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Preface

Data collected by environmental scientists cover a highly diverse set of application
areas, ranging from public health studies of toxic environmental exposures
to meteorological investigations of chaotic atmospheric phenomena. As a result,
analysis of environmental data has itself become a highly diverse effort. In this text
we provide a selection of methods for undertaking such analyses, keying on the
motivating environmetric features of the observations. We emphasize primarily
regression settings where some form of predictor variable is used to make inferences
on an outcome variable of environmental interest. (Where possible, however, we also
include allied topics, such as uncertainty/sensitivity analysis in Chapter 4 and envir-
onmental sampling in Chapter 8.)

This effort proved challenging: the broader field of environmetrics has experienced
rapid growth in the past few decades (El-Shaarawi and Hunter, 2002; Guttorp, 2003),
and it became clear to us that no single text could possibly survey all the modern,
intricate statistical methods available for analyzing environmental data. We do not
attempt to do so here. In fact, the environmetric paradigm under study in some
chapters often leads to a basic, introductory-level presentation, while in other chap-
ters it forces us to describe rather advanced data-analytic approaches. For the latter
cases we try where possible to emphasize the simpler models and methods, and also
guide readers to more advanced material via citations to the literature. Indeed, to
keep the final product manageable, some advanced environmetric topics have been
given little or no mention. These include issues in survival analysis (Kalbfleisch and
Prentice, 2002), extreme-value analysis (Coles, 2001), experimental design (Mason
et al., 2003), Bayesian methods (Carlin and Louis, 2000), geographic information
systems (Longley et al., 2001), and applications such as ordination or other multi-
variate methods popular in quantitative ecology (McGarigal et al., 2000). Readers
interested in these important topic areas may benefit from the many books that
discuss them in detail, including those cited above.

For an even larger perspective, we recommend the collection of articles given in
Wiley’s Encyclopedia of Environmetrics (El-Shaarawi and Piegorsch, 2002), a project
in which we had the pleasure of participating. The Encyclopedia was envisioned and
produced to give the sort of broad coverage to this diverse field that a single book
cannot; in the text below we often refer readers to more in-depth material from the
Encyclopedia when the limits of our own scope and intent are reached. Alongside and



in addition to these references, we also give sourcebook references to the many fine
texts that delve into greater detail on topics allied with our own presentation. (As one
reviewer quite perceptively remarked, for essentially every topic we present there
exists a recent, single sourcebook devoted to that material, although perhaps not with
an environmental motivation attached. Our goal was to bring these various topics
together under a single cover and with purposeful environmental focus; however, we
also try where appropriate to make the reader aware of these other, dedicated
products.) We hope the result will be a coherent collection of topics that we have
found fundamental for the analysis of environmental data.

Individuals who will benefit most from our presentation are students and
researchers who have a sound grounding in statistical methods; we recommend a
minimum of two semesters of graduate study in statistical methodology. Even with
this background, however, many portions of the book will require more advanced
quantitative skills; typically a familiarity with integral and differential calculus,
vector and matrix notation/manipulation, and often also knowledge of a few
advanced concepts in statistical theory such as probability models and likelihood
analysis. We give brief reminders throughout the text on some of these topics; for
readers who require a ‘refresher’ in the more advanced statistical concepts, however,
we recommend a detailed study of the review of probability and statistical inference
in Appendix A and the references therein. We have also tried to separate and
sequester the calculus/linear algebra-based material to the best extent possible, so
that adept instructors who wish to use the text for students without a background in
calculus and linear algebra may do so with only marginal additional effort.

An integral component of our presentation is appeal to computer implementation
for the more intricate analyses. A wealth of computer packages and programming
languages are available for this purpose and we give in selected instances Internet
URLs that guide users to potentially useful computer applications. (All URLs listed
herein are current as of the time of this writing.) For ‘hands-on’ use, we highlight the
SAS� system (SAS Institute Inc., 2000). SAS’s ubiquity and extent make it a natural
choice, and we assume a majority of readers will already be familiar with at least
basic SAS mechanics or can acquire such skills separately. (Users versed in the
S-Plus� computer package will find the text by Millard and Neerchal, 2001, to be
of complementary use.) Figures containing sample SAS computer code and output
are displayed throughout the text. Although these are not intended to be the most
efficient way to program the desired operations, they will help illustrate use of the
system and (perhaps more importantly) interpretation of the outputs. Outputs from
SAS procedures (versions 6.12 and 8.2) are copyright �2002–2003, SAS Institute
Inc., Cary, NC, USA. All Rights Reserved. Reproduced with permission of SAS
Institute Inc., Cary, NC. We also appreciate the kind permission of Chapman &
Hall/CRC Press to adapt selected material from our earlier text on Statistics for
Environmental Biology and Toxicology (Piegorsch and Bailer, 1997).

All examples end with the symbol �. Large data sets used in any examples and
exercises in Chapters 5 and 6 have been archived online at the publisher’s website,
http://www.wiley.com/go/environmental. In the text, these are presented in reduced
tabular form to show only a few representative observations. We indicate this
wherever it occurs.

By way of acknowledgments, our warmest gratitude goes to our colleague Don
Edwards, who reviewed a number of chapters for us and also gave extensive input
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into the material in Chapters 5 and 6. Extremely helpful suggestions and input came
also from Timothy G. Gregoire, Andrew B. Lawson, Mary C. Christman, James
Oris, R. Webster West, Philip M. Dixon, Dwayne E. Porter, Oliver Schabenberger,
Jay M. Ver Hoef, Rebecca R. Sharitz, John M. Grego, Kerrie P. Nelson, Maureen O.
Petkewich, and three anonymous reviewers. We are also indebted to the Wiley
editorial group headed by Siân Jones, along with her colleague Helen Ramsey, for
their professionalism, support, and encouragement throughout the preparation of
the manuscript. Of course, despite the fine efforts of all these individuals, some errors
may have slipped into the text, and we recognize these are wholly our own respon-
sibility. We would appreciate hearing from readers who identify any inconsistencies
that they may come across. Finally, we hope this book will help our readers gain
insights into and develop strategies for analyzing environmental data.

WALTER W. PIEGORSCH AND A. JOHN BAILER

Columbia, SC and Oxford, OH
May 2004
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1

Linear regression

Considerable effort in the environmental sciences is directed at predicting an envir-
onmental or ecological response from a collection of other variables. That is, an
observed response variable, Y, is recorded alongside one or more predictor variables,
and these latter quantities are used to describe the deterministic aspects of Y. If we
denote the predictor variables as x1, x2, . . . , xp, it is natural to model the determinis-

tic aspects of the response via some function, say, g(x1, x2, . . . , xp; b), where

b ¼ [b0 b1 . . . bp]
T is a column vector of pþ 1 unknown parameters. (A vector is an

array of numbers arranged as a row or column. The superscript T indicates transpos-

ition of the vector, so that, for example, [a1a2]
T ¼ a1

a2

� �
. More generally, a matrix is

an array of numbers arranged in a square or rectangular fashion; one can view a
matrix as a collection of vectors, all of equal length. Background material on
matrices and vectors appears in Appendix A. For a more general introduction to
the use of matrix algebra in regression, see Neter et al., 1996, Ch. 5.) We use the
function g( � ) to describe how Y changes as a function of the xjs.

As part of the model, we often include an additive error term to account for any
random, or stochastic, aspects of the response. Formally, then, an observation Yi is
assumed to take the form

Yi ¼ gðxi1; xi2; . . . ; xip; bÞ þ ei; ð1:1Þ

i ¼ 1, . . . , n, where the additive error terms ei are assigned some form of probability
distribution and the sample size n is the number of recorded observations. Unless
otherwise specified, we assume the Yis constitute a random sample of statistically
independent observations. If Y represents a continuous measurement, it is common
to take ei � i.i.d. N(0,s2), ‘i.i.d.’ being a shorthand notation for independent and
identically distributed (see Appendix A). Coupled with the additivity assumption in
(1.1), this is known as a regression of Y on the xjs.

Analyzing Environmental Data W. W. Piegorsch and A. J. Bailer
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Note also that we require the xj predictor variables to be fixed values to which no
stochastic variability may be ascribed (or, at least, that the analysis be conditioned on
the observed pattern of the predictor variables).

We will devote a large portion of this text to environmetric analysis for a variety
of regression problems. In this chapter, we give a short review of some elementary
regression models, and then move on to a selection of more complex forms. We start
with the most basic case: simple linear regression.

1.1 Simple linear regression

The simple linear case involves only one predictor variable ( p ¼ 1), and sets g(xi1; b)
equal to a linear function of xi1. For simplicity, when p ¼ 1 we write xi1 as xi.
Equation (1.1) becomes

Yi ¼ b0 þ b1xi þ ei;

i ¼ 1, . . . , n, and we call b0 þ b1xi the linear predictor. The linear predictor is the
deterministic component of the regression model. Since this also models the popula-
tion mean of Yi, we often write m(xi) ¼ b0 þ b1xi, and refer to m(x) as the mean
response function.

The simple linear regression model can also be expressed as the matrix equation
Y ¼ Xbþ e where Y ¼ [Y1 . . .Yn]

T, e ¼ [e0 . . . en]
T and X is a matrix whose columns

are the two vectors J ¼ [1 . . . 1]T – i.e., a column vector of ones – and [x1 . . . xn]
T.

As a first step in any regression analysis, we recommend that a graphical display
of the data pairs (xi, Yi) be produced. Plotted, this is called a scatterplot; see Fig. 1.1
in Example 1.1, below. The scatterplot is used to visualize the data and begin the
process of assessing the model fit: straight-line relationships suggest a simple linear
model, while curvilinear relationships suggest a more complex model. We discuss
nonlinear regression modeling in Chapter 2.

Under the common assumptions that E[ei] ¼ 0 and Var[ei] ¼ s2 for all
i ¼ 1, . . . , n, the model parameters in b ¼ [b0 b1]

T have interpretations as the
Y-intercept (b0) and slope (b1) of m(xi). In particular, for any unit increase in xi,
m(xi) increases by b1 units. To estimate the unknown parameters we appeal to the
least squares (LS) method, where the sum of squared errors

Pn
i¼ 1fYi � m(xi)g2

is minimized (LS estimation is reviewed in xA.4.1). The LS estimators of b0 and b1
here are

b0 ¼ Y� b1x

and

b1 ¼
Pn

i¼ 1ðxi � xÞðYi � YÞPn
i¼ 1ðxi � xÞ2

¼

Pn
i¼ 1 xiYi �

1

n

Pn
i¼ 1 xi

Pn
i¼ 1 YiPn

i¼ 1 x
2
i �

1

n

Pn
i¼ 1 xi

� �2 ; ð1:2Þ

2 Linear regression



where Y ¼
Pn

i¼ 1 Yi/n and x ¼
Pn

i¼ 1 xi/n. The algebra here can be simplified using
matrix notation: if b ¼ [b0 b1]

T is the vector of LS estimators, then
b ¼ (XTX)�1XTY, (XTX)�1 being the inverse of the matrix X

T
X (see §A.4.3).

If we further assume that ei � i.i.d. N(0,s2), then the LS estimates will correspond
to maximum likelihood (ML) estimates for b0 and b1. (ML estimation is reviewed in
§A.4.3.) The LS/ML estimate of the mean response, m(x) ¼ b0 þ b1x, for any x, is
simply m̂m(x) ¼ b0 þ b1x.

We should warn that calculation of b1 can be adversely affected by a number of
factors. For example, if the xis are spaced unevenly, highly separated values of xi can
exert strong leverage on b1 by pulling the estimated regression line too far up or
down. (See the web applet at http://www.stat.sc.edu/�west/javahtml/Regression.
html for a visual demonstration. Also see the discussion on regression diagnostics,
below.) To avoid this, the predictor variables should be spaced as evenly as possible,
or some transformation of the xis should be applied before performing the regression
calculations. The natural logarithm is a typical choice here, since it tends to compress
very disparate values. If when applying the logarithm, one of the xi values is zero, say
x1 ¼ 0, one can average the other log-transformed xis to approximate an equally
spaced value associated with x1 ¼ 0. This is consecutive-dose average spacing
(Margolin et al., 1986): denote the transformed predictor by ui ¼ log (xi), i ¼ 2, . . . , n.
Then at x1 ¼ 0, use

u1 ¼ u2 �
un � u2
n� 1

: ð1:3Þ

A useful tabular device for collecting important statistical information from a
linear regression analysis is known as the analysis of variance (ANOVA) table. The
table lays out sums of squares that measure variation in the data attributable to
various components of the model. It also gives the degrees of freedom (df) for each
component. The df represent the amount of information in the data available to
estimate that particular source of variation. The ratio of a sum of squares to its
corresponding df is called a mean square.

For example, to identify the amount of variability explained by the linear
regression of Y on x, the sum of squares for regression is SSR ¼

Pn
i¼ 1 (ŶYi � Y)2,

where ŶYi ¼ b0 þ b1xi is the ith predicted value (also called a fitted value). SSR has
degrees of freedom equal to the number of regression parameters estimated minus
one; here, dfr ¼ 1. Thus the mean square for regression when p ¼ 1 is
MSR ¼ SSR/1.

We can also estimate the unknown variance parameter, s2, via ANOVA compu-
tations. Find the sum of squared errors SSE ¼

Pn
i¼ 1 (Yi � ŶYi)

2 and divide this by the
error df (the number of observations minus the number of regression parameters
estimated), dfe ¼ n� 2. The resulting mean squared error is

MSE ¼
Pn

i¼ 1ðYi � ŶYiÞ2

n� 2
;

and this is an unbiased estimator of s2. We often call
ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
the root mean squared

error.

1.1 Simple linear regression 3



We do not go into further detail here on the construction of sums of squares and
ANOVA tables, although we will mention other aspects of linear modeling and
ANOVA below. Readers unfamiliar with ANOVA computations can find useful
expositions in texts on linear regression analysis, such as Neter et al. (1996) or
Christensen (1996).

We use the MSE to calculate the standard errors of the LS/ML estimators.
(A standard error is the square root or estimated square root of an estimator’s
variance; see §A.4.3.) Here, these are

se½b0� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1

n
þ x2Pn

i¼ 1ðxi � xÞ2

( )vuut

and

se½b1� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSEPn
i¼ 1ðxi � xÞ2

s
: ð1:4Þ

Standard errors (and variances) quantify the variability of the point estimator, help-
ing to gauge how meaningful the magnitude of a given estimate is. They also give
insight into the impact of different experimental designs on estimating regression
coefficients. For example, notice that se[b0] is smallest for xis chosen so that x ¼ 0,
while se[b1] is minimized when

Pn
i¼ 1 (xi � x)2 is taken to be as large as possible.

Similarly, the standard error of m̂m(x) is

se½m̂mðxÞ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1

n
þ ðx� xÞ2Pn

i¼ 1ðxi � xÞ2

( )vuut :

Notice that, as with m̂m(x), se[m̂m(x)] varies with x. It attains its minimum at x ¼ x and
then increases as x departs from x in either direction. One may say, therefore, that
precision in m̂m(x) is greatest near the center of the predictor range – i.e., at x – and
diminishes as x moves away from it. Indeed, if one drives x too far away from the
predictor range, se[m̂m(x)] can grow so large as to make m̂m(x) essentially useless. This
illustrates the oft-cited concern that extrapolation away from the range of the data
leads to imprecise, inaccurate, and in some cases even senseless statistical predictions.

The standard errors are used in constructing statistical inferences on the bjs or on
m(x). For example, notice that if b1 ¼ 0 then the predictor variable has no effect on
the response and the simple linear model collapses to Yi ¼ b0 þ ei, a
‘constantþ error’ model for Y. To assess this, assume that the N(0,s2) assumption
on the eis is valid. Then, a 1� a confidence interval for b1 is

b1 � ta=2ðn� 2Þse½b1�:

(The theory of confidence intervals is reviewed in §A.5.1.) An alternative inference is
available by conducting a hypothesis test of the null hypothesis H0: b1 ¼ 0 vs. the

4 Linear regression



alternative hypothesis Ha: b1 6¼ 0. (The theory of hypothesis tests is reviewed in
§A.5.3.) Here, we find the test statistic

jtcalcj ¼
jb1j
se½b1�

based on Student’s t-distribution (§A.2.11), and reject H0 when jtcalcj � ta/2(n� 2).
(We use the subscript ‘calc’ to indicate a statistic that is wholly calculable from the
data.) Equivalently, we can reject H0 when the corresponding P-value, here

P ¼ 2P tðn� 2Þ � jb1j
seðb1Þ

� �
;

drops below the preset significance level a (see §A.5.3).
For testing against a one-sided alternative such as Ha: b1 > 0, we reject H0 when

tcalc ¼ b1/se[b1] � ta(n� 2). The P-value is then P[t(n� 2) � b1/se(b1)]. Similar
constructions are available for b0; for example, a 1� a confidence interval is
b0 � ta/2(n� 2)se[b0].

All these operations can be conducted by computer, and indeed, many statistical
computing packages perform simple linear regression. Herein, we highlight the
SAS� system (SAS Institute Inc., 2000), which provides LS/ML estimates b ¼ [b0 b1]

T,
their standard errors se[bj], an ANOVA table that includes an unbiased estimator
of s2 via the MSE, and other summary statistics, via its PROC GLM or PROC
REG procedures.

Example 1.1 (Motor vehicle CO2) To illustrate use of the simple linear regression
model, consider the following example. In the United Kingdom (and in most other
industrialized nations) it has been noted that as motor vehicle use increases, so do
emissions of various byproducts of hydrocarbon combustion. Public awareness of
this potential polluting effect has bolstered industry aspirations to ‘uncouple’ detri-
mental emissions from vehicle use. In many cases, emission controls and other
efforts have reduced the levels of hazardous pollutants such as small particulate
matter (PM) and nitrogen oxides. One crucial counter-example to this trend, however,
is the ongoing increases in the greenhouse gas carbon dioxide (CO2). For example,
Redfern et al. (2003) discuss data on x ¼ UK motor vehicle use (in kilometers per
year) vs. Y ¼ CO2 emissions (as a relative index; 1970 ¼ 100). Table 1.1 presents
the data.

A plot of the data in Table 1.1 shows a clear, increasing, linear trend (Fig. 1.1).
Assuming that the simple linear model with normal errors is appropriate for these
data, we find the LS/ML estimates to be b0 ¼ 28:3603 and b1 ¼ 0:7442. The corres-
ponding standard errors are se[b0] ¼ 2:1349 and se[b1] ¼ 0:0127. Since n ¼ 28, a 95%
confidence interval for b1 is 0:7742� t0:025(26)� 0:0127 ¼ 0:7742� 2:056�
0:0127 ¼ 0:7742� 0:0261. (We find t0.025(26) from Table B.2 or via the SAS
function tinv; see Fig. A.4.) Based on this 95% interval, the CO2 index increases
approximately 0.75 to 0.80 units (relative to 1970 levels) with each additional
kilometer.
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Alternatively, we can test the significance of the slope with these data. Specifically,
since one would expect a priori that increased motor vehicle use would increase CO2

emissions, the hypotheses H0: b1 ¼ 0 vs: Ha: b1 > 0 are a natural choice. Suppose we
set our significance level to a ¼ 0:01. For these data, the test statistic is
tcalc ¼ b1/se[b1] ¼ 0:7742/0:0127 ¼ 60:96, with corresponding P-value P[t(26) � 60:96]
< 0:0001. This is well below a, hencewe conclude that a significant, increasing effect exists
on CO2 emissions associated with the observed pattern of motor vehicle use in the UK
between 1971 and 1998. �

Table 1.1 Yearly CO2 emissions (rel. index; 1970 ¼ 100) vs. motor vehicle use (rel. km/yr;

1970 ¼ 100) in the United Kingdom, 1971–1998

Year 1971 1972 1973 1974 1975 1976 1977
x ¼ vehicle use 105.742 110.995 116.742 114.592 115.605 121.467 123.123
Y ¼ CO2 104.619 109.785 117.197 114.404 111.994 116.898 119.915

Year 1978 1979 1980 1981 1982 1983 1984
x ¼ vehicle use 127.953 127.648 135.660 138.139 141.911 143.707 151.205
Y ¼ CO2 126.070 128.759 130.196 126.409 130.136 134.212 140.721

Year 1985 1986 1987 1988 1989 1990 1991
x ¼ vehicle use 154.487 162.285 174.837 187.403 202.985 204.959 205.325
Y ¼ CO2 143.462 153.074 159.999 170.312 177.810 182.686 181.348

Year 1992 1993 1994 1995 1996 1997 1998
x ¼ vehicle use 205.598 205.641 210.826 214.947 220.753 225.742 229.027
Y ¼ CO2 183.757 185.869 186.872 185.100 192.249 194.667 193.438

Source: Redfern et al. (2003).
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Figure 1.1 Scatterplot and estimated LS line for motor vehicle CO2 data from Table 1.1
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The sample size in Example 1.1, n ¼ 28, is not atypical for a simple linear regression
data set, but of course analysts can encounter much larger sample sizes in environmental
practice. We will study selected examples of this in the chapters on nonlinear regression
(Chapter 2), temporal data (Chapter 5), and spatially correlated data (Chapter 6), below.

Once a model has been fitted to data, it is important to assess the quality of the fit
in order to gauge the validity of the consequent inferences and predictions.
In practice, any statistical analysis of environmental data should include a critical
examination of the assumptions made about the statistical model, in order to identify
if any unsupported assumptions are being made and to alert the user to possible
unanticipated or undesired consequences. At the simplest level, a numerical summary
for the quality of a regression fit is the coefficient of determination
f
Pn

i¼1 (xi � x)(Yi � Y)g2/f
Pn

i¼1 (xi � x)2
Pn

i¼1 (Yi � Y)2g, denoted as R2. This may
also be computed from the ANOVA table as R2 ¼ SSR/fSSR þ SSEg. Under
a linear model, R2 has interpretation as the proportion of variation in Yi that can
be attributed to the variation in xi. If the predictor variable explains Y precisely (i.e.,
the xi, Yi pairs all coincide on a straight line), R2 attains its maximum value of 1.0.
Alternatively, if there is no linear relationship between xi and Yi (so b1 ¼ 0),
R2 ¼ 0:0. As such, higher values of R2 indicate higher-quality explanatory value in xi.

More intricate regression diagnostics can include a broad variety of procedures for
assessing model fit (Davison and Tsai, 1992; Neter et al., 1996, Ch. 3). Most basic
among these is study of the residuals ri ¼ Yi � ŶYi. Almost every analysis of a regres-
sion relationship should include a graph of the residuals, ri, against the predicted
values, ŶYi (or, if p ¼ 1, against xi). Such a residual plot can provide information on a
number of features. For instance, if there is an underlying curvilinear trend in the
data that was not picked up by the original scatterplot, the residual plot may high-
light the curvilinear aspects not explained by the simple linear terms. Or, if the
assumption of variance homogeneity is inappropriate – i.e., if Var[ei] is not constant
over changing xi – the residual plot may show a fan-shaped pattern of increasing or
decreasing residuals (or both) as ŶYi increases. Figure 1.2 illustrates both these sorts of
patterns. Notice in Fig. 1.2(b) that variability increases with increasing mean
response; this sort of pattern is not uncommon with environmental data.

If the residual plot shows a generally uniform or random pattern, then evidence
exists for a reasonable model fit.

Example 1.2 (Motor vehicle CO2, cont’d) Returning to the data on motor vehicle
use in the UK, we find SSR ¼ 26 045:2953 and SSE ¼ 196:0457. This gives
R2 ¼ 0:9925, from which it appears that variation in CO2 emissions is strongly
explained by variation in motor vehicle use.

Figure 1.3 shows the residual plot from the simple linear model fit. The residual
points appear randomly dispersed, with no obvious structure or pattern. This
suggests that the variability in CO2 levels about the regression line is constant and
so the homogeneous variance assumption is supported. One could also graph a
histogram or normal probability plot of the residuals to assess the adequacy of the
normality assumption. If the histogram appears roughly bell-shaped, or if the normal
plot produces a roughly straight line, then the assumption of normal errors may be
reasonable. For the residuals in Fig. 1.3, a normal probability plot constructed using
PROC UNIVARIATE in SAS (via its plot option; output suppressed) does plot as
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roughly linear. Or one can call for normal probability plots directly in PROC REG,
using the statement

plot nqq.*r. npp.*r.;

The plot statement in PROC REG can also be used to generate a residual plot, via

plot r.*p.;
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Figure 1.2 Typical residual plots in the presence of model misspecification. (a) Curvilinear

residual trend indicates curvilinearity not fit by the model. (b) Widening residual spread indicates

possible variance heterogeneity. Horizontal reference lines indicate residual¼ 0
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or an overlay of the data and the predicted regression line, via

plot Y*x p.*x/overlay; �

When the residual plot identifies a departure from variance homogeneity, infer-
ences on the unknown parameters based on the simple linear fit can be incorrect,
and some adjustment is required. If the heterogeneous variation can be modeled
or otherwise quantified, it is common to weight each observation in inverse
proportion to its variance and apply weighted least squares (WLS; see §A.4.1).
For example, suppose it is known or anticipated that the variance changes as a
function of xi, say Var[Yi] / h(xi). Then, a common weighting scheme employs
wi ¼ 1/h(xi).

For weights given as wi, i ¼ 1, . . . , n, the WLS estimators become

~bb0 ¼
Xn
i¼1

wi

 !�1 Xn
i¼1

wiYi � b1
Xn
i¼1

wixi

 !
ð1:5Þ

and

~bb1 ¼
Pn

i¼1 wixiYi �
Pn

i¼1 wi

� ��1 Pn
i¼1 wixi

Pn
i¼1 wiYi

� �
Pn

i¼1 wix
2
i �

Pn
i¼1 wi

� ��1 Pn
i¼1 wixi

� �2 : ð1:6Þ
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Figure 1.3 Residual plot for motor vehicle CO2 data from Table 1.1. Horizontal bar indicates

residual¼ 0
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The standard errors require similar modification; for example,

se½~bb1� ¼
ffiffiffiffiffiffiffiffiffiffiffi
M~SSE

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 wix
2
i �

Pn
i¼1 wi

� ��1 Pn
i¼1 wixi

� �2q ;

where M~SSE is the weighted mean square
Pn

i¼1 wi(Yi � ~bb0 � ~bb1xi)
2/(n� 2). Inferences

on b1 then mimic those described above for the simple linear case. In SAS, both
PROC GLM and PROC REG can incorporate these (or any other) weighting
schemes, using the weight statement. Neter et al. (1996, §10.1) give further details
on the use of WLS methods.

If appropriate weights cannot be identified, it is often possible to stabilize the
variances by transforming the original observations. A common transformation in
many environmental applications is the (natural) logarithm: Vi ¼ log (Yi). This is
part of a larger class of transformations, known as the Box–Cox power transforma-
tions (Box and Cox, 1964). The general form is Vi ¼ (Yl

i � 1)/l, for some specified
transformation parameter l. The natural logarithm is the limiting case at l ¼ 0.
Other popular transformations include the square root (l ¼ 1/2), the quadratic
(l ¼ 2), and the reciprocal (l ¼ �1). One can also estimate l from the data, although
this can lead to loss of independence among the Vis. Users should proceed with
caution when estimating a power transformation parameter; see Carroll and Ruppert
(1988) for more on this and other issues regarding data transformation in regression.
Another useful transformation, often employed with percentage data, is the logit
transform: if Yi is a percentage between 0 and 100, take Vi ¼ logfYi/(100� Yi)g. We
employ this in Example 1.5, below.

Many other procedures are available for diagnosing and assessing model fit,
correcting for various model perturbations and inadequacies, and analyzing linear
relationships. A full description of all these methods for the simple linear model is
beyond the scope of this chapter, however. Details can be found in the targeted
textbook by Belsley et al. (1980), or in general texts on statistics such as Samuels and
Witmer (2003, Ch. 12) and Neter et al. (1996, Chs. 1–5).

1.2 Multiple linear regression

The simplest statistical model for the case of p > 1 predictor variables in (1.1)
employs a linear term for each predictor: set g(xi1, xi2, . . . , xip; b) ¼ b0 þ b1xi1
þ � � � þ bpxip. This is a multiple linear regression model. The parameter bj may be
interpreted as the change in E[Yi] that occurs for a unit increase in xij – the ‘slope’ of
the jth predictor – assuming all the other x-variables are held fixed. (When it is not
possible to vary one predictor while holding all others constant, then of course this
interpretation may not make sense. An example of such occurs with polynomial
regression models; see §1.5.) We require n > pþ 1.

Assuming, as above, that the errors satisfy E[ei] ¼ 0 and Var[ei] ¼ s2 for all
i ¼ 1, . . . , n, the LS estimators for b ¼ [b0 b1 . . . bp]

T can be derived usingmultivariable

10 Linear regression



calculus. When the additional assumption is made that ei � i.i.d. N(0,s2), these LS
estimates will correspond to ML estimates.

Unfortunately, the LS/ML estimators for b are not easily written in closed form. The
effort can be accomplished using vector and matrix notation in similar fashion to that
mentioned in §1.1, although actual calculation of the estimates is most efficiently per-
formed by computer. Almost any statistical computing package can fit a multiple linear
regression via LS or WLS methods; in Example 1.3, below, we illustrate use of SAS.

Similar to the simple linear case, we can test whether any particular predictor variable,
xij, is important in modeling E[Yi] via appeal to a t-test: find tcalc ¼ bj/se[bj] and reject
H0: bj ¼ 0 in favor of Ha: bj 6¼ 0 when jtcalcj ¼ jbjj/se[bj] � ta/2(n� p� 1). Note that
this tests the significance of the jth predictor variable given that all the other predictor
variables are present in the model. In this sense, we call it an adjusted test or a partial test
of significance. Confidence intervals are similar; for example, a pointwise 1� a con-
fidence interval for bj is bj � ta/2(n� p� 1)se[bj]; j ¼ 1, . . . , p. Notice the change in dfe
from the simple linear case where p ¼ 1: estimation of each additional bj results in a loss
of 1 additional df for error, so we have gone from dfe ¼ n� 2 to dfe ¼ n� (pþ 1).

We can also make statements on subsets or groupings of the b-parameters. For
example, consider a test of the null hypothesis that a group of k > 1 of the bjs is equal
to zero, say,H0: bjþ1 ¼ � � � ¼ bjþk ¼ 0. Rejection ofH0 suggests that the corresponding
group of k predictor variables has a significant impact on the regression relationship.
A general approach for such a test involves construction of discrepancy measures that
quantify the fit of the general (or full) model with all pþ 1 of the b-parameters, and
the reduced model with p� kþ 1 (non-zero) b-parameters. For the multiple regression
model with normally distributed errors, a useful discrepancy measure is the sum of
squared errors SSE ¼

Pn
i¼1 (Yi � ŶYi)

2, where ŶYi ¼ b0 þ b1xi1 þ � � � þ bpxip is the ith
predicted value under the full model. For clarity, we augment the SSE notation by
indicating if it is calculated under the full model (FM) or under the reduced model
(RM): SSE(FM) or SSE(RM). The SSEs are used to quantify the relative quality of
each model’s fit to the data: if H0 is false, we expect SSE(RM) to be larger than
SSE(FM), since the model under which it is fitted fails to include important predictor
variables. Corresponding to these terms, we also write the degrees of freedom
associated with each error terms as dfe(FM) and dfe(RM), respectively. The difference
between the two is �e ¼ dfe(RM)� dfe(FM). Here, dfe(FM) ¼ n� p� 1, while
dfe(RM) ¼ nþ k� p� 1, so that �e ¼ k is the number of parameters constrained
by the null hypothesis.

To use this discrepancy approach for testing H0, calculate the test statistic

Fcalc ¼
fSSEðRMÞ � SSEðFMÞg=�e

SSEðFMÞ=dfeðFMÞ ; ð1:7Þ

which under H0 is distributed as per an F-distribution with �e and dfe(FM) degrees
of freedom (§A.2.11). We denote this as Fcalc � F[�e, dfe(FM)]. Reject H0 in favor of
an alternative that allows at least one of the bjs in H0 to be non-zero when Fcalc

exceeds the appropriate upper-a F-critical point, Fa(�e, dfe[FM]). For the multiple
regression setting, this is Fcalc � Fa(k, n� p� 1). The P-value is P ¼ P[F(k,
n� p� 1) � Fcalc]. This testing strategy corresponds to a form of generalized like-
lihood ratio test (§A.5).
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In many cases, the various measures in (1.7) can be read directly from an ANOVA
table for the full model (Neter et al., 1996, Ch. 16). For example, if SSR(FM) is the
full model’s sum of squares for regression and the reduced model contains only the
intercept b0 (so k ¼ p), Fcalc ¼ fSSR(FM)/pg/MSE. Also, an extension of the coeffi-
cient of determination from the simple linear setting is the coefficient of multiple
determination: R2 ¼ SSR(FM)/fSSR(FM) þ SSE(FM)g. As in the simple linear case,
R2 measures the proportion of variation in Yi that can be accounted for by variation
in the collection of xijs.

For this approach to be valid, the parameters represented under the RMmust be a
true subset of those under the FM. We say then that the models are nested. If the
relationship between the RM and FM does not satisfy a nested hierarchy, Fcalc under
H0 may not follow (or even approximate) an F-distribution. The family of models are
then said to be separate (Cox, 1961, 1962); inferences for testing separate families are
still an area of developing environmetric research (Hinde, 1992; Schork, 1993).

Example 1.3 (Soil pH) Edenharder et al. (2000) report on soil acidity in west-
central Germany, as a function of various soil composition measures. For
Y ¼ soil pH, three predictor variables (all percentages) were employed: xi1 ¼ soil
texture (as clay), xi2 ¼ organic matter, and xi3 ¼ carbonate composition (CaCO3 by
weight). The n ¼ 17 data points are given in Table 1.2.

Table 1.2 Soil pH vs. soil composition variables in west-central

Germany

x1¼% Clay x2¼% Organics x3¼Carbonate Y¼ pH

51.1 4.3 6.1 7.1
22.0 2.6 0.0 5.4
17.0 3.0 2.0 7.0
16.8 3.0 0.0 6.1
5.5 4.0 0.0 3.7

21.2 3.3 0.1 7.0
14.1 3.7 16.8 7.4
16.6 0.7 17.3 7.4
35.9 3.7 15.6 7.3
29.9 3.3 11.9 7.5
2.4 3.1 2.8 7.4
1.6 2.8 6.2 7.4

17.0 1.8 0.3 7.5
32.6 2.3 9.1 7.3
10.5 4.0 0.0 4.0
33.0 5.1 26.0 7.1
26.0 1.9 0.0 5.6

Source: Edenharder et al. (2000).

12 Linear regression


