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Single-point mutation in genome, for example, single-nucleotide polymorphism (SNP) or rare genetic mutation, is the change of a
single nucleotide for another in the genome sequence. Some of them will produce an amino acid substitution in the corresponding
protein sequence (missense mutations); others will not. This paper focuses on genetic mutations resulting in a change in the
amino acid sequence of the corresponding protein and how to assess their effects on protein wild-type characteristics. The existing
methods and approaches for predicting the effects of mutation on protein stability, structure, and dynamics are outlined and
discussed with respect to their underlying principles. Available resources, either as stand-alone applications or webservers, are
pointed out as well. It is emphasized that understanding the molecular mechanisms behind these effects due to these missense
mutations is of critical importance for detecting disease-causing mutations. The paper provides several examples of the application
of 3D structure-based methods to model the effects of protein stability and protein-protein interactions caused by missense
mutations as well.

1. Introduction

Human DNA is not identical among individuals, and this
causes natural differences among races and ethnic popula-
tions, and also among healthy individuals and individuals
susceptible to disease. On the DNA sequence level, the
differences could be large or small, the smallest being a
difference in a single-nucleotide. If such a difference occurs
in some fraction of the population, but not in a single case,
the difference is termed single nucleotide polymorphism
(SNP) [1, 2]. Some of the SNPs occur at the noncoding,
while other SNPs happen in the coding regions [3]. The
SNPs occurring at the noncoding region does not affect
the gene product, that is, the protein sequence is not
changed, such types of SNPs are termed silent mutations
[4]. However, silent mutation could also be found in the
coding region because each amino acid is coded by more
than one codon. Thus, even the mutation changes the codon,
though it is still possible that the protein sequence is not
affected. However, a silent mutation still could affect the
function of the cell by altering the gene’s expression and
regulation.

On the other side of the spectrum are nonsynonymous
SNPs (nsSNPs), which cause changes in protein sequence.
The most dramatic change is induced by the nonsense
mutations, which result in a premature stop codon and pro-
duce truncated, usually nonfunctional proteins [4]. Missense
mutation, on the other hand, is a change of a single amino
acid into another. Such a mutation could be polymorphism
if it is observed in significant fraction of the population, or it
could be a rare missense mutation if found in an individual
or small group of people, as, for example, in a family. In both
cases, on protein level, these mutations are termed single-
point mutations and they are the primary focus of this paper.

Missense mutations and, in general, nsSNPs were exten-
sively investigated in the past to reveal their plausible effects
on protein stability [5–10], protein-protein interactions [11],
the characteristics of the active site [5, 6], and many others
[12–20]. In parallel, significant efforts were invested to
catalog naturally occurring genetic differences, those found
in general population and presumably harmless as the SNP
database [21–23] and those known to be disease associated
as the Online Mendelian Inheritance in Man (OMIM)
[24–26]. The OMIM includes the full-text description of
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disease phenotypes and genes, mapping, molecular genetics,
PubMed references, and many other features [26, 27].
OMIM is currently provided by the U.S. National Center for
Biotechnology Information (NCBI) [28] and edited by Dr.
Victor A. McKusick at John Hopkins University. By 2011,
more than 21,000 entries including data and over 13,100
established gene loci and phenotypic descriptions are con-
tained in OMIM Entrez database [28]. SNP database is used
to organize and systematize the huge amount of information
of gene sequencing. So far, several SNP databases have been
developed such as the dbSNP database [21, 29, 30], the
Human Genome Variation Database (HGVbase) [22], the
Human Gene Mutation Database (HGMD) [31], and the
TopoSNP database [23, 32–35].

The existence of such databases combined with available
biochemical data of the effects of single-point mutations on
protein stability and interactions prompted the development
of in silico methods to predict the effects of mutations on
the wild-type characteristics of the corresponding proteins or
assemblages. Currently, the approaches can be classified into
several categories: first principle methods, which calculate
the folding or binding free energy change based on detailed
atomic models [36–46]; methods based on statistical poten-
tials [47–55] and utilizing known protein structures in the
Protein Data Bank [56]; methods using empirical potential
combining both physical force fields and free parameters
fitted with experimental data [57–65]; machine learning
approaches, which are trained against known experimental
databases, and then used to predict the effect of the newly
found mutations [66–72].

2. Overview of Plausible Effects Induced by
Genetic Differences

Genetic differences can potentially affect the function of the
cell in a variety of ways, which can be broadly classified into
several categories outlined below.

2.1. Active Sites, Reaction Kinetics, and the Reaction Parame-
ters. If a mutation occurs in an active site, then it should be
considered lethal since such substitution will affect critical
components of the biological reaction, which, in turn, will
alter the normal protein function [73, 74]. At the same
time, the biochemical reaction is very sensitive to the precise
geometry of the active sites for both of the reactants and
products; therefore, any conformational change altering the
active sites will also affect the biochemical reaction; however,
conservative mutations are not expected to perturb protein
function by much. Thus, even if the mutation does not occur
at the active site, but quite close to it, the characteristics
of the catalytic groups will be perturbed [5, 6, 75]. In
such a case, the mutation may not completely abolish the
biochemical reaction but can change the kinetics of the
reaction [76]. Moreover, the biochemical reaction strongly
relies on a particular (optimum) cellular environment such
as pH, salt concentration, and temperature. Thus in the
living cells, the proteins’ behavior is controlled by these
cellular environments [77, 78]. Changing the reaction rate,

the pH, or salt and temperature dependencies away from
the native parameters can lead to a malfunctioning protein.
The isoelectric point (pI) is a very important parameter
that refers to the pH at which the net charge of the protein
is zero. Recently, it was demonstrated that five missense
mutations involving charged groups in the sodium iodide
symporter (NIS) gene, which generates a protein called
iodide transporter and is associated with iodide transport
defect, can cause an obvious pI shift and influence the
electrostatic interactions in the trans-membrane domains of
the NIS protein. Even more, these substitutions will probably,
in turn, affect the protein stability, protein trafficking, and
iodide transport activity [79].

2.2. Kinetics of Protein Folding, Protein Stability, Flexibility,
and Aggregation. Protein folding is the process of converting
the linear unfolded polypeptide into the native 3D structure
driven by the gradient of potential energy [80, 81]. The
importance of kinetics of protein folding is manifested by the
fact that protein miss-folding is involved in many diseases
[12]. An amino acid substitution at a critical folding position
can prevent the forming of the folding nucleus, which
makes the remainder of the structure rapidly condense [12].
Protein stability is also a key characteristic of a functional
protein [5, 6, 71, 82–86], and as such, a mutation on
a native protein amino acid can considerably affect its
stability [76, 77, 87] through perturbing conformational
constraints (e.g., substituting a small side chain residue to
a large one and vice versa, resulting in backbone strain
or overpacking) or physicochemical effects (substitutions
between hydrophilic residues and hydrophobic residues,
burial of charged residues, the disruption of hydrogen bonds,
loss of hydrogen bonds, of S–S bonds) [88]. It was shown that
80% of missense mutations associated with disease are amino
acid substitutions that affect the stability of proteins by
several kcal/mol [84]. In addition, the missense mutation can
also alter the protein flexibility [5, 89, 90]. When a protein
is carrying its function, frequently the reaction requires a
small or large conformational change to occur that is specific
for the particular biochemical reaction. Thus, if a mutation
makes the protein more rigid or flexible compared to the
native structure, then it will affect the protein’s function
[91, 92]. Additionally, conformational flexibility is the main
mechanism affecting protein aggregation propensity [93],
thus the influence on protein flexibility could cause protein
aggregation and formation of fibrils [94].

2.3. Interactions between Protein-Protein, Protein-DNA,
Protein-RNA, and Protein-Membrane. If a missense muta-
tion occurs at hot-spots of the binding interface that are
crucial in contributing to the interaction [95, 96], then
the binding affinity would be dramatically affected due to
geometrical constrains and/or energetic effects [7, 97]. For
instance, when substituting a small side chain for a bulky
side chain in a narrow binding pocket, the entrance of the
partner group will be blocked and the binding process will
be completely or partially prevented [6, 98–101]. Similarly,
a mutation at the protein-DNA interface can affect DNA
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regulation [13–15]. A mutation occurring at the protein-
membrane interface can affect the signal processes across
the membrane, protein association with the membrane, and
function of various channels and pumps [16, 17].

2.4. Subcellular Localization and Protein Expression. Subcel-
lular localization is a very important factor, which provides
a specific environment for protein function, protein interac-
tions, protein activity in signaling pathways, and many other
features. Transporting a protein to the correct compartment
allows it to form the necessary wild-type interactions with
its biological partners and take part in the corresponding
biological networks like signaling and metabolic pathways.
Otherwise, mislocalizing the protein in a wrong subcellular
compartment will have harmful effects on the other proteins
which function there [20]. Typically, a mutation affecting
the subcellular localization is a mutation that occurs at
a signaling region. For example, missense mutations in
Otopetrin 1 affects the subcellular location and causes
nonsyndromic otoconia agenesis and a subsequent balance
defect in mice [102]. Fanconi anemia is a genetic disease
associated with the missense mutations in FANCA protein.
These missense mutations affect the subcellular localization
of the FANCA protein and make it unable to relocate to the
nucleus and activate the FA/BRCA pathway [103].

Protein expression is a subcomponent of gene expres-
sion and commonly used to denote the measurement of
the protein concentration in a particular cell or tissue.
Missense mutations can affect DNA-transcription factors
resulting in altering the expression of the corresponding
protein. Altering the wild-type protein expression in the
compartment where it is designed to function will disrupt
the normal cell cycle and in turn may cause diseases [20].
Recently, functional analysis of pancreatitis-associated mis-
sense mutations was performed in the pancreatic secretory
trypsin inhibitor (SPINK1) gene, which encodes pancreatic
secretory trypsin inhibitor (PSTI). It was shown that one
of the disease-causing missense mutations R65Q reduced
protein expression by almost 60%, and four other pathogenic
missense mutations G48E, D50E, Y54H, and R67C caused
complete or almost complete loss of PSTI expression [104].
By excluding the possibility that reduced transcription or
unstable mRNA can lead to reduced protein expression, it
was surmised that these disease-causing missense mutations
probably cause intracellular retention of their respective
mutant proteins. This is suggestive of a potential unifying
pathological mechanism underlying both the signal peptide
and mature peptide mutations [104].

In this section, we presented the plausible effects which
mutations can cause. In fact, mutations often affect the
normal protein function by the combined molecular effects
listed above [5, 6, 8]. For Instance, in the studies of
genotype-phenotype correlations of TGFBI (transforming
growth factor, beta-induced) mutations, it was shown that
a missense mutation V613G strongly destabilizes the wild-
type protein keratoepithelin by 3.1 kcal/mol; additionally, the
same mutation might also result in an improper folding
due to the backbone structure of the substituted gly is

not restricted by the presence of a side chain, thus can
adopt any conformation and lead to a misfolded protein.
At the same time, it was shown that V613G also facilitates
formation of beta-sheet structure of TGFBI which is known
to favor amyloid formation [105]. Similarly, another study
performed in silico investigation on 18 missense mutations in
electron transfer flavoprotein (ETF) associated with multiple
acyl-coa dehydrogenase deficiency (MADD), and it was
found that these 18 missense mutations can be classified
into two groups by their molecular effects: altering protein
folding and assembling, affecting the catalytic activity of
functional sites, and disrupting interactions with their
biological partner, that is, dehydrogenases in this case [106].

3. Methods and Approaches to Predict the
Effects of Mutations

Current efforts in this field are aimed at predicting the
deleterious mutations since such predictions can be used
for diagnostics and drug design. The features used to make
such predictions can be classified into three categories: (a)
amino acids properties, such as size, side chain polarity, side
chain flexibility, and its ability to form a hydrogen bond and
other geometrical considerations; (b) 3D protein structural
properties such as protein stability, affinity of receptor-
ligand complex, and structural flexibility; (c) evolutionary
properties like sequence conservation and phylogenetic trees.
It is almost impossible to review these approaches one
by one since most of the current methodology is using a
combination of these features [27]. Table 1 shows several
examples for application of molecular modeling methods,
free of charge for academia, to study the molecular mecha-
nisms of missense mutations affecting wild-type properties
of proteins. Comparison of their performance is provided in
references [65, 107]. In the following paragraphs, we explain
in detail some of the available resources.

It is essential to identify the most informative features
among the features mentioned above for making successful
predictions. Such a necessity inspired several works among
which a recent study evaluating 32 features using their
mutual information together with the functional effects
of the amino acid substitutions, as measured by in vivo
assays. Sequentially, a greedy algorithm was performed
to identify a subset of highly informative features [108].
Finally, it was concluded that two features describing the
solvent accessibility of “wild-type” and “mutant” amino-
acid residues and another feature of evolutionary properties
based on superfamily-level multiple alignments produce
the best accuracy [109]. Another investigation developed
a formalism and a computational method based on a
structural model and phylogenetic information to indicate
the effects of amino acid substitution on protein functions.
With such a protocol, approximately 26%–32% of naturally
occurring missense mutations were predicted to affect the
protein functions [110].

The amino acid properties are often considered an
important characteristic, which could play a crucial role
in protein folding, stability, interaction of protein-protein
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Table 1

Methods Short Summary Examples (references)∗
Some tools based on this
method

Molecular
dynamics

The trajectories of molecules are
determined at atomic level by
numerically solving the Newton’s
equation of motion

(i) Thrombosis-related R2-FV haplotype:
D2194G, Coagulation Factor V, domain C2
[8]
(ii) Parahemophilia, Factor V new
brunswick: A221V, Coagulation Factor V,
domain A [9]
(iii) FPLD, R482W; Lamin A/C [159]
(iv) Intellectual Disability: H101Q; CLIC2
protein [10]
(v) Snyder-Robin syndrome: G56S, V132G,
I150T; spermine synthase; [5]

Eris [112, 132, 133]
Tinker [158] GROMACS
[160]

Molecular
mechanics

Using molecular mechanics force
field and optimization to model
molecular systems

(i) 21-Hydroxylase-Deficiency: R132C,
R149C, M283V, E431K; CYP450; C21 [161]
(ii) Cancer: A159V, A161V, N235I, N239Y,
T256I, S269I; p53 [162]
(iii) Intellectual Disability: H101Q; CLIC2
protein; [10]
(iv) Mutability of human spermine
synthase: all amino acids substitution at
disease associated missense mutation sites
G56, V132, and I150; human spermine
synthase [6]
(v) Studying effects of nsSNPs on
protein-protein interactions: nsSNPs in
OMIM and non-OMIM; 264
protein-protein complexes with known
nsSNPs located at the interface; [11]

FoldX [63, 64]

Monte Carlo
simulation

Applying Monte Carlo sampling
to predict preferred
conformational states

(i) Noonan syndrome: D61Y, Tyrosine
phosphatase SHP-2 [163]

IMC [164]

Electrostatic
calculation

Calculating electrostatics energy
and pKa/ionized states
changes/electrostatic stability
upon the missense mutations

(i) Snyder-Robinson Syndrome:; G56S,
V132G, I150T human spermine synthase [5]
(ii) Thrombosis-related R2-FV haplotype:
D2194G, Coagulation Factor V, domain C2
[8]
(iii) Noonan syndrome: D61Y, Tyrosine
phosphatase SHP-2 [163]
(iv) Studying effects of nsSNPs on
protein-protein interactions: nsSNPs in
OMIM and non-OMIM; 264
protein-protein complexes with known
nsSNPs located at the interface; [11]

DelPhi [165] MCCE
[166–168] pKD [169]

Evolutionary
properties

Based on structure and sequence
analysis, for example, highly
conserved residues in a protein
family

(i) Homocystinuria: 204 mutations;
cystathionine beta synthase; [170]

SNPs3D [138] PolyPhen
[86]

Machine
learning

learn the behavior of a system
based on training datasets

(i) Snyder-Robinson Syndrome: G56S,
V132G, I150T; human spermine synthase;
[5]
(ii) Gastrointestinal stromal tumors: 19
mutations; KIT receptor [171]

I-Mutant 2.0/3.0
[71, 72, 134]

Graph methods

A branch of discrete
mathematics. In protein science,
this method is used to analyze
the topological details of proteins
with known structure

(i) Cancer: Y220C, R273H, R273C, R282W,
and G245S; p53 protein; [172]
(ii) Predicting the structural effects of
nsSNPs: 506 disease-associated nsSNPs;
[173]

Bongo [173]
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Table 1: Continued.

Methods Short Summary Examples (references)∗
Some tools based on this
method

Statistical
Potential

Based on the knowledge of
statistical mechanics such as
inverse Boltzmann law, ∆G =

−kT log [gi j(r)]

(i) Human X-linked Agammaglobulinemia
(XLA): 16 missense mutations; Bruton’s
tyrosine kinase (Btk); [174, 175]
(ii) Severe form of phenylketonuria: G46S;
human phenylalanine hydroxylase (hPAH);
[176]

DFIRE [55, 177, 178]
PoPMuSiC-2.0
[179, 180] CUPSAT
[181–183]

The BellKor
collaborative
filtering (CF)
algorithm

Model relations of the known
data points and the parameters
of the model are learnt by the
training database

(i) Using the known ∆∆G value to predict
the ∆∆G value of other missense mutations
at the same substitution site; 4803 mutants
were used; [184]

Pro-Maya [184]

complexes, and protein function, although sometimes they
may be misleading [11]. The side chain properties such as
volume, polarity, acidity, basicity, conformational flexibility
and the ability to form a hydrogen-bond and salt bridge,
are distinguishable. Therefore, the compatibility of a sub-
stitution at the dominant allele could be used to make the
prediction as it was done in a recent study [111], which
combined amino acid properties and structural information
to identify deleterious mutations by analyzing the effects on
protein stability.

An alternative approach to assess the effect of mutation
on protein stability is to evaluate the change of folding free
energy ∆G(folding). The difference between ∆G(folding) of
the wild-type protein and the mutant, typically described
as ∆∆G(folding), is a measure of the effect of mutation
on protein stability [5, 6, 64, 65, 107, 112]. If the change
in ∆∆G(folding) is negative, then the prediction is that
the mutation will destabilize the protein. In contrast, if
the calculated change is positive, the mutation is expected
to stabilize the protein. The same considerations are valid
in the case of predicting the effect on receptor-ligand
binding [113]. Numerous investigations were reported in
the past to reveal the change in the stability of the native
structure [71, 82–86], the macromolecular interactions [11],
or altering the wild-type (WT) hydrogen-bond network, in
terms of affecting the stability [5, 114, 115]. Currently, several
distinctive approaches to predict the protein stability and
affinity changes due to mutations have been developed and
they can be classified into four categories: (a) first principle
methods that using the detailed atomic models to calculate
the folding/binding free energy changes caused by mutations
[36–46]—these approaches are scientifically sound, but are
quite computationally expensive and may not be the best
choice in the cases of large sets of mutations [116]; (b)
methods based on the statistical potentials [47, 48] were
shown to be successful in predicting the change of protein
stability upon the mutations [49–55]; (c) Methods utilizing
empirical potential, combining both physical force fields, and
free parameters fitted with experimental data [57–62]; (d)
machine learning methods, utilizing a training database [66–
70].

The 3D structure of proteins can be used not only
for energy calculations, as described above, but to map
mutations onto it and to use geometrical considerations

to predict the effects of mutations [117]. Recently, such
an approach, the alpha-shape method from computational
geometry, was used to divide all nsSNP sites into three
categories: (a) Type P: nsSNPs located in a pocket or a void;
(b) Type S: nsSNPs occurred on a convex region; and (c)
Type I: nsSNP sites are completely buried inside the protein.
It was found that 88% of pathogenic nsSNPs are of type P
and rarely of type I [32]. Along the same line, 3D structures
were used in combinations with machine learning (SVM)
and random forest methods. It was demonstrated that these
methods outperformed the SIFT algorithm developed by Ng
and Henikoff [118], and was indicated that incorporating
structural information is crucial to make an accurate pre-
diction if no sufficient evolutionary information is available
[119]. Based on the 3D structures, the solvent-accessibility
term is also an important feature, which is often used for
investigating the effects of missense mutations. It has been
shown that using a solvent-accessibility term, the Cβ density,
and a score derived from homologous sequences will make
the most accurate prediction [120]. Recent studies took
into account several protein structural parameters such as
solvent accessibility, location within beta strands, or active
sites to predict the effects on nsSNPs. It was found that
approximately 70% of the disease-associated mutations are
buried and solvent inaccessible [121–124] and that such
mutations have strong effects on protein structure, folding,
stability, and normal function [121, 123].

Another important feature reviewed here is evolution-
ary properties. Among homologous proteins, the highly
conserved residues are generally considered to be critical
for protein stability, interaction, and function. One of
the evolutionary approaches, which assumes that residues
located at a highly conserved position are most likely crucial,
is to extract conservation scores from a multiple sequence
alignment of homologous proteins. Another widely used
computational technique is named the “evolutionary trace”
method [125–127]. It uses phylogenetic information based
on homologous sequences to rank residues according to
evolutionary importance based on their conserved residues
in the protein family. After that, such evolutionary conserved
residues are mapped on the representative structure. In
addition, a group of conserved residues could occur at
the interface of a protein-protein complex. Based on the
extraction of functionally important residues, an approach
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was developed utilizing the evolutionary trace method to
identify active sites and functional interfaces of proteins
based on their available structures. The method was tested
on SH2 and SH3 modular signaling domains and the DNA
binding domain of the hormone receptors. It was demon-
strated this method can delineate the functional epitope
and identify the essential residues for binding specificity
[128].

In order to train machine learning algorithms properly
and to have a benchmarking case, appropriate databases are
required. A particular example is the Catalytic Site Atlas
database [129], which collects 177 original hand-annotated
entries and 2608 homologous entries and covers about
30% of all enzyme in the Protein Data Bank [56]. At the
same time, the computational methods of predicting the
functional residues were also well-developed [125, 130, 131].
A selection of structure and sequence-based features was
used to indicate an amino acid polymorphism effect on
protein function, and it was found that ∼26%–32% of the
naturally occurring nsSNPs will affect the protein’s function
[110].

4. Webservers for Analyzing the
Effects of Mutations

In past years, several methods were implemented into
webservers to predict the effects on protein stability due to
mutations. The Eris webserver is based on Medusa force
field [132], and it was benchmarked on 595 mutants with
available experimental data resulting in RMSD 2.4 kcal/mol
between the predicted ∆∆Gcal (folding) and corresponding
experimental values (∆∆Gexp (folding)) [112, 132, 133].
The FoldX is perhaps the most popular web server [63]
for predicting the folding free energy changes due to the
mutations, and it is based on the empirical potentials [64].
The I-Mutant 2.0/3.0 is Support Vector Machine-based
(SVM: a machine learning method) webserver utilizing the
3D structural or sequential information to predict protein
stability change upon single-point mutations [71, 72, 134].
Other webservers include the Site Directed Mutator (SDM)
[54] and the Mupro method [135].

In parallel, there are webservers predicting the effects of
mutations on protein-protein interaction. The COILCHECK
is an interactive webserver, which measures the strength
of interactions between two helices involved in coiled coil
structures utilizing nonbonded and electrostatic interactions
and the presence of hydrogen bonds and salt bridges. It can
be used to assess the strength of coiled coil regions, to recog-
nize weak and strong regions, to rationalize the phenotypic
behavior of single mutations and to design mutation exper-
iments [136]. Recently, DrugScorePPI was reported, which
is a fast and accurate computational approach to predict
impacts on binding affinity by the change of the binding free
energy upon alanine mutations at protein-protein interfaces.
The primary motivation of developing this webserver is to
identify hotspot residues at protein-protein interfaces, which
will guide both biological experiments and the development
of protein-protein interaction modulators [137].

There are many webservers Which are designed to predict
if the mutation is pathogenic or not without providing infor-
mation about the magnitude of expected energy changes.
The SNPs3D [138] is a primary resource and database, which
provides various disease/gene relationships at the molecular
level. This server has three modules: (a) identifying the gene
candidates involved in a specific disease; (b) relationships
between the sets of candidate genes; and (c) analyzing the
possible effects of nsSNPs on normal protein function. It is
very convenient for the users to quickly obtain the available
information and so develop models of gene-pathway-disease
interaction. Another online predictor of molecular and
structural effects of protein-coding variants was recently
developed, the SNPeffect 4.0 [139]. It uses sequence- and
structure-based bioinformatics tools such as aggregation
prediction (TANGO) [140], amyloid prediction (WALTZ)
[141], chaperone-binding prediction (LIMBO) [142], and
protein stability analysis (FoldX) [63] to predict the effect
of SNPs. In addition, it also contains the information of
effects on catalytic sites, posttranslational modifications,
and all known human protein variants from Uniprot. At
the same time, SNPeffect allows users to submit custom
protein variants for analyzing the SNP effects and plot
correlations between phenotypic features for a user-selected
set of variants [139]. The dbSNP database in NCBI lists
over 9 million SNPs in the human genome but includes
very limited annotation information. To fill this gap, the
LS-SNP was developed to annotate the nsSNPs [83]. It can
map nsSNPs onto protein sequences, functional pathways,
and comparative protein structure models and predicts the
positions where nsSNPs cause the effects. The results can
be used to find out the functional SNP candidates within
a gene, haplotype, or pathway, and also in understanding
the molecular mechanisms responsible for functional effects
of nsSNPs [83]. At the same time, a protocol based on
Sorting Intolerant From Tolerant (SIFT) [118] was reported
to predict if a missense mutation will affect the protein
function. To assess the effects of a missense mutation, SIFT
utilizes evolutionary properties of the protein and considers
the substitutions at the conserved positions which may affect
protein function. Thus, SIFT makes a prediction on effects
of all possible substitutions at each position in the protein
sequence by using sequence homology [143]. The Polyphen
(Polymorphism Phenotype) is a tool that predicts possible
impact of an amino acid substitution on the structure and
function of a human protein using straightforward physical
and comparative considerations. It combines a variety of
features such as sequences, evolutionary properties, and
structural information to predict if an nsSNP will affect the
protein function and performs optimally if the structural
information is available. More than 11000 nsSNPs are
annotated by this webserver [86]. A new version of Polyphen,
namely, Polyphen-2, was recently released [144]. Its features
include high quality multiple sequence alignment pipeline
and probabilistic classifier based on a machine-learning
method, and it is optimized for high-throughput analysis
of the next-generation sequencing data [144]. After the
development of SIFT and Polyphen, the Parepro (Predicating
the amino acid replacement probability) was created, based
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on two independent databases HumVar and NewHumVar.
The predictions are if an nsSNP will be either deleterious
or will have no effect on protein function. Compared to
SIFT and Polyphen, Parepro achieved a higher Matthews
correlation coefficient (MCC) and overall accuracy (Q2)
when predications were made using a 20-fold cross valida-
tion test on the HumVar dataset [145]. StSNP is a webserver
referencing the data from dbSNP in NCBI, the gene and
protein database from Entrez, the protein structures from the
PDB, and pathway information from KEGG and makes an
effort to provide combined, integrated reports about nsSNPs.
Researchers can use the metabolic pathways in StSNP to
examine the likely relationship between the disease-related
pathways and particular nsSNPs, and link the disease with
the current available molecular structure data [146]. AUTO-
MUTE is a knowledge-based computational mutagenesis
used to predict the disease potential of human nsSNPs.
In this study, 1790 neutral and disease-associated human
nsSNPs on 243 diverse human protein structures were used.
With a trained model, this method achieves 76% cross-
validation accuracy [147].

5. Application of Structure-Based Methods to
Predict the Effects of Mutations on Protein
Stability and Protein-Protein Interactions

In this section, we outline several examples of utilizing
structural information to predict the effects of mutations on
wild-type characteristics of proteins and protein complexes.

5.1. Application of Molecular Dynamics (MD) Simulation
for Predicting the Effects of Mutations. Coagulation factor V
(FV) is the precursor of an essential procoagulant cofactor
that accelerates FXa-catalyzed prothrombin activation in
the coagulation system. It is a large glycoprotein contain-
ing several domains, A1-A2-B-A3-C1-C2 [8]. A missense
mutation D2194G in its C2 domain was shown to cause
low expression level and to have plausible effect on stability
of the corresponding protein. To investigate the molecular
mechanism of D2194G affecting the wild type of the
corresponding protein, MD simulations were carried out on
both of the WT and mutant structure to reveal the flexibility
change upon this mutation [8]. The program CHARMm
[148] was used, and the total simulation time was 900 ps.
The root mean square fluctuations (RMSFs) for the α-carbon
atoms of the C2 domain per residue were calculated for
series of snapshots. The comparison for the WT and mutant
structures is shown in Figure 1(a). It was concluded that the
regions 2075–2085 and 2140–2150 in both WT structure
and mutant structures are flexible. The loop 2042–2053
(Figure 1(b)) which is close to the mutation site, is more
flexible in the mutant structure. At the same time, loop 2060–
2067 became more flexible in the mutant as well, and this
effect was attributed to the increased mobility of the loop
2042–2053. The substitution of Asp for Gly will lead to a big
cavity and the nonflexible C-terminus (Tyr2196) inserts itself
into the domain and attempts to fill out this cavity and to
compensate for the missing negative charge of the mutant.
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Figure 1: (a) The structural and flexibility differences between the
simulated WT and mutant structures. The black line represents the
RMSF of the WT structure and the red line represents the mutant
protein. (b) 3D structure of the C2 domain of the WT FV. The S–S
bond is marked in yellow and the loop 2042–2053 is indicated by
the arrow.

G56S
V132G I150T

Figure 2: 3D structure of human SMS with three missense
mutation sites. Two subunits were represented by ribbon in cyan
and magenta. Three mutation sites were shown with sphere
representation: G56S in orange, V132G in white and I150T in green.
The substrates of SPD and MTA were shown in red sticks and blue
sticks, respectively.
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(a) (b)

Figure 3: Effects on dimerization. (a) G56S: we superimposed WT structure (presented with two chains in white) and mutant structure
(presented with Only one chain in green). Cyan stick represented Gly in the WT structure and magenta stick represented Ser in the mutant
structure; (b) V132G: Only the region around the mutation site was shown in the figure. We superimpose the WT structure (presented with
two chains in white) and mutant (presented with only one chain in green). The orange stick represented Val in the WT structure and red
stick represented Gly in the mutant structure.

(a) (b)

Figure 4: Effects on monomer stability. (a) G56S: N-terminal domain of both WT monomer (white) and mutant monomer (green) are
superimposed. Cyan stick represented Gly in the WT structure and magenta represented Ser in the mutant structure; (b) V132G: C-terminal
domain of both WT monomer (white) and mutant monomer (green) are superimposed. We use stick and ball representation in orange to
represent Val in the WT structure and in red to represent Gly in the mutant structure.

These events could be the reason for the enhancing flexibility
of the loop 2042–2053.

5.2. Application of Energy Calculation for Predicting the Effects
of Mutations in Human Spermine Synthase. In this section,
we describe the molecular mechanism of three missense
mutations in human spermine synthase (SMS) causing
Snyder-Robin Syndrome (SRS) [149–151] to demonstrate
application of structure-based methods and energy calcula-
tion to predict the effects on protein stability and protein-
protein interaction [5].

SMS (OMIM: 300105) is an enzyme converting sper-
midine (SPD) into spermine (SPM) both of which are
two polyamines controlling normal mammalian cell growth
and development [152–155]. The importance of SMS for
the normal function is illustrated by the fact that three
clinical missense mutations, c.267G > A (p.G56S) [150],
c.496T > G (p.V132G) [151], and I150T [5], on SMS will
cause an X-Linked mental retardation disorder named SRS
(OMIM: 309583). At the same time, the 3D structures of

human SMS with either the substrates SPD or product
SPM have been experimentally determined [156]. The 3D
structure of SMS with the substrates SPD and product MTA
(PDB ID: 3C6K) is shown in Figure 2. SMS contains two
subunits forming a dimer, and each subunit includes two
terminal domains: the N-terminal domain which plays a
key role in dimerization and the C-terminal domain which
includes the active site. The importance of dimerization for
SMS function was also demonstrated by series of deletion
experiments in vitro [156]. Additionally, two missense
mutations G56S and V132G are located at the dimer
interface, while the other missense mutation I150T occurred
at the C-terminal domain and quite close to the active
sites.

These three mutants were made in silico by SCAP, a
program in JACKAL package [157], based on the native
3D SMS structure. Then, the TINKER package was used to
perform the energy minimization and calculation [158]. It
was shown that the missense mutation G56S will strongly
decrease the dimer affinity by nearly 14 kcal/mol, but the
other two have no impact on it. With the analysis based
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on the 3D structure, it was concluded the reason that G56S
strongly decreases the dimerization is because the side chain
of Ser in the mutant is pointing to the dimer interface,
and there is no enough room to harbor this side chain
(Figure 3(a)). In contrast, while the mutation V132G is
located at the dimer interface as well, the side chain of Val in
the native structure does not point towards the interface and
is close to large cavity (Figure 3(b)); thus this substitution
can be accommodated easily without introducing any steric
constrains. The third mutation, I150T, is very far away from
the dimer interface (Figure 2); thus it is not supposed to
affect the dimerization.

With regards the folding energy calculation, all these
missense mutations are predicted to destabilize the protein
monomer by 2.8 kcal/mol (G56S), 1.1 kcal/mol (V132G),
and 3.5 kcal/mol (I150T), respectively. Figure 4(a) gives the
comparison of the native structure and mutant structure
and is zoomed into the mutation site G56S. In the mutant
structure, we can see this mutation occurs in a sharp turn,
and the substitution with almost any other amino acid will
introduce strain. Figure 4(b) shows the superposition of
the native structure and mutant, zoomed in the mutation
site V132G. It is clear that the side chain of Val points
to the interior, thus the substitution with Gly will leave a
big cavity inside the monomer, which in turn will affect
the stability. In addition, considering the physicochemical
property feature, Val and Gly have different hydrophobicity.
The destabilization by I150T is mainly attributed the totally
different physicochemical properties between Ile, which is
a hydrophobic residue, and Thr, which is a hydrophilic
residue.

Thus, combining the 3D structure, physicochemical
properties of amino acids, and energy calculations, it was
shown that one can successfully predict molecular effects due
to these three missense mutations. Such an analysis helps
better understand how these missense mutations affect the
SMS function and in turn reveal the molecular origin of
SRS.

6. Conclusion

In this paper, we outlined the current state-of-the-art
methods in the field of computational modeling of effects
of nsSNPs and rare missense mutations. Available resources
are pointed out along with short description of their
functionality and accuracy. The basic concepts and major
research directions are described and their advantages and
disadvantages discussed.
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