
Analyzing Energy Consumption in

a Gossiping MAC Protocol⋆

Haidi Yue, Henrik Bohnenkamp and Joost-Pieter Katoen

Software Modeling & Verification
Department of Computer Science 2, RWTH Aachen University

D-52056 Aachen, Germany
Fax: +49 241 80 222 17

{haidi.yue|henrik|katoen}@cs.rwth-aachen.de

Abstract. In this paper, we analyze the energy-efficiency of a TDMA
protocol (gMAC) for gossiping-based wireless sensor networks. In con-
trast to most schedule-based TDMA protocols, slot allocation in gMAC
is decentralized, allowing adaptation to evolving network configurations.
The protocol, modeled in the MoDeST language, is evaluated using the
discrete-event simulator of the Möbius tool suite. We investigate the im-
pact of collision-detection mechanisms, initiator positioning, and random
silence on the gMAC energy efficiency. As a result, we find the number of
active slots that optimize the trade-off between low energy consumption
and fast information dissemination.

Keywords: TDMA, energy, wireless sensor networks, formal model-
ing, simulation

1 Introduction

The Dutch company CHESS develops wireless sensor networks (WSN)
comprising battery-powered mobile sensors that exchange data via gos-
siping-based communication. The sensors are mobile, act in a fully de-
centralized manner—there is, e.g., no leader—and battery recharging is
not possible. CHESS WSNs are, for instance, used in the Dutch flower
auction market in Aalsmeer where thousands of trolleys carrying flowers
are equipped with autonomous routing capabilities.

To realize an energy-efficient communication mechanism supporting
sensor mobility, CHESS developed a TDMA-variant, called gossip-based
MAC [15] (gMAC, for short) to control medium access. In TDMA, the
time is divided into frames which are subdivided into slots in which nodes

⋆ This research has been funded by the EU under grant number FP7-ICT-2007-1
(QUASIMODO) and the DFG Excellence Cluster UMIC.

send or receive or idle. Whereas in most TDMA protocols a central ac-
cess node decides which slot is to be used by which node, in a setting
with mobile nodes, a fixed schedule can no longer be maintained: ever
changing neighborhood relations between nodes invalidate defined sched-
ules and cause collisions in communication. Therefore, gMAC exploits a
fully decentralized slot allocation—each node decides on its own when to
send and when not. Moreover, the sensors communicate with each other
in an epidemic broadcast-like manner. This forms the basis of gossiping
applications in which nodes continuously exchange data [10]. This all-to-
all communication prevents the usage of simple (and frequently adopted)
energy-conserving strategies like switching off a radio when no communi-
cation with the central access node takes place. In our setting, nodes have
to listen to messages sent by all their neighbors and only idle during the
non-active slots. To enable an implementation with simple (and cheap)
microprocessors, CHESS designed gMAC as simple as possible. Therefore,
gMAC does not incorporate techniques such as dynamic frame lengths as
in EC-TDMA [16], transmission length indications as in A-MAC [12], or
organizing neighbor information in a spanning tree as in TreeMAC [14].

gMAC is designed to work with a rather simple radio working in the
2.4 GHz band. Like any TDMA protocol, time is divided into frames. A
frame consists of an idle and an active period. The active period is divided
into equal-length slots, in which nodes send (once per frame and node)
or receive. The beginning of new frames is synchronized among all neigh-
boring nodes up to a certain precision. As nodes decide autonomously in
which slot they send, collisions may occur. gMAC supports an indirect
collision avoidance mechanism: node X keeps track of the slots in which
it received something. This list is communicated by X to its neighbor Y

as piggy-back information in the payload. If X did not receive an item
in Y ’s send slot, Y infers that it is using the same send slot as another
node, and randomly chooses a new, free one. As this mechanism cannot
ensure the complete absence of collisions, a node can randomly decide to
not use its send slot, and listen instead.

In this paper, we focus on the energy-efficiency of the protocol under
the assumption of perfect clock synchronization. In particular, we investi-
gate the effectiveness of the gMAC collision-detection mechanism (which
fraction of real collisions is detected?), initiator positioning of gossiping
messages (what is the influence of the position of the gossip initiator on
latency?), and random silence on the gMAC energy efficiency (how does
this protocol aspect impact collision detection?). As a result, we find the
number of active slots that optimize the trade-off between low energy

2

consumption and fast information dissemination for various system con-
figurations. We consider first static network configurations to study the
basic protocol mechanisms, and then determine the influence of node mo-
bility. The main findings of our study that were also of interest to CHESS
are (i) random silence improves collision detection significantly, (ii) the
optimal number of active slots is about the number of neighbors plus one,
and (iii) mobility lowers the number of failed transmissions.

Although our analysis technique is simulation, we deliberately take
a drastically different approach from using standard simulation packages
such as NS2, Opnet, OMNET or GloMoSim, to mention a few. Our start-
ing point is a model of the protocol in the MoDeST language [3], a formal-
ism that supports the modular specification of distributed systems in a
mathematically rigorous, though user-friendly, manner. As MoDeST has
a formal operational semantics in terms of stochastic timed automata,
the simulation model obtained from the protocol models is unambiguous.
The automata underlying MoDeST models are simulated using Möbius [7,
5], a discrete-event simulator that has been intensively used in depend-
ability analysis. The formality of the modeling language allows not only
the integration with other formal analysis tools (such as model check-
ers), but, more importantly, yields semantically sound simulation runs.
Together with the fact that we do not model entire protocol stacks but
rather abstract from lower layer effects, this avoids many of the credibil-
ity problems of standard simulations [6, 1]. This approach has, amongst
others, been applied to analyze the energy consumption of Zigbee and
IEEE 802.15 [8], and the analysis of a plug-and-play communication pro-
tocol [4]. Main limitation of our approach is that MoDeST models may
exhibit nondeterminism, which cannot be simulated. We thus have to
check our models prior to simulation on the presence of nondeterminism.

Organization of the paper. Section 2 describes the CHESS gMAC pro-
tocol. Section 3 describes the modeling assumptions and the experimen-
tal set-up. Section 4 focuses on results concerning collision detection, and
Section 5 focuses on energy consumption. Section 6 concludes.

2 The gMAC Protocol

The gMAC protocol divides time in fixed-length frames. A frame is di-
vided in an active and idle period, and both periods are subdivided into
slots of equal length. A node in the network is synchronized with its im-
mediate neighbors at the beginning of a frame. A node randomly chooses
an active slot as send slot (the TX slot). All other active slots are receive

3

slots (RX slots). During the idle period, the radio is put in idle mode to
save energy. In an RX slot, a node listens for incoming messages from
neighboring nodes, in its TX slot it sends a message. When the active
period is over, it switches to idle mode again, and so forth.

mode current

transmit 11.3 mA

receive 12.3 mA

idle 0.9 µA

Table 1. Energy demands of
the nRF24L01 radio

Let S be the number of slots within
a frame, and A ≤ S the number of ac-
tive slots. A is a crucial parameter in
the protocol design, as the active opera-
tion phase costs much more energy than
the idle phase. The CHESS network nodes
are equipped with an ATMega64 micro-
controller and a Nordic nRF24L01 [13]
packet radio. The energy demands of the
nRF24L01 radio are summarized in Ta-
ble 1. A is usually much smaller than S. In the gMAC protocol imple-
mentation with the aforementioned processor, S=1129, and A = 8.

When a node is powered on, it randomly chooses an active slot as
TX slot. In each RX slot, it can receive a message of at most one other
node. The well-known hidden node problem describes the scenario when
more than one node sends messages to the same node in the same slot.

X ZY

Send slot of X and Z

(a) Hidden node situation

X ZY

0 0

Piggy-back Information

(b) Piggybacking

Fig. 1. Hidden node problem and its detection

Figure 1(a)
depicts a situa-
tion where nodes
X, Y , Z are
positioned such
that the middle
node Y is within
the transmission
range (the cir-
cles) of both other
nodes, and both
X and Z are
outside each others range. If X and Z select the same TX slot, then
their messages will collide in the intersection of their ranges. They can-
not sense this themselves, and Y will receive no message at all as it cannot
distinguish a collision from the situation where no message was sent.

The gMAC protocol provides a piggy-back technique to make colli-
sions detectable. With each pay-load message, the sender’s perspective on
the current slot allocation is also transmitted, which we call the piggy-back

4

information. The piggy-back information is a sequence (b0, b1, ..., bA−1),
where bi ∈ {0, 1} for 0 ≤ i < A. bi = 0 indicates that nothing has been
received in slot i, either because nobody sent something, or due to a colli-
sion or message loss. bi = 1 indicates that the sender received something
in slot i, or that slot i is the sender’s own current send slot. In the ex-
ample in Figure 1(a), since Y cannot receive anything in the second slot,
it writes a 0 in its piggy-back information at the corresponding position
and reports this to X and Z on its turn to send, in the third slot (cf.
Figure 1(b)). Based on this information from Y , nodes X and Z can con-
clude that there was a collision in their send slot. The gMAC protocol
then stipulates that X and Z pick randomly a new send slot among the
free active slots, to avoid further collisions. Note that it is possible that
no free slot is available when a node needs one. This can happen when the
nodes are in a very crowded environment and the number of neighbors
exceeds the number of active slots (some of our simulation configurations
cover this situation). In this case, the node will keep the old send slot
despite the detected collision in that slot.

X ZY

Fig. 2. Problematic scenario
for piggy-back technique

Although the piggy-back technique
helps to detect many collisions, there are
still some it cannot find. In Figure 2, node
Y has the same send slot as X and Z, i.e.,
they send and receive at the same time
and will therefore never receive anything
from each other in this slot, hence the col-
lisions between them will not be detected
or resolved. The reason for this is that the
piggy-back technique requires at least one
common neighbor which is not involved in
the conflict, so that it can report the col-
lision. The gMAC protocol provides one more mechanism to break this
kind of conflict. When a node reaches its send slot, it can decide with a
certain probability p to not send, but to listen. This gives a node a chance
to overhear what is going on in its own send slot, and an opportunity to
pick a new send slot, if necessary.

3 Experimental Setup

Modeling assumptions. In the real world, the interference range of a
node’s radio signal is usually larger than its effective transmission range.
The magnitude of the interference range is not necessarily equal in ev-

5

ery direction. Besides, the ranges can vary from time to time. Depending
on the environment, the Nordic nRF24L01 radio has a range between
0.5m to 50m. For the sake of simplicity, we adopt the approach chosen
in [2] and use the closed unit disk model in which the interference range
equals the transmission range, and is given by a radius r. All network
nodes are assumed to have the same transmission range, which means
the transmission between nodes is symmetric. We further abstract from
other link layer mechanisms, i.e., message losses are assumed to be due to
collisions only. gMAC incorporates a mechanism to synchronize clocks of
neighboring nodes. Sufficient criteria that ensure the correctness of this
clock-synchronization mechanism have recently been mathematically an-
alyzed [9]. As our simulation models satisfy these criteria, we abstract
from the clock-synchronization algorithm.

The gMAC protocol accommodates for tolerable de-synchronization
by shortening the actual sending period and uses the difference to the slot
length as a lead-in to and lead-out from the send period (the so-called
guard times). This does of course influence the energy consumption, and
therefore we incorporate the guard times in our model.

Set-up. The base model of our experiments is a 15 × 15 grid network of
225 nodes. Each node has a distance of 1 to its respective horizontal and
vertical neighbors (i.e., the distance to the diagonal neighbors is

√
2). A

frame consists of 1129 slots. The number A of active slots is a crucial
parameter in the protocol, and we analyze the behavior of the gMAC
protocol for various A. Since in the real implementation A=8, we choose
the transmission range r such that each inner node of the grid has 4 or
8 direct neighbors, respectively. We say a node is randomly silent, if it
stays silent in its TX slot with some probability. This probability in the
current implementation of the CHESS sensor node is p = 1

16
. We adopt

this value in our model and use it for all experiments. To get insight into
the influence of this parameter, we also performed experiments with other
values of p, e.g. p = 1

8
. It turns out that the results pattern is similar to

that with p = 1

16
, which that is with random silence, a higher percentage

of collisions can be detected. The experiments focus on two major aspects:
(i) the effect of the gMAC collision detection mechanism (piggy-backing
and random silence), and (ii) the latency of message dissemination versus
the required energy consumption. The confidence level of all simulations
is set to 0.95 and the relative confidence interval is 0.1.

Collision analysis. We estimate the effectiveness of the collision detection
mechanisms by counting both the real number of collisions that occurred

6

in the network (referred to as Failed Transmissions, FT for short) and the
number of collisions that are detected using the piggy-backing technique
(the number of Detected Collisions, DC for short) in each frame. Note
that although a node can detect collisions, it can neither distinguish with
whom it collided nor how many nodes collided. Hence, when considering
DC, we can only count the number of nodes that report collisions and not
the real number of collisions, i.e. DC represents actually the number of
nodes that detect collisions. The values for FT and DC are illustrated for
different scenarios in Figure 3 where the number next to a node (small
circles) indicates its TX slot. The right-most figure represents an extreme
case, where the respective diagonal nodes send and receive at the same
time, i.e., while the upper righthand and the lower lefthand nodes are
sending, their messages collide at the upper lefthand and lower righthand
nodes, and vice versa. Hence communication between all nodes fails, but
no node is able to detect it. We vary the transmission range r and the
number A of active slots as follows. In networks with at most 4 neighbors,
A ranges from 4 to 10, and for at most 8 neighbors, A ranges from 6 to 12.
Each of the experiments is run 100 times and lasts at least 1000 frames.

2

00 1

2

: Failed transmission: Detected Collision

2 1

1 2

2

1 1

0

8

0DC

FT

Fig. 3. Three collision situations

Latency vs. energy consumption.

Second, we focus on the latency
of message dissemination and
the energy consumed by that.
We consider the average time re-
quired and the total average en-
ergy consumed until a message
is delivered to all network nodes.
We say a node is infected if it
has received a message. Initially,
only one node is infected, the ini-
tiator. To get insight into the effect of the position in the network of the
message initiator, we consider (cf. Figure 4): a corner node, a middle node
at the border, and a center node. Again, the simulations are run for dif-
ferent values of r and A to investigate the influence of these parameters
on gMAC’s energy consumption. Each experiment is run 600 times.

Different settings. We run all aforementioned experiments for three net-
work settings:

1. A static network without randomly silent nodes (for short grid),

2. A static network with randomly silent nodes (for short grid+p),

7

3. A network with node mobility but no randomly silent nodes (for short
grid+m), so that we can obtain a clear comparison between static and
mobile scenarios without influence of randomly silent nodes.

Since we want to investigate the influence of local changing of node posi-
tion on the network, we model the mobility by rotating a fixed row (the
fifth row) in the grid one position to the right. The node shifted out is
shifted in on the other side. The row is rotated one position every 100
frames for the collision experiment, so that the network has enough time
to stabilize after each shift. Since the average time required to deliver a
message to all nodes is less than 30 frames, we rotate every 1 or 3 frames
to investigate the influence of the moving rate on the latency.

4 Collision analysis

 Start sending from corner Start sending from border Start sending from center

Fig. 4. Three different initiator positions

The different variants of
gMAC in the different
scenarios have been mod-
elled in the MoDeST
modelling language [3],
and simulated in the
Möbius tool set [7]. The
models are available from
http://moves.rwth-aachen.

de/~henrik/mmb10/.

Static network. We con-
sider the static grid model grid without randomly silent nodes. The trans-
mission range is r = 1.1 <

√
2, i.e., each inner node has 4 neighbors. Fig-

ure 5(a) shows the fraction DC

FT
versus the number of frames for different

values of A. A larger percentage means that a larger fraction of colli-
sions is detected by the gMAC piggy-backing method. The graph shows
that for increasing A, a larger fraction of collisions is detected. This is
confirmed for a network with 8 neighbors, cf. Figure 5(b). The almost
horizontal straight lines show that for small A the randomly changing
slot allocation does not reduce the number of collisions, but yields a more
or less stable number of collisions. If A is large enough, DC

FT
goes to zero,

as no collisions are detected anymore. This phenomenon occurs, e.g., for
A=10 and r = 1.1, as can be seen in Figure 5(a). Failed transmissions
may still occur, however; for A=10, e.g., on average 7 transmissions in the
whole network fail without being detected (not depicted in Figure 5(a)).

8

Apart from the fact that some collisions can never be detected, it is gen-
erally the case that A needs to be large—in comparison to the number
of neighbors—before DC tends to go to 0. Our simulations have shown
that, in the case of 4 neighbors, this is the case for A ≥ 9; for 8 neighbors,
this holds for A ≥ 23.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 200 400 600 800 1000

D
C

/F
T

 r
at

io

Frames

Detected collisions / # Failed transmissions, grid, 4 neighbors

active slots = 8

active slots = 6

active slots = 4

active slots = 10

(a) grid, 4 neighbors

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 200 400 600 800 1000

D
C

/F
T

 r
at

io

Frames

Detected collisions / # Failed transmissions, grid, 8 neighbors

active slots = 10

active slots = 12

active slots = 8
active slots = 6

(b) grid, 8 neighbors

Fig. 5. Collision detection in a static network

Random silence. Figure 6(a) depicts the results of the same experiment
run on grid+p with 4 neighbors. The comparison with Figure 5(a) reveals
that grid+p can detect a significantly larger percentage of collisions than
grid. This percentage increases for larger A. Furthermore, in grid+p, even
with A=10, the fraction DC

FT
does not go to 0 anymore. Our explanation

for that is that in grid+p nodes are more often receiving than in grid,
and thus more collisions are detected. Indeed, for A=8, DC in grid+p is
significantly higher than for grid, cf. Figure 6(b). Figure 6(b) also shows
that FT increases compared to grid. This is unexpected. We believe that
the reason for this phenomenon is that, when A is at least the number
of neighbors, then randomly silent nodes can turn a good slot allocation
into a bad one. Consider Figure 7 (left), with 11 nodes (the numbers
indicating their TX slots) and only two neighboring nodes in conflict (in
slot 2). Let A=5. When the boxed node is silent in slot 2, it will detect
a collision, and (randomly) chooses a free send slot, which is slot 3 (all
others are in use). As the right figure shows, the boxed node is suddenly
in conflict with four nodes (2-hop neighbors) rather than one, causing
eight failed transmissions. The new slot allocation is worse than before.
Of course, the case illustrated in Figure 7 is quite extreme. In general,

9

when A is larger than the number of direct neighbors it will probably
collide only with relatively fewer 2-hop neighbors.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 200 400 600 800 1000

D
C

/F
T

 r
at

io

Frames

Detected collisions / # Failed transmissions, grid+p, 4 neighbors

active slots = 6

active slots = 10

active slots = 8

active slots = 4

(a) grid+p 4 neighbors

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

D
C

s
or

 F
T

s

Frames

Detected collisions vs. # Failed transmissions, grid vs. grid+p, 4 neighbors, A=8

grid+p, failed transmissions

grid, failed transmissions

grid+p, detected transmissions

grid, detected transmissions

(b) DC and FT in grid+p and grid

Fig. 6. Collision detection under random silence

4

1

23 0

4

3 3 2 3

1

0

3

3

2

3

1

1

3

4

3

4

Fig. 7. Changing slot allocation by silent node

Node mobility. We now con-
sider the influence of node
mobility on DC

FT
. Figure 8(a)

shows the results for a net-
work with r = 1.1 and
a shifting frequency of 1

100

frames. We can see for A =
10 that the amplitudes of
the curves shortly after ev-
ery 100 frames are quite sig-
nificant, and between each two peaks, the curve tends to go down. For
A ≤ 8, the peaks nearly vanish. This means that for A so small that
the static network can not reach a collision-free state, the influence of
mobility on collision detection diminishes. In fact, when A is small, DC

FT
,

as well as DC and FT , especially DC, are almost unchanged under node
mobility (cf. Figure 8(b)). For a higher rate of node shifting, i.e., shifting
every 30 frames, the result pattern is similar.

5 Latency vs. energy consumption

Static network. The second type of simulation is concerned with the en-
ergy efficiency of message propagation. By latency we mean the average
time required to deliver a message to all nodes. Again, we first consider a

10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 200 400 600 800 1000

D
C

/F
T

 r
at

io

Frames

Detected collisions/ # Failed transmissions, grid+m, 1 shift/100 frames, 4 neighbors

active slots = 8

active slots = 6

active slots = 4

active slots = 10

(a) grid+m, 4 neighbors, shifting every 100
frames

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 200 400 600 800 1000

D
C

s
or

 F
T

s

Frames

grid vs. grid+m, active slots=4, 4 neighbors

grid, detected collisions

grid+m, detected collisions

grid+m, failed transmissions

grid, failed transmissions

(b) DC and FT in grid and grid+m

Fig. 8. Collision detection under node mobility

static network. Figure 9(a) shows the experimental results for transmis-
sion range r=1.1, and A ranging from 4 to 7. The message initiator is
positioned in the corner. The circle-lines show the energy consumption
(right y-axis) versus the number of frames, and the black, curved lines
(left y-axis) show the ratio of infected nodes (i.e., nodes that have received
a message) versus the number of frames.

The results confirm that for fixed A, there is a linear dependency
between the energy consumption and the number of frames, which is
characteristic for TDMA protocols. The slope depends on A; the larger
A, the steeper the energy curves. For the message dissemination, it can be
observed that after a short warm-up phase, the fraction of infected nodes
drastically grows, after which this slowly progresses to one. For increasing
A, the percentage of infected nodes converges to more quickly to one, i.e.,
message dissemination is faster.

Obviously, the larger the A is, the lower the message latency becomes,
but as a pay-off, the energy consumptions increases with larger A. In order
to get insight into the trade-off between message dissemination and energy
consumption, Figure 9(b) depicts an energy-percentage diagram, which
shows the percentage of infected nodes versus the total energy needed to
infect all nodes. One clearly sees that A=4 and A=7 are not economical
and in the considered scenario, a network with 5 or 6 active slots provides
the best result in terms of energy efficiency. Performing the experiments
for A = 8, 9 and 10 reveals that these settings are less energy-efficient
than for A = 7. For A = 10, e.g., the network tends to be collision-free,
but requires twice as much energy as for A = 5 without offering a doubled
propagation speed. We performed the experiment for three different initial

11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

R
at

io
 o

f
in

fe
ct

ed
 n

od
es

E
ne

rg
y

in
 u

ni
t

Frames

Latency: grid, 4 neighbors, start from corner

active slots = 7

active slots = 6

active slots = 4

active slots = 5

(a) grid, 4 neighbors, start sending from cor-
ner

 0.9

 0.95

 1

 300 350 400 450 500

R
at

io
 o

f
in

fe
ct

ed
 n

od
es

Energy in unit

Latency: 4 neighbors, start from corner, Energy-Percentage

active slots = 7

active slots = 5

active slots = 4

active slots = 6

(b) Energy-percentage: grid, 4 neighbors,
start sending from corner

 0.8

 0.85

 0.9

 0.95

 1

 100 150 200 250 300 350 400

R
at

io
 o

f
in

fe
ct

ed
 n

od
es

Energy in unit

Latency: grid, 4 neighbors, corner vs. center

cornercenter
active slots = 5 active slots = 6

(c) corner vs. center, grid, both 4 neighbors

 0.8

 0.85

 0.9

 0.95

 1

 200 250 300 350 400

R
at

io
 o

f
in

fe
ct

ed
 n

od
es

Energy in unit

Latency: grid, 4 neighbors, corner vs. center

4 neighbors
active slots = 6

active slots = 8
8 neighbors

(d) 4 neighbors vs. 8 neighbors: grid, both
start sending from corner

 0.8

 0.85

 0.9

 0.95

 1

 200 250 300 350 400

R
at

io
 o

f
in

fe
ct

ed
 n

od
es

Energy in unit

Latency: grid vs. grid+p,4 neighbors, start sending from corner

grid
active slots = 6

grid + p
active slots = 6

(e) grid vs. grid+p, both have 4 neighbors
and start sending from corner

 0.8

 0.85

 0.9

 0.95

 1

 200 250 300 350 400

R
at

io
 o

f
in

fe
ct

ed
 n

od
es

Energy in unit

Latency: grid+m, 4 neighbors vs. 8 neighbors, speed=1 vs. speed=3

4 neighbors
speed = 1

8 neighbors
speed = 1

8 neighbors
speed = 3

4 neighbors
speed = 3

(f) different transmission ranges and shifting
rates

Fig. 9. Latency vs. energy consumption

12

sending positions and different transmission ranges. All of them exhibit a
pattern similar to Figure 9(b). The optimal values of A are summarized
in Table 2.

P
P

P
P

P
P

P
PP

Range
Position

corner border center

4 neighbors 6 5 5

8 neighbors 8 9 8

Table 2. Optimal A values

Figure 9(c) shows another ef-
fect of changing the initial send-
ing position. We put the most
energy-efficient results from a
network with 4 neighbors and
initial sending position at the
corner or the center in one graph.
Obviously, starting from the cen-
ter needs only two third energy
of that starting from the corner.
It does not come as a surprise that message dissemination from the center
is more efficient than from a corner. However, when we consider the influ-
ence of network density on latency, we can see that with a fixed initiator,
a network with 4 neighbors or 8 neighbors exhibits almost the same per-
formance (cf. Figure 9(d)). This means, although a denser network can
propagate messages faster (a result which we have not shown here), it
takes still as much energy as in a less dense network to deliver a message
to the whole network.

Random silence. The results for grid+p show a similar behavior, hence
we will not present them here. Interesting is however the comparison
between grid and grid+p. In Figure 9(e), we see the most economical
results of grid and grid+p, both with 4 neighbors and the same initial
sending position. The superiority of grid+p is quite clear, since roughly
15% energy can be saved if nodes are randomly silent. This is not self-
evident, since for the used radio, receiving costs actually more energy
than sending. We believe that the 15% drop in energy consumption is
because grid+p has in general more opportunities to receive messages,
which accelerates information dissemination.

Node mobility. For a network with mobility, we consider first the case
of start sending from the corner. There are two options for transmission
range (4 neighbors or 8 neighbors) and for the speed of shifting: every
frame, or every third frame. As before, we combine the best results from
each of these combinations in one graph (Figure 9(f)) to compare them.
Recall that in the simple grid network, the density does not have a sig-
nificant influence on the latency (see Figure 9(d)). However, in grid+m, if
the other parameters are identical, the difference between a network with

13

4 neighbors and 8 neighbors cannot be neglected (compare the left-most
curve with the right-most one, or the two middle curves). The influence
of the speed of shifting is not very significant (compare the left-most two
curves or the right-most two curves), and it is difficult to judge which
speed overcome the others, for instance, speed=3 performs better than
speed=1 for neighbors=4 while the trend is reversed for neighbors=8.
This is due to the way we modeled mobility. In our mobility scenario,
it takes circa 15 frames to deliver messages to the whole network, and a
shifting of every 1 frame or every 3 frames cannot have much influence on
the result. Under other mobility models, different results will be obtained.

6 Conclusions and Future work

We reported on the simulative analysis of the CHESS gMAC protocol,
aimed for gossiping-based applications in sensor networks. Our analysis
reveals that randomly deciding to refrain from using send slots signif-
icantly increases the effectiveness of gMAC’s collision detection mecha-
nism, and reduces energy consumption by about 15%. Node mobility does
not affect the number of detected collisions. We determined the number
of active slots that optimize the trade-off between latency and energy
consumption. In the setting with 8 neighbor nodes, our experimental re-
sults confirm the optimality of CHESS’s current node implementation
(i.e., A=8).

The presented results are the first quantitative evaluation of the gMAC
protocol. More analysis is needed. Future work will focus on considering
more realistic radio models based on [11], and to find mathematical ex-
planations for the optimal values. Moreover, a comparison of the given
results with the gMAC variant described in [2] is planned.

All simulation models can be downloaded from:

http://moves.rwth-aachen.de/~henrik/mmb10/

Acknowledgments

We thank Bert Bos, Frits van der Wateren, Marcel Verhoef (all of CHESS)
for discussions on the gMAC protocol and suggestions on the modeling.
Thanks to Daniel Klink (RWTH Aachen University), who suggested to
compare latency and energy consumption.

14

References

1. T.R. Andel and A. Yasinac. On the credibility of MANET simulations. IEEE
Computer, 39(7):48–54, 2006.

2. P. A. M. Anemaet. Distributed G-MAC. Master’s thesis, Delft University of
Technology, 2008.

3. H. Bohnenkamp, P.R. D’Argenio, H. Hermanns, and J.-P. Katoen. Modest: A
compositional modeling formalism for real-time and stochastic systems. IEEE
Trans. on Software Engineering, 32(10):812–830, 2006.

4. H. Bohnenkamp, J. Gorter, J. Guidi, and J.-P. Katoen. Are you still there? —
A lightweight algorithm to monitor node presence in self-configuring networks. In
Dependable Systems & Networks (DSN), pages 704–709, 2005.

5. H. Bohnenkamp, H. Hermanns, and J.-P. Katoen. Motor: The MoDeST tool en-
vironment. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 4424 of LNCS, pages 500–504. Springer-Verlag, 2007.

6. D. Cavin, Y. Sasson, and A. Schiper. On the accuracy of MANET simulators.
In ACM Workshop On Principles Of Mobile Computing (POMC), pages 38 – 43,
2002.

7. D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M. Doyle, W. H.
Sanders, and P. G. Webster. The Möbius framework and its implementation. IEEE
Trans. on Software Engineering, 28(10):956–969, 2002.

8. C. Gross, H. Hermanns, and R. Pulungan. Does clock precision influence ZigBee’s
energy consumptions? In Principles Of Distributed Systems (OPODIS), volume
4878 of LNCS, pages 174–188, 2007.

9. F. Heidarian, J. Schmaltz, and F.W. Vaandrager. Analysis of a clock synchroniza-
tion protocol for wireless sensor networks. In Int. Symp. on Formal Methods (FM),
2009. To appear.

10. A.-M. Kermarrec and M. van Steen. Gossiping in distributed systems. ACM
SIGOPS Operating System Review, 41(5):2–7, 2007.

11. A. Meier, T. Rein, J. Beutel, and L. Thiele. Coping with unreliable channels:
Efficient link estimation for low-power wireless sensor networks. In Int. Conf. on
Networked Sensing Systems (INSS), pages 19–26, June 2008.

12. R. A. Rashid, W. M. A. E. W. Embong, A. Zaharim, and N. Fisal. Development
of energy aware tdma-based MAC protocol for wireless sensor network system. In
European J. of Scientific Research, pages 571–578, 2009.

13. Nordic Semiconductors. nRF2401 Single-chip 2.4GHz Transceiver Data Sheet,
2002.

14. W. Song, R. Huang, and B. Shirazi. TreeMAC: Localized TDMA MAC protocol
for real-time high-data-rate sensor networks. In IEEE Int. Conf. on Pervasive
Computing and Communications (PerCom), pages 1–10, 2009.

15. I. van Vessem. WSN gMac protocol specification. Technical report, CHESS B. V.,
Haarlem, NL, 2008. Version 1.1. Patent pending US 12 / 215,040.

16. M. Xie and X. Wang. An energy-efficient TDMA protocol for clustered wire-
less sensor networks. In Computing, Communication, Control, and Management
(CCCM), volume 02, pages 547–551, 2007.

15

