Analyzing Expected Outcomes and (Positive) Almost-Sure Termination of Probabilistic Programs is Hard

Benjamin Kaminski Joost-Pieter Katoen

2
27.2.2015

Motivation

- Probabilistic Programs are like ordinary programs, except:

Motivation

- Probabilistic Programs are like ordinary programs, except:
- Allow for random choice on how to continue the execution
- Random choice is done with some specified probability p

Motivation

- Probabilistic Programs are like ordinary programs, except:
- Allow for random choice on how to continue the execution
- Random choice is done with some specified probability p
- Analysis problems we consider:

Motivation

- Probabilistic Programs are like ordinary programs, except:
- Allow for random choice on how to continue the execution
- Random choice is done with some specified probability p
- Analysis problems we consider:
- Determine the value of a variable after program execution

Motivation

- Probabilistic Programs are like ordinary programs, except:
- Allow for random choice on how to continue the execution
- Random choice is done with some specified probability p
- Analysis problems we consider:
- Determine the value of a variable after program execution
- Decide whether the program terminates

Motivation

- Probabilistic Programs are like ordinary programs, except:
- Allow for random choice on how to continue the execution
- Random choice is done with some specified probability p
- Analysis problems we consider:
- Determine the value of a variable after program execution
- Determine expected values
- Decide whether the program terminates

Motivation

- Probabilistic Programs are like ordinary programs, except:
- Allow for random choice on how to continue the execution
- Random choice is done with some specified probability p
- Analysis problems we consider:
- Determine the value of a variable after program execution
- Determine expected values (expected outcomes)
- Decide whether the program terminates

Motivation

- Probabilistic Programs are like ordinary programs, except:
- Allow for random choice on how to continue the execution
- Random choice is done with some specified probability p
- Analysis problems we consider:
- Determine the value of a variable after program execution
- Determine expected values (expected outcomes)
- Decide whether the program terminates
- Decide
almost-sure termination

Motivation

- Probabilistic Programs are like ordinary programs, except:
- Allow for random choice on how to continue the execution
- Random choice is done with some specified probability p
- Analysis problems we consider:
- Determine the value of a variable after program execution
- Determine expected values (expected outcomes)
- Decide whether the program terminates (in an expected finite number of steps)
- Decide almost-sure termination

Motivation

- Probabilistic Programs are like ordinary programs, except:
- Allow for random choice on how to continue the execution
- Random choice is done with some specified probability p
- Analysis problems we consider:
- Determine the value of a variable after program execution
- Determine expected values (expected outcomes)
- Decide whether the program terminates (in an expected finite number of steps)
- Decide (positive) almost-sure termination

Motivation

- Probabilistic Programs are like ordinary programs, except:
- Allow for random choice on how to continue the execution
- Random choice is done with some specified probability p
- Analysis problems we consider:
- Determine the value of a variable after program execution
- Determine expected values (expected outcomes)
- Decide whether the program terminates (in an expected finite number of steps) [on all inputs]
- Decide
(positive) almost-sure termination

Motivation

- Probabilistic Programs are like ordinary programs, except:
- Allow for random choice on how to continue the execution
- Random choice is done with some specified probability p
- Analysis problems we consider:
- Determine the value of a variable after program execution
- Determine expected values (expected outcomes)
- Decide whether the program terminates (in an expected finite number of steps) [on all inputs]
- Decide [universal] (positive) almost-sure termination

Motivation

- Probabilistic Programs are like ordinary programs, except:
- Allow for random choice on how to continue the execution
- Random choice is done with some specified probability p
- Analysis problems we consider:
- Determine the value of a variable after program execution
- Determine expected values (expected outcomes)
- Decide whether the program terminates (in an expected finite number of steps) [on all inputs]
- Decide [universal] (positive) almost-sure termination

How hard is it to solve these analysis problems?

Dissent in the Literature

[Morgan 1996]

" $[\ldots]$ probabilistic reasoning for partial correctness [...] is not much more complex than standard reasoning."

Dissent in the Literature

[Morgan 1996]

"[...] probabilistic reasoning for partial correctness [...] is not much more complex than standard reasoning."

[Esparza et al. 2012]

"[Ordinary] termination is a purely topological property [...], but almost-sure termination is not.
[...] proving almost-sure termination requires arithmetic reasoning not offered by termination provers."

The Arithmetical Hierarchy

The Arithmetical Hierarchy

- Class Σ_{n}^{0} is defined as

$$
\begin{gathered}
\Sigma_{n}^{0}=\left\{A \mid A=\left\{\vec{x} \mid \exists y_{1} \forall y_{2} \exists y_{3} \cdots \exists / \forall y_{n}:\right.\right. \\
\left.\left(\vec{x}, y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right) \in R\right\}, \\
R \text { is a decidable relation }\}
\end{gathered}
$$

The Arithmetical Hierarchy

- Class Σ_{n}^{0} is defined as

$$
\begin{gathered}
\Sigma_{n}^{0}=\left\{A \mid A=\left\{\vec{x} \mid \exists y_{1} \forall y_{2} \exists y_{3} \cdots \exists / \forall y_{n}:\right.\right. \\
\left.\left(\vec{x}, y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right) \in R\right\}, \\
R \text { is a decidable relation }\}
\end{gathered}
$$

- Class Π_{n}^{0} is defined as

$$
\begin{gathered}
\Pi_{n}^{0}=\left\{A \mid A=\left\{\vec{x} \mid \forall y_{1} \exists y_{2} \forall y_{3} \cdots \exists / \forall y_{n}:\right.\right. \\
\left.\left(\vec{x}, y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right) \in R\right\}, \\
R \text { is a decidable relation }\}
\end{gathered}
$$

The Arithmetical Hierarchy

- Class Σ_{n}^{0} is defined as

$$
\begin{gathered}
\Sigma_{n}^{0}=\left\{A \mid A=\left\{\vec{x} \mid \exists y_{1} \forall y_{2} \exists y_{3} \cdots \exists / \forall y_{n}:\right.\right. \\
\left.\left(\vec{x}, y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right) \in R\right\}, \\
R \text { is a decidable relation }\}
\end{gathered}
$$

- Class Π_{n}^{0} is defined as

$$
\begin{gathered}
\Pi_{n}^{0}=\left\{A \mid A=\left\{\vec{x} \mid \forall y_{1} \exists y_{2} \forall y_{3} \cdots \exists / \forall y_{n}:\right.\right. \\
\left.\left(\vec{x}, y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right) \in R\right\}, \\
R \text { is a decidable relation }\}
\end{gathered}
$$

- Class Δ_{n}^{0} is defined as $\Delta_{n}^{0}=\Sigma_{n}^{0} \cap \Pi_{n}^{0}$

The Arithmetical Hierarchy - The Bigger Picture

The following inclusion diagram holds (all inclusions are strict):

The Arithmetical Hierarchy - The Bigger Picture

The following inclusion diagram holds (all inclusions are strict):

The Arithmetical Hierarchy - The Bigger Picture

The following inclusion diagram holds (all inclusions are strict):

The Arithmetical Hierarchy - The Bigger Picture

The following inclusion diagram holds (all inclusions are strict):

Some Notation

Some Notation

- The expected outcome of variable v after executing P :

$$
\mathrm{E}_{P}(v)
$$

Some Notation

- The expected outcome of variable v after executing P :

$$
\mathrm{E}_{P}(v)
$$

- The probability that P terminates on input η :

$$
\operatorname{Pr}_{P, \eta}(\downarrow)
$$

Some Notation

- The expected outcome of variable v after executing P :

$$
\mathrm{E}_{P}(v)
$$

- The probability that P terminates on input η :

$$
\operatorname{Pr}_{P, \eta}(\downarrow)
$$

■ The expected number of steps until P terminates on input η :

$$
\mathrm{E}_{P, \eta}(\downarrow)
$$

Decision Problems We Analyzed

Decision Problems We Analyzed

Lower and Upper Bounds, and Exact Expected Outcomes

$$
\begin{aligned}
(P, v, q) \in \mathcal{L E X P} & : \Longleftrightarrow q<\mathrm{E}_{P}(v) \\
(P, v, q) \in \mathcal{U E X P} & : \Longleftrightarrow q>\mathrm{E}_{P}(v) \\
(P, v, q) \in \mathcal{E X P} & : \Longleftrightarrow q=\mathrm{E}_{P}(v)
\end{aligned}
$$

Decision Problems We Analyzed

Lower and Upper Bounds, and Exact Expected Outcomes

$$
\begin{array}{rlr}
(P, v, q) \in \mathcal{L E X P} & : \Longleftrightarrow q<\mathrm{E}_{P}(v) \\
(P, v, q) \in \mathcal{U E X P} & : \Longleftrightarrow q>\mathrm{E}_{P}(v) \\
(P, v, q) \in \mathcal{E X P} & : \Longleftrightarrow & q=\mathrm{E}_{P}(v)
\end{array}
$$

Almost-Sure Termination $\mathcal{A S T}$

$$
(P, \eta) \in \mathcal{A S T}: \Longleftrightarrow \operatorname{Pr}_{P, \eta}(\downarrow)=1
$$

Variations of $\mathcal{A S T}$

Variations of $\mathcal{A S T}$

Positive Almost-Sure Termination PAST

$$
(P, \eta) \in \mathcal{P A S T}: \Longleftrightarrow \mathrm{E}_{P, \eta}(\downarrow)<\infty
$$

Variations of $\mathcal{A S T}$

Positive Almost-Sure Termination PAST

$$
(P, \eta) \in \mathcal{P A S T}: \Longleftrightarrow \mathrm{E}_{P, \eta}(\downarrow)<\infty
$$

Notice $\mathcal{P A S T} \subsetneq \mathcal{A S T}$.

Variations of $\mathcal{A S T}$

Positive Almost-Sure Termination PAST

$$
(P, \eta) \in \mathcal{P A S T}: \Longleftrightarrow \mathrm{E}_{P, \eta}(\downarrow)<\infty
$$

Notice $\mathcal{P A S T} \subsetneq \mathcal{A S T}$.

Universal Versions of $\mathcal{A S T}$ and $\mathcal{P A S T}$

$$
\begin{aligned}
P \in \mathcal{U A S T} & : \Longleftrightarrow \forall \eta:(P, \eta) \in \mathcal{A S T} \\
P \in \mathcal{U P A S T} & : \Longleftrightarrow \forall \eta:(P, \eta) \in \mathcal{P A S T}
\end{aligned}
$$

A (very) Simple Example Program

Consider the program $P_{\text {geo }}$:

$$
\begin{aligned}
& x:=0 ; \\
& \{\text { continue }:=0\}[0.5]\{\text { continue }:=1\} ; \\
& \text { while }(\text { continue } \neq 0)\{ \\
& \quad x:=x+1 ; \\
& \} \quad\{\text { continue }:=0\}[0.5] \text { \{continue }:=1\}
\end{aligned}
$$

A (very) Simple Example Program

Consider the program $P_{\text {geo }}$:

$$
\begin{aligned}
& x:=0 ; \\
& \{\text { continue }:=0\}[0.5]\{\text { continue }:=1\} ; \\
& \text { while }(\text { continue } \neq 0)\{ \\
& \quad x:=x+1 ; \\
& \quad\{\text { continue }:=0\}[0.5] \text { \{continue }:=1\}
\end{aligned}
$$

- $\mathrm{E}_{\text {Pgeo }(x)=2}$

A (very) Simple Example Program

Consider the program $P_{\text {geo }}$:

$$
\begin{aligned}
& \quad \begin{array}{l}
x:=0 ; \\
\{\text { continue }:=0\}[0.5] \text { \{continue }:=1\} ; \\
\text { while }(\text { continue } \neq 0)\{ \\
\quad x:=x+1 ; \\
\quad\{\text { continue }:=0\}[0.5] \text { \{continue }:=1\} \\
\quad\} \quad \mathrm{E}_{P_{\text {geo }}}(x)=2 \\
■ \mathrm{E}_{P_{\text {geo }}}(\text { continue })=0
\end{array}
\end{aligned}
$$

- $\mathrm{E}_{\text {Pgeo }(x)=2}$

A (very) Simple Example Program

Consider the program $P_{\text {geo }}$:

$$
\begin{aligned}
& x:=0 ; \\
& \{\text { continue }:=0\}[0.5]\{\text { continue }:=1\} ; \\
& \text { while }(\text { continue } \neq 0)\{ \\
& \quad x:=x+1 ; \\
& \} \quad\{\text { continue }:=0\}[0.5]\{\text { continue }:=1\}
\end{aligned}
$$

■ $\mathrm{E}_{P_{\text {geo }}}($ continue $)=0$

- $P_{\text {geo }}$ terminates almost-surely on all inputs

A (very) Simple Example Program

Consider the program $P_{\text {geo }}$:

$$
\begin{aligned}
& x:=0 ; \\
& \{\text { continue }:=0\}[0.5]\{\text { continue }:=1\} ; \\
& \text { while (continue } \neq 0)\{ \\
& \quad x:=x+1 ; \\
& \} \quad\{\text { continue }:=0\}[0.5]\{\text { continue }:=1\}
\end{aligned}
$$

- $\mathrm{E}_{\text {Pgeo }(x)=2}$

■ $\mathrm{E}_{P_{\text {geo }}}($ continue $)=0$

- $P_{\text {geo }}$ terminates almost-surely on all inputs

■ Expected runtime of $P_{\text {geo }}$ is $\mathcal{O}\left(\mathrm{E}_{P_{\text {geo }}}(x)\right)$ on all inputs

Summary of Results

Summary of Results

Summary of Results

Summary of Results

Summary of Results

Summary of Results

Summary of Results

Summary of Results

Summary of Results

Summary of Results

Summary of Results

Summary of Results

Summary of Results

Summary of Results

