6 0 0.1 0.2 0.1 OA 0.6 

2ln(Do/D1) 21n(Do/Dj ) 

Fig. 7. Stress triaxility as a function of the macroscopic equivalent strain for (a) notched specimen 1 and 
(b) notched specimen 2. No damage is involved in the calculation. In the legend “-c” means the centre 

and “-S” the surface. 
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Fig. 8. Load-diameter reduction curves of 
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Fig. 9. The effect of fF, mesh AX1, A, = 
0.002, fN = 0. The values in the legend are 

for f F .  

void nucleation fitting. In other words, stress distribution in the notched specimens is smooth 
enough so that the effect of mesh size on the void nucleation parameters to be calibrated may be 
neglected. 

Effect O f f P  

The parameter fF in Eq. (9) is defined as the void volume fraction at final failure of the material, 
which could be obtained from experiment. The value of 0.25 was originally suggested by Tvergaard 
and Needleman [lo] and has been widely used since then. As stated earlier the value 0.125 was 
used in the previous analyses. Another value of 0.2 was also tested in one analysis for comparison, 
which is shown in Fig. 9. Figure 9 clearly indicates that f F  will affect the post initiation load 
diameter-reduction behaviour, the smaller the fF value, the faster the load decreases. 

2 0  and 3 0  failure criteria 
It should be mentioned that in this study a 2D plane strain failure criterion has been applied 

to the analysis of an axisymmetric fracture problem. Strictly speaking this is an approximation. 
The situation is similar to the Gurson model. The original Gurson model was constructed from a 
2D plane strain yield field where a cylindrical void was assumed and a 3D yield field which 
contains a spherical void. Nevertheless, the Gurson model has been widely applied to axisymmetric 
problems, where axisymmetric voids by nature are involved. In order to assess the validity of a 
2D criterion on axisymmetric problems, the 3D criterion [19] has also been applied in one case. 
The results using a 3D criterion is compared with the results using a 2D criterion in Fig. 10. The 
comparison shows that the initiations predicted by 2D and 3D criteria are in very close agreement, 
with 3D criterion predicting a slightly later crack initiation. Thomason [16) has compared the 
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Fig. 10. Predictions using 2D and 3D failure criteria, mesh AX1, Ao=0.002, fN =O, fF=0.125, 
fo = 0.00031. 
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critical void growth strains from his original 2D and 3D ductile fracture criteria. For the same 
initial void volume fraction, he found that the critical “limit load” stress by 2D and 3D criteria 
were quite close to each other, even though the intervoid matrix geometries of the 2D and 3D 
models differ substantially. The actual solution for the axisymmetric problem must be near or 
between the 2D and 3D solution, so the above findings suggest that 2D or 3D criterion may be 
used for an axisymmetric problem as a first approximation. 

SUMMARY 

A method using dual dilational constitutive responses has been applied to the analysis of ductile 
fracture. The main feature is that, with this method, it is not necessary to define a critical value 
for the damage variable, i.e. the critical void volume fraction at crack initiation. In this sense, this 
method is similar to that of Rousselier. However, after the initial void volume fraction is selected, 
the void nucleation parameter(s), which is very difficult to monitor in practice, can be numerically 
fitted by comparing the predictions with experimental results. Two strain-controlled void nucleation 
models have been studied and applications made to determine the nucleation parameters for the 
two nucleation models. Despite the very different intensity distributions, it was interesting to find 
that the two models with identical A,, and fN give very similar predictions. Furthermore, several 
critical issues have been studied and it has been found that both mesh size and fF will affect the 
post initiation load-displacement behaviour. In general, though various approximations have been 
made in the formulations, reasonably good agreement between the predicted and experimental 
behaviour indicates that the current method is reasonably accurate and simple to use in the 
analysis of ductile fracture. The parameters calibrated in this study have been applied to the 
fracture behaviour of welded joints and very good results have been obtained. 
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