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Abstract: Autonomous driving of higher automation levels asks for optimal execution of critical
maneuvers in all environments. A crucial prerequisite for such optimal decision-making instances
is accurate situation awareness of automated and connected vehicles. For this, vehicles rely on the
sensory data captured from onboard sensors and information collected through V2X communication.
The classical onboard sensors exhibit different capabilities and hence a heterogeneous set of sensors
is required to create better situation awareness. Fusion of the sensory data from such a set of
heterogeneous sensors poses critical challenges when it comes to creating an accurate environment
context for effective decision-making in AVs. Hence this exclusive survey analyses the influence of
mandatory factors like data pre-processing preferably data fusion along with situation awareness
toward effective decision-making in the AVs. A wide range of recent and related articles are analyzed
from various perceptive, to pick the major hiccups, which can be further addressed to focus on the
goals of higher automation levels. A section of the solution sketch is provided that directs the readers
to the potential research directions for achieving accurate contextual awareness. To the best of our
knowledge, this survey is uniquely positioned for its scope, taxonomy, and future directions.

Keywords: automated driving system (ADS); autonomous vehicle (AV); data pre-processing; multimodal
fusion; situation awareness (SA); rule framing; machine learning (ML)

1. Introduction

Autonomous vehicles can sense their environment and take the appropriate instant
decisions to react to environmental events. Autonomous cars use a wide range of sensors
such as radar, LiDAR, sonar, GPS, odometer, and inertial measurement units to capture their
environmental information. The following facts explain some of the interesting outcomes
of autonomous driving. Autonomous vehicle companies with a valid permit along with
a safety driver in California reported that their vehicles drove nearly 2.9 million miles
during the most recent period time (2019–2020). Reports provided by Aptiv and Lyft in
Las Vegas in February 2020, state that one lakh riders in Rob-Taxi-Drives have given a
high rating regarding the safety of the travel [1]. Surveys conducted by Renault-Nissan-
Mitsubishi reveal that 55% of small fleet owners have assured to convert their fleets to be
fully autonomous within 20 years [2]. Nearly 54% of respondents to a recent Northeastern
University/Gallup survey has reported that they are unlikely to use fully self-driving
cars when they arrive on the roads [3]. In current trends, vehicle manufacturers, fleet
management, and the public are more fascinated with using autonomous vehicles (AVs).

Human errors cause 94% of road accidents according to a recent technical analysis
by the National Highway Traffic Safety Administration (NHTSA) [4]. In this context,

Sensors 2023, 23, 4075. https://doi.org/10.3390/s23084075 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23084075
https://doi.org/10.3390/s23084075
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7488-0915
https://doi.org/10.3390/s23084075
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23084075?type=check_update&version=1


Sensors 2023, 23, 4075 2 of 40

Automated Driving Systems (ADSs) are being developed with the goal of decreasing
accidents, lowering emissions, transferring the mobility-impaired, and reducing the stress
associated with driving [5]. The yearly societal benefits of ADSs, if widely adopted, are
expected to reach about USD 800 billion by 2050 as a result of reduced traffic congestion,
reduced road fatalities, reduced energy consumption, and enhanced productivity due to
the reallocation of driving time. The availability of new sensors types such as LiDAR,
radars, Velodyne’s, and catalyzed ADSs, integrated with advanced ML techniques such as
deep learning and innovative technologies such as computer vision, improves the accuracy
of the perceived vehicular environment information (SA), for effective decision-making.
Furthermore, the creation of ADSs with varying degrees of automation was prompted by
a rise in the public interest and business potential. Robust automated driving in urban
contexts, on the other hand, is yet to be achieved [5].

Accidents induced by immature systems [6] erode trust and, in some cases, result in
casualty. As a result, a thorough examination of unsolved challenges and current state-
of-the-art is judged necessary in this case. Autonomous vehicle technology has many
advantages over manual driving. Some of the key advantages are reduced accidents,
minimized traffic congestion, better pollution control, increased lane capacity, and less fuel
consumption, which in turn reduces the overall cost of commodities and transportation. The
perception systems must be accurate in giving a precise understanding of the environment.
They must be able to function properly in inclement weather and even when certain
sensors are damaged or faulty. Sensor systems must be complex and effective in order to
collect environmental data as well as data related to autonomous vehicle characteristics.
The vehicular environment data collected from several devices such as sensors, thermal
cameras, radars, etc., exhibit heterogeneous multimodal characteristics, which further
complicates the processing tasks of decision-making in the AVs [7]. Instant decision-making
for critical maneuvers is an important task to ensure reliability and safety, which includes
lane changing, platooning activities, rerouting, braking, overtaking, etc. For effective
decision-making, more clarity is needed in the data collected from different sources to
frame intelligent rules for decision-making. Since different sensors capture and store
vehicular data that exhibit multimodal characteristics, further processing of the data to
frame decision rules becomes a challenging task. Hence, effective pre-processing tasks
namely data-cleaning and fusion of the multimodal data into a unique format, which
improves the SA of the vehicular environment and facilitates the rule framing mechanism
for effective decision-making is an imperative task for autonomous driving [8,9].

AD will not be widely used anytime soon due to various challenges such as the cost
associated with technology, safety and security issues, legalization problems, and reduced
job opportunities. To some extent, however, it is still feasible to predict its prospective
impact and benefits. ADSs are widely used today in many developed countries due to the
prime advantages listed below.

• Problems that can be resolved include the following: decreasing pollutants, preventing
road accidents, and reducing traffic congestion;

• Possibilities emerge, such as reallocating driving time and conveying the mobility
handicapped;

• New trends include mobility as a service (MaaS) consumption and the logistics revolution.

The widespread use of AD has the potential to reduce societal losses caused by
erroneous human behavior such as distraction, drunk driving, and speeding [10]. The
older generation (those over 60 years old) is growing at a greater rate than the younger
generations [11]. Using ADSs to increase the mobility of elderly people can have a
significant impact on the quality of life and productivity of a large segment of the population.
A new trend is moving away from owning a personal automobile and toward using Mobility
as a Service (MaaS). Currently, ride-sharing is less expensive than owning a vehicle with an
annual mileage of fewer than 1000 kilometers. By 2030, the proportion of owned versus
shared automobiles is predicted to be 50:50 [12]. This trend could be accelerated by a
large-scale deployment of ADSs. In this paper, we survey recent advances in multimodal
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fusion followed by SA, and instant decision-making strategies in autonomous driving. We
also discuss the challenges and research gaps in existing research.

The paper is organized as follows. Section 2 presents the background concepts related
to this survey, Section 3 discusses the major research contributions in the literature related
to the mandatory areas of autonomous driving, namely multimodal fusion, situation
awareness, and decision-making. The section also highlights research limitations and
identifies the research gaps in the existing literature. Section 4 discusses the identified
existing gaps in the literature and the next future steps in the research, followed by the
conclusions in Section 5.

2. Roadmap of the Survey

The goal of fully autonomous vehicles is still a long way off, and it could take
a few more years. Many activities around the world are leading to and evaluating
vehicle autonomy in various environments, such as equipping vehicles with technologies
and implementing Level 3 and higher use cases on various pilot sites, such as fully
managed, partially controlled, highways, and so on. This section discusses the background
information related to conceptual awareness, multimodal fusion, and the decision-making
principles related to autonomous driving.

The Society of Automotive Engineers states that in order for fully automated vehicles
to achieve Level 5 autonomy, they must overcome the difficulties associated with teaching
them to drive more safely than people (SAE). This inhibits and increases the cost of
implementing fully automated vehicles. Radar, LIDAR, computer vision, sonar, and GPS
are some of the sensors used by autonomous vehicles to perceive their environments.
To calculate navigational directions, avoid obstructions, and read suitable indicators
such as road signs, these perceiving devices process the acquired sensory information.
Autonomous vehicle research teams gather test driving information from a large number
of hours in various areas across the globe. To train algorithms for effective decision-
making in AVs, this tremendous volume of data must be collected, distributed, processed,
and analyzed. The main difficulty is figuring out how to efficiently manage all of the
test-generated data and instruct the vehicles to make decisions more quickly in a range
of circumstances. Creating control systems that can effectively navigate roadways and
comprehend information requires teams working toward SAE Level 5 autonomy to gather,
store, analyze, and interpret enormous amounts of sensory data. In order to drive correctly
and safely, contemporary AV technology uses advanced computations to aggregate data
from multiple sensing devices and other sources. Building vehicle autonomy with machine
learning and artificial intelligence (AI) involves ongoing implementation and developing
expertise. The speed at which autonomous vehicles are developed is determined by
research and development as well as the technological ability to capture, store, and evaluate
huge volumes of sensory information in order to not only translate data into advanced
computations that enhance AD precision and efficiency but also to develop smart autonomy.
Auto manufacturers who can speed up this phase will have a leg up on the competition for
SAE Level 5 autonomy [2,7,13].

Figure 1 illustrates the architecture according to which the survey is organized. Since
more contributions have been done to the data cleaning process, in the first phase, more
priority is given to the multimodal fusion task, which plays a vital role in improving the
SA of the AVs. In data fusion, various articles are grouped based on discernible units,
complimentary features, target attributes, and multi-source destinations. The outcome of
the first phase leads to effective decision-making tasks in AVs. Various contributions from
different authors related to decision-making in AVs are analyzed based on various events,
namely lane changing, collision avoidance, various roadside events, and platooning. The
outcome of the analysis is identifying the pitfalls associated with the articles in the first
phase, which degrades the SA and impacts the accurate decision-making in the AVs.
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Figure 1. Overall flow of the survey.

The following sections discuss the mandatory information related to the key factors,
namely situation awareness, multimodal fusion, and decision-making in AVs.

2.1. A Brief Overview about Situation Awareness

According to Ref. [14], SA is defined as “the perception of the elements in the
environment within a volume of time and space, the comprehension of their meaning
and the projection of their status in the near future”. SA bridges the gap between what we
know about the environment, what is occurring in it, and what could happen in the future.
Endsley split the processes of SA into three levels of responsiveness: Level 1, ‘Perception’,
is the fundamental level of awareness that encompasses the perception of environmental
signals. Level 2, ‘Comprehension’, necessitates an analysis of the current situation, taking
into consideration many fragments of data and their comparative relevance to one another
in order to understand what we are perceiving. Level 3, ‘Projection’, is the capacity of the
operator to make predictions about the future condition of things in their surroundings. It
is a serial product of Levels 1 and 2 in their surroundings [15,16].

The three degrees of SA correspond to how an autonomous vehicle perceives and
analyses the driving environmental scenarios. In AVs, the automatic process ‘perceives’
using sensing devices such as LIDAR, radar, and numerous cameras that can perceive
information ‘through’ walls and beneath the road surface, but is confined to visual and
audio inputs [17]. The AV sensors, on the other hand, might be deceived, and false positives
can result in emergency braking maneuvers. For instance, in the first step of the Move-UK
project, the AV misinterpreted a cloud of exhaust smoke circling over the roadside for a
fixed material and ordered the vehicle to stop, illustrating that human interference may
be necessary even at the level of basic perceptional decisions since they may call for some
level of coordinated comprehension. In terms of Level 2, ‘Comprehension’, AVs presently
lack the AI required to attain human-like comprehensive insight. Many edge situations are
context-dependent, and an AV may miss essential or irrelevant facts that a person would
notice [18]. In Level 3, ‘Projection’, AVs are currently unable to make accurate forecasts
since real-world driving is unpredictable and necessitates both proactive and reactive
judgments to avoid dangerous scenarios from arising [19].

Figure 2 explains the overall architecture of Situation Awareness in AVs. The role of
every interconnected module that contributes towards SA is explained in the following
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paragraphs. The first module is the vision module, which selects and registers certain
SEs into their short-term sensory store after successful filtering is done using selective
attention methodology. The buffers access the vision module’s environmental data and
choose the proper action condition from declarative memory. Once the (if) part of the
procedural memory (which contains the rules) matches with the rules stored in the buffer,
the corresponding (then) part in terms of the actions is fetched from the motor module
using a pattern-matching algorithm. The numbers highlighted in Figure 2, depict the
hierarchy of execution of various tasks related to SA.

Figure 2. Overall architecture of the situation awareness in the AVs.

Many eminent researchers have contributed to the importance of situation awareness
in AVs. Useful surveys and articles covering various aspects of SA such as different methods
used to record situation awareness, various measurements used to compute the SA, and
important SA architectures that are used by the manufacturers and researchers to organize
the procedures by collecting the environmental data for effective decision-making in AVs
have been published to help the research community acquire in-depth knowledge of the
field of AVs.

2.2. Basics of Data Fusion and the Perception System of AV

This paragraph explains the key concepts related to multimodal fusion. The main focus
of this section is to highlight the readers regarding the importance of data fusion towards
SA of the AVs. Different sensors are deployed in autonomous vehicles to gather information
related to the vehicular environment. Normally, sensor data is heterogeneous and represents
multimodal characteristics. Processing multimodal data is difficult and henceforth they
must be fused and converted into a unique format, which facilitates further processing.
However, fusing multimodal data is a complicated task and requires more mathematical
transformations and calculations. Various eminent articles related to fusing heterogeneous
vehicular data are analyzed and their main contributions followed by the drawbacks are
discussed in this section. This section highlights the complete picture of various innovative
strategies proposed by various authors to fuse and convert vehicular data into a unique
format. Figure 3 illustrates the overall architecture of data fusion. Multimodal data is
acquired from several sensing devices. The collected vehicular information is forwarded
to the fusion module where data is fused into a single format. The fused data is passed
to the interaction manager, which handles specific tasks—namely handling input and
output in various modalities such as speech, video, etc. The output modality focuses on
integrating multimodal data (e.g., speech and video). To carry out these transformations,
advanced mathematical models are used. To date, a multimodal fusion of sensor data



Sensors 2023, 23, 4075 6 of 40

is a complex activity due to various reasons such as the limitations associated with the
sensors, differences in temporal and spatial resolution data format, and geometric alignment.
Other challenging issues such as the uncertainty of reliable data sources, inconsistent data,
missing values, and heterogeneous nature make this process puzzling to many researchers
and autonomous vehicle solution providers. This section discusses the contributions and
methodologies proposed by many authors regarding the multimodal fusion of sensor data
for autonomous driving.

Figure 3. Multimodal fusion architecture.

In the IoT world, a massive volume of data is generated in a short period. The
question of how to make such a massive volume of data exact and highly accurate remains
unsolved, despite the fact that information quality plays a crucial part in decision-making.
It is vital to have accurate and reliable information. This can be accomplished through
data or information fusion (terms that can be used interchangeably). Because of the
following reasons, data fusion plays a key role in the success of the Internet of Things (IoT)
paradigm [20]:

• Data from multiple sensors and sources are combined to create something more smart,
definite, intuitive, and precise information. The data from each sensor may not make
much sense on its own;

• Computing the (N) independent observations yields a statistical benefit of fusion; one
may expect the data to be combined in the best possible way;

• Manufacturing minimal power consumption sensors, which reduces the frequent
replacement of batteries during their lifespan, is a key problem in IoT. This prevailing
condition reduces the demand for energy-efficient sensors in the market. It is well
known that high-precision sensors use a lot of power;

• To address this problem, a set of low-accuracy sensors with very low power consumption
can be deployed. Data fusion allows for the creation of extremely accurate information;

• Data fusion can assist with IoT big data challenges because we are combining data
from various sensors into more specific and reliable information;

• Another significant advantage of data fusion is that it helps in the concealment of
essential data or semantics that are accountable for the fused outcomes. Military
applications, some important medical sections, and intelligence buildings, are examples
of this.

Based on the mathematical approaches used, data fusion strategies can be divided
into three categories:

• Artificial Intelligence (AI) based approaches such as classical machine learning, fuzzy
logic, artificial neural networks (ANN), and genetic assessment;
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• Probability-based methods such as Bayesian analysis, statistics, and recursive operators;
• Evidence-based data fusion strategies based on theory.

2.2.1. History of Fusion

With roots in the 1980s, the SDF group has been around for 40 years. In the era of data
fusion, information, and decision-making systems investigate distributive fusion. This has
involved groups such as Garvey at SRII, working on AI, Reid at Lockheed, working on various
assertion monitoring, and Bar-shalom at Systems Control, who is developing a combined
probability-based data association filter and data fusion [21]. Over the decades, information
fusion has progressed in leaps and bounds. The SIAP concept created a hypothesis of a tree
structure with a rule-based and signal-understanding mechanism. For instance, a layer of
regulations received audio energy from hydrophones and extrapolated signaling principles
were utilized to carry out the conceptual transition over different treatments to identify
and locate vessels [22]. Since the 1980s, there have been ground-breaking developments in
computing and networking, as well as widespread business establishments of sensor and data
fusion. Over 100 businesses claim to offer AI that incorporates ML and SDF. In the 1980s, for
example, researchers aimed for cognitive computation techniques to maintain autonomous
land vehicles (ALV). A sensitive camera system was used in the 1985 ALV road demo to
identify road borders at noon rather than shadows at night [23]. Further tests demonstrated
that environmental changes, such as mud on the road, had restrictions. As a result, the AI
industry (hardware and software) tanked in the 1980s. In the 1990s, the merging of AI and SDF
became obvious. The use of probabilistic graphical models to enable model-based reasoning
became popular, mainly due to: (1) uncertainty and inference being rigorously represented,
(2) model-based learning from data, based on evidence and allowing for explainable results,
and (3) logical relationship extensions. The broad discussion of AI focuses on its history, which
is represented in a variety of ways. The three stages of development [24] are one example.
Expert systems were the first phase, in which researchers attempted to emulate human experts
in speech and signal understanding. In the second stage, probability modeling was used in
descriptive statistics for object and situation identification. Advances in neural networks using
DL for video tracking and natural language processing are included in the current phase,
which is the third phase. The first wave of AI for model-based development with handmade
(or labeled) knowledge includes both the first and second phases. The third phase encourages
a second wave of AI, which involves statistical learning based on data. The third wave of
contextual adaptation is being ridden by today’s AI/ML techniques. Machine learning, AI,
Fuzzy Logic, Deep Learning, and data fusion are all used to gradually develop intelligence.
Various works have looked into the process of developing intelligence for IoT-based smart
communities. Luc Julia, a former Apple Siri director who is now the Vice President of Samsung
Open Innovations, introduced the Samsung Architecture for Multimodal Interactions (SAMI),
which is part of Samsung’s AI strategy for its IoT-based approach [25]. In its pursuit of IoT,
Google just acquired DeepMind, an AI company. Boston Dynamics, a robotics business,
and Nest Labs are two more recent large acquisitions. In the Internet of Things, artificial
intelligence is increasingly widely employed for sensor fusion, event processing, and location.
The major contribution of AI-based data fusion research and development is discussed in
Ref. [25]. The following questions were addressed by each panel list.

1. What is the issue with SDF?
2. Which SDF problem component requires ML, and why?
3. Which scenarios effectively use AI/ML techniques to solve fusion-related problems?
4. When does it become difficult to use machine learning for SDF?

While Table 1 summarizes the discussion, each panelist chose specific concerns that
were relevant to their Sensor Data Fusion (SDF) and AI/ML experiences. To determine
the motivation behind the panelists’ viewpoints, Figure 4 displays a broad interaction
between AI/ML problems with the Data Information Fusion Group (DFIG) model levels
(Level 0–6). For instance, AI/ML enables big data analysis that spans all layers of data
fusion. For instance, AI/ML enables big data analysis that spans all layers of data fusion.
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The classic SDF levels are supported by a variety of AI/ML model creation and efficiency
methodologies. There exist few AI/ML techniques, which allow for contextual information
and impact analysis, nor are there many AI/ML policies that need to be defined. Similarly,
several AI/ML technologies that can enhance or complement SDF user refinement are
used in SDF object assessment. In Figure 4, vertical bars reflect the proportion of AI/ML
society interaction, while the horizontal bars depict the degree of subject areas and/or
attention given to the data fusion group. For instance, “big data” has an impact on all
aspects of data fusion, whereas “policies” are being developed exclusively for object
assessment, not for situation assessment. The data fusion society emphasizes the necessity
for all AI/ML subjects in target evaluation, but debates on “mission management” rely on
big data, landing in information management, rather than AI/ML policies for “mission
management”. Finally, the green hues depict a strong overlapping between AI and SDF,
whereas blue is slightly overlapped, and while red did not make any impact in the panel
discussion. In order to activate the conceptual awareness and impact evaluation, as well
as to process optimization, further research in AI/ML techniques is required, as shown
in the top right corner of Figure 4. The rest of the article contains major points raised by
the panelists.

Level 0: Assesment Data

Level 1: Assesment , Object

Level 2: Assesment, Situation  

Level 3: Assesment, Impact

Level 4: Refinement, Process

Level 5: Refinement, User

Level 6: Refinement,  Mission

Big
Data Efficiency Analytics Models Algortihmst Policy

Opputunity area for
AIML to enhance

SDF

Figure 4. Fusion history.

Table 1. Summary of the panel ideas and issues of AI/ML and information fusion.

SDF Problem Use of ML Challenges of ML New Research

ABdelzaher Physics-based and human-
driven IF

Big data analysis if edge
sensing Unlabeled data Coordination of DL through

multiple AI/ML networks

Basch User augmentation High-dimensional learning Heterogeneous analysis Model based methods to address
the unknown

Baines Contextual support Interpretable analysis Determining various users Explainable results

Chong Data Association Training from data Relevant Models Context-based AI

Koch Perceiving and action Data processing for object
assessment

Combining data and models for
situation assessment

Need common terms for ethical,
social and usable deployment.

Leung Image fusion Change Detection Real-time labeling Joint multimodal image data
fusion

Pham Multi domain coordination Rapidly learn, adapt, and
reason to act.

Interface in sparse and congested
areas Learning in the edge

The advancements in computer hardware over the days have improved the efficiency
and accuracy of the systems to a great extent. The process of integrating information
from various sensors is known as multisource and heterogeneous information fusion
(MSHIF). MSHIF creates an accurate perception and detection of the vehicle’s surrounding
environment by avoiding the perceptive limitations and variations caused by a single sensor.
Additionally, it enhances the system’s capacity for extrasensory perception. Currently,
MSHIF technology is used in multiple domains other than autonomous driving. Other
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intriguing areas include object tracking and identification, robotic devices, versatile devices
to monitor human activities, remote sensing, human-machine interaction, simultaneous
localization, and mapping. This is evidence that proves that multimodal fusion is an
important task in improving the SA for effective decision-making in AVs.

2.2.2. Sensors in Fusion Perception System

The ambient data that an AV needs to make wise decisions is acquired in large part
through sensors. The type and performance of the sensors determines the quality of
the information required for an AV. The AVs perceive the external environment data.
Frequently used sensor types are radar, ultrasonic, cameras (including RGB-D, and infrared),
LiDAR, and GPS/IMU. Object identification and location precision may be improved via
many sensors because the detection capabilities and dependability of various sensors
are constrained in various settings. The pros and cons of the aforementioned sensing
devices, along with their detection range, are summarized in Table 1, which demonstrates
the apparent operational differences between the various sensors. By combining data
from several sensors, it will simultaneously enhance the AD vehicle’s overall perception
capability to effectively ensure the driver’s safety.

2.2.3. Millimeter Wave Radar

The radar first emits electromagnetic waves, then uses a receiving antenna to collect
the dispersed wave of targets. A series of signal-processing operations are then carried
out to obtain information on the targets. Currently, the three primary frequency bands
used by MMW-Radars are 24 GHz, 60 GHz, and 77 GHz, with 77 GHz being the most
common. Sixty GHz is currently only used in Japan, while 24 GHz will eventually be
phased out. The 79 GHZ band radar provides better sensitivity to distance, velocity, and
gradient. It has received widespread approval and may soon overtake other frequency
bands as the standard for vehicle radar. The distance resolution Rres and speed resolution
Vres are calculated using the below equations:

Rres =
c

2B
(1)

θres =
λ

Ndcosθ
(2)

where C is the speed of light, λ is the wavelength, and B is the bandwidth of the chip.

2.2.4. Cameras

One of the first AD system sensors is the camera, which is still the top option for
producers and researchers today. Target tracking, lane detection, environment map
generation, and target recognition are among the main activities the camera is used for.
Deep learning (DL), which may change the conventional hand-operated feature design
processes with machine learning techniques and get great interpretation ability from
large data., has recently achieved good results in target detection and tracking tasks.
Following the AD system’s successful completion of the object identification and object
navigation duties, more conclusion responsibilities will be implemented. There are now
two different types of cameras: complementary metal-oxide semiconductor (CMOS) and
charge-coupled device (CCD). In addition to having a difficult manufacturing process, CCD
has a greater dynamic range, lower noise, higher quantization efficiency, and prominent
image characteristics in diminished light. When contrasted with CCD sensors, CMOS
sensors sacrifice a few functionalities to minimize cost. Wearier differences will exist
between them, and CMOS is anticipated to take the role of CCD. The authors used three
datasets namely Pascal, Coco, and Cityscapes to evaluate their object detection algorithm.
The results obtained are portrayed in Figure 5. The red line represents the performance of
the author’s object detection model for the Coco dataset, green for Cityscape, and brown
for Pascal datasets respectively representing different weather conditions. Further, from
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the inferences illustrated in Figure 5 it is evident that in some circumstances the perceiving
precision of the cameras is diminished with a minimum score of 31.1% and a maximum
score of 60.4%. Hence, it is sensible to draw the conclusion that sensors with one camera
will be quite unreliable in bad weather [26].

(a) (b) (c)

(d) (e) (f)

Figure 5. The performance of the camera influenced by different corruptions (a) zoom blur (b) snow
(c) frost (d) fog (e) brightness (f) contrast.

2.2.5. LiDAR

LiDAR covers 2D LiDAR and 3D LiDAR in accordance with the scanning pattern,
and estimates the period to measure the distance from electroluminescent laser beams and
dispersion reflected by objects. While 3D LiDAR is a multi-layer device, 2D LiDAR is a
single-layer one. AD cars use 3D LiDAR more frequently, although it is more expensive.
Manufacturing prices will continuously decrease as LiDAR applications and production
rise, and they will eventually get to a point where most automakers can adopt them.
LiDAR offers accurate and practical 3D perception abilities both during the day and at
night. LiDAR is classified into three categories, including time-of-flight (TOF), triangulating
LiDAR, and phase-ranging LiDAR, depending on whether motion units are present or
absent [27]. TOF LiDAR in AD systems is the most common variety. According to
the most recent research, LiDAR is completely capable of identifying and sensing the
various mobility patterns and spatial states of pedestrians [28]. In order to detect and
identify pedestrians and vehicles, the multiple-input LiDAR continuously generates a
laser beam through an emitter. The transmitter then collects the destination light to create
an image of a point cloud. The detailed functioning of the above-mentioned sensors is
discussed in our paper [29]. Table 2 illustrates the overall summary of different sensors
based on their functionality, advantages, and disadvantages. Figures 5 and 6 display the
findings from Ref. [30] and their analysis of how rainfall affects LiDAR. These images
demonstrate how performance drops quickly when rainfall increases, including a rapid
decrease in the maximal observable range, the number of markers, the extent of obstacles,
and other parameters.
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Table 2. Comparison of the different sensory devices.

Type Advantages Disadvantages Max Working Distance

MMW-RADAR
1. Long working distance
2. Available for radial velocity
3. Applicable for all weather conditions

1. Not suitable for static objects
2. Frequent false alarm generation 5–200 m

Camera
1. Excellent discernibility
2. Available lateral velocity
3. Available for color distribution

1. Heavy calculation
2. Light interference
3. Weather susceptible

250 m (depending on the lens)

LiDAR
1. Wide field of view
2. High range resolution
3. High angle resolution

1. Insufferable for bad weather
2. High price 200 m

Ultrasonic 1. Inexpensive
1. Low resolution
2. Inapplicable for high speed 2 m

DSRC
1. Applicable for high speed (up to 150 km/h)
2. Relatively matured technology
3. Low latency (0.2 ms)

1. Low data rate
2. Small coverage 300–100 m

LTE-V2X
1. Long working distance
2. Relatively high data transmission rate

(Up to 300 mbps)

1. High latency in long
distances (>1 s)

2. Inapplicable for time-critical events Up to 2 km

5G-V2X

1. Ultra-high data transmission rate
2. Low latency (<80 ms)
3. High bandwidth
4. Applicable for high speed (up to 500 km/h)

1. Immature application 100–300 m
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Figure 6, illustrates the impact of the rain rate on the performance of LiDAR sensors.

(a) (b) (c)

Figure 6. (a) Max range influenced by rain rate (b) Number of points influenced by rain rate
(c) Obstacle detection range influenced by rain rate.

The survey addresses the research questions listed below, to highlight its main
objective and guide the readers in the right direction.

1. What are the recent trends adapted to pre-process heterogeneous vehicular data?
2. What level of data accuracy is obtained by the referred studies after pre-processing

the data?
3. Does the initial pre-processing tasks improve the situation awareness of the AVs?
4. Do the referred decision-making models provide instant solutions for all roadside events?
5. Which type of evaluation criteria in the referred decision-making models plays a vital

role? Simulation-based (or) real-time implementation?
6. Does the survey identify the pitfalls in the existing literature?
7. What solution does this study propose for overcoming the identified drawbacks in the

existing literature?

3. State of the Art in Data Fusion, Situation Awareness, and Decision-Making

This section summarizes the research work in the literature related to multimodal
fusion, situation awareness, and decision-making related to the sensory data of autonomous
vehicles. Innovative contributions and strategies proposed by eminent scholars, related to
the three areas, are elaborated on in this section. At the end of each section, the summary
of the referred studies is illustrated in a chronological manner, highlighting the pros and
rectified cons of each referred article.

The articles related to all the areas analyzed in the survey are collected and organized
based on various attributes such as pointers, methods, and sources. Pointers refer to various
functionalities related to a specific area. Methods refer to different types of approaches (or)
solutions used to solve the prevailing problems. If the articles directly convey the related
information then they come under the category of primary source. If they indirectly refer
to a focused area then they fall under the category of secondary sources. The next stage
refers to the summary of the reviewed areas followed by future plans and conclusions.

3.1. Multimodal Fusion

Articles related to data fusion are collected based on three major divisions, namely the
pointers that indicate the purpose of fusing the sensor data, different datasets, and methods
that are exclusively used to fuse the complex data collected from different sensors. There are
several architectural models in data fusion systems; nonetheless, applications constantly
apply their own data fusion designs. The Joint Directors of Laboratories (JDL) Model,
Modified Waterfall Fusion Model, Boyd Model, and Dasarathy’s functional model are some
of the basic and fundamental models [31–33]. These models are then subdivided into layers,
which are subsequently subdivided into sublayers. The heart of data fusion, however, is
undeniably in the data fusion methodologies that enable ultimate fusion processing. We
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looked at some of the most current developments in probabilistic data fusion approaches
and algorithms in this area.

The most common, easiest, and widely used methods for fusing data are probabilistic
procedures. Nonetheless, they may not be as accurate as analytical methods. Probability
is a major component of the underlying logic representing the majority of traditional
data fusion methods [33]. However, there are some difficulties with probabilistic data
fusion. According to research, probability-based information fusion systems struggle to
handle assessed participation when compared to fuzzy logic. Probability-based fusion
strategies have a high level of complexity when handling no monotonic logic, and cannot
depict all the information required for defining and depicting sensing and data fusion
operations. The Monte Carlo method, Markov Chains, and Bayesian theory have been
some of the most researched and widely used data fusion techniques in recent times.
Target tracking problems frequently employ probability-based data fusion methods. The
Probabilistic Data Association (PDA) technique is the most well-known example of single
target tracking. Several enhanced versions of PDA have been published in the literature,
and they are quite effective at tracking single targets. We also noticed the situation and
difficulty of multi-target tracking changes (MTT). Because track validation is challenging
due to track competition, MTT uses a more efficient Joint Probabilistic Data Association
(JPDA) algorithm. It employs a measurement-to-probabilities-of-association evaluation.

The Bayesian data fusion methodology is the most traditional, as it is generally
acknowledged and utilized for data fusion, and it is at the heart of many data fusion
systems. Based on the probability theory, it mixes multimodal data. In the Bayesian
technique, priors are defined and specified, while posteriors are calculated. Refs. [34,35],
have proposed several data fusion models that follow the Bayesian approach. Two
approaches for dispersed target detection have been proposed in Ref. [34]: the distributed
Bayesian methodology, and the Generalized Likelihood Ratio Test (GLRT) for wireless
sensor networks (WSNs).

To manage objective kinetics variations in rapidly changing conditions and varying
precision criteria, a blended computational solution and a responsive data fusion estimation
technique are needed. Typically, the Information Matrix Filter (IMF) approach is employed
to address the aforementioned issue. A hybrid tracking technique that handles entity
relationships by fusing the Bayesian filter and Markov chain Monte Carlo (MCMC) sampling
is put forth by a different study; Ref. [34]. A user interface known as IoT middleware
unifies and streamlines the communication between various “Things” and the internet.
One of the most important elements of IoT middleware is event processing. Bayesian
Model Averaging (BAM) was utilized to look into predictive fusion analytics in Ref. [36].
Data fusion, which is used to achieve proactive complicated event processing, can help
prediction analytics. Using this approach, large-scale IoT applications are developed.

Figure 7 illustrates the influence and mechanism behind implementing AI and ML
models to fuse multi-sensory vehicular data. Since the 1940s, Chee Chong has emphasized
the foundations of control theory, which has sparked an interest in SDF approaches. Due to
the lack of computer processing technologies in the 1980s, there were not many companies
performing data fusion activities. As the ability to process enormous volumes of data
became available in the 2000s, industrial businesses began to investigate big data computing
(Figure 4). Many of the current AI approaches have to deal with the issue of companies
trying to pack items before conducting studies, evaluating, and analyzing the results, or
taking into account the legal and societal ramifications of the discoveries.
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Figure 7. Influence of AI/ML models on data fusion.

The upcoming sections have organized the literature related to data fusion to overcome
the multi-modality issue existing in sensory data. Different MSHIF methods indicate
various degrees of cogitation from the initial data during the data merging phase. Multi-
sensor data fusion uses multiple data fusion techniques at various levels of data abstraction,
resulting in the deployment of diverse fusion algorithms. To represent the fusion concepts
employed in these investigations, we categorize the fusion methodologies used in various
studies. These fusion techniques fall into four groups: Data fusion strategies based on
discernible segments, feature complementarity, fusion strategies based on destination
attributes of many sensing devices, and fusion strategies based on opinions generated by
various sensors. Several articles related to the heterogeneous datafusion of AV sensory data
are analyzed on various aspects based on the four categories.

There are some preliminary tasks that have to be achieved for a clear perception
creation of the AVs. The basic tasks are

1. Object Detection: The AVs must understand both stationary and mobile objects. The
AVs use advanced algorithms to detect objects such as pedestrians, cycles, etc., for
effective decision-making. Traffic light detection and traffic sign detection are also a
part of object detection. Many algorithms use predefined boundaries (or) boxes to
detect objects; 2D object detection uses parameters such as (x, y, h, w, c) whereas 3D
methods use more parameters, such as (x, y, z, h, w, l, c, θ).

2. Semantic Segmentation: The main objective of semantic segmentation is to cluster the
pixel values and 3D data points obtained from multiple sources into a useful segment
that gives appropriate meaning to the context.

3. Other tasks: Other vital tasks include object classification, depth completion, and
prediction. Classification determines the category from the point cloud data and
image data fed to a model. While depth detection and prediction estimate the distance
between every pixel of an image and the 3D point cloud data of a LiDAR sensor.

3.1.1. Image Representation

AVs acquire data from multiple sources such as sensors, cameras, etc, hence a multimodal
data characteristic is experienced by the AVs. Since the majority of data collected by the
sensors are image representations preferably in 2D or 3D point cloud data formats, adequate
procedures must be followed for suitable transformations to process further. Some of the
frequently used image representations for the AVs are listed below.

1. Point-based Point Cloud Representation: The data acquired from LiDARS are in the
form of 3D point cloud data. The raw data from the majority of LiDARs is often
quaternion-like (x, y, z, r), where r denotes the reflectance of each point. Variable
textures result in different reflectances, which provide more information in a variety
of jobs. Some methods use the 3D points directly obtained from the LiDARs using
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point-based feature extraction methods. Due to the redundancy of information and
slow execution experience by quaternion methods, many researchers transform the
3D point cloud data to voxel (or) 2D projection before feeding them to higher modules
that perform complicated tasks related to the creation of perception in the AVs;

2. Voxel-based Point Cloud Representation: In this method, the 3D data obtained from
the CNN models are discretized by transforming the 3D space to 3D voxel data. Here
Xv = {x1, x2 . . . xn} where xi stands for a feature vector xi = {si, vi} where si stands
for the centroid of the voxelized cuboid while vi stands for statistical information;

3. 2D mapping based Point Cloud Representation: In this approach the 3D point cloud
information (x, y, z) is projected into a 2D space (u, v). Many works use a 2D CNN
backbone to perform this transformation. The drawback of this approach is the
information loss obtained when 3D to 2D transformation is done.

3.1.2. Fusion Strategy Based on Discernible Units (FSBDU)

This category deals with data level fusion or FSBDU. In this strategy, data collected
from indistinguishable sensor units are collected effectively and fused. The fused data
is further processed for more accuracy [37]. FSBDU is frequently employed for image
enhancement in multi-source image fusion, especially when using remotely sensed image
data by fusing infrared and RGB pictures. The longer wavelength makes it difficult
to instantly create an image using the data from the MMW-Radar. LiDAR has better
spatial resolution than MMW-Radar, although optical images still have a much higher
horizontal and vertical resolution. It is also required to adjust them appropriately during
regular intervals of period and capacity because the sensor’s FOV and sampling rates differ.
Different sensor frames must be aligned because the different information standards and
the sizes used by the devices that handle data from various sensors (also referred to as a
frame) differ. In the context of FSBDU, space collaboration demonstrates that the same
object observed by various sensors correlates to a single reference frame. MMW-Radar
imaging has received some attention in recent years in several research [38,39], but it is
still insufficient to identify numerous targets in complicated settings. Some investigations
use raster maps created by radar or LiDAR that are then combined with optical pictures;
this technique is also known as FSBDU methodology. FSBDU is generally separated into
two research orientations in the procedure of the sensors (radar (or) LiDAR) hooked with
the camera. One creates a raster map using fusion based on location and is based on
the findings of obstacle recognition by the radars or LiDARs. A different approach is to
use visual imagery techniques as actual samples to create radar or LIDAR images using
GAN [40,41].

According to Ref. [42], the AVs environment is represented using sensors such as
radar, LiDAR, a camera, and GPS with a map. A grid map is produced using numerous
assortments of observed LiDAR data. When the number exceeds a certain threshold, a risk
notice will appear for each grid’s empirical threshold of observed values. The identified
objects and the candidate objects discovered by MMW-Radar will be compared. The region
will be incorporated into the static maps if both of them demonstrate that the target exists. In
order to construct a safe driving area and update the vehicle’s location inaccuracy, distance
information is employed finally. Reference [43] employs a deep learning technique to locate
roads by fusing a LiDAR point cloud with a camera image. The camera image plane is
projected over the unorganized dense point cloud to create a series of dense 2D images of
the geographical data, which is converted to another format for road separation. In addition,
a brand-new conditional multi-generator generative adversarial network (CMGGAN) is
presented in Ref. [44], which utilizes data from the radar sensor and the trained model to
immediately generate an image of the environment, fully utilizing the entire contextual
attributes that the radar sensor has detected. Based on this, FSBDU can be performed
as described in Ref. [42] by integrating the produced image with the optical image. A
twin static FMCW radar system was suggested in Ref. [45], and it was built by utilizing
a straightforward wireless synchronization method and a broad-band omnidirectional
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antenna. To completely illustrate the superiority of MMW-Radar in penetration, it delivers
high-resolution images that are comparable with the images generated by Frequency
Modulated Continuous Wave Radar imaging systems to find objects hidden inside walls.
Any type of data can be utilized directly to create images with the help of a generative
adversarial network (GAN), which can also use the data previously acquired to produce
more data of higher quality. According to Ref. [46], it was assumed that the LiDAR or
MMW-Radar required a significant amount of computer power to integrate with the camera.
As a result, the KITTI data set was utilized to demonstrate the effectiveness of real-time
vehicle detection and uses conditional GAN to recreate vibrant contextual image frames
from the LiDAR point cloud under the picture’s oversight.

Similar to this, a LiDAR-based character recognition system that replaced the conventional
characteristic learning model based on spatial symmetry of the drawing construction process
was proposed in Ref. [47]. Additionally, unsupervised location identification is accomplished by
using the mapping output of SLAM. According to Ref. [48], directly splicing the slightly higher
compared point-cloud data of LiDAR with the picture as the source of AlexNet ensures that the
CNN input integrates the image of full information and produces more precise findings. Their
system correctly detected all bicyclists and pedestrians at 100%, more than 97% of automobiles,
and only 88.6% of trucks.

Similarly, Ref. [49] analyzed RGB and depth data to see whether they can provide
relevant information to guide the autonomous vehicles. The authors suggested an innovative
data fusion algorithm that meritoriously fuses the raw data for further processing. The
authors fused the data using three stages. Raw RGB and depth data are fused in the
first stage, CIL architecture input is fused in the second stage, and RGB, D, and CIL
architecture output maneuver commands are fused in the third stage. Their inferences
suggest that in order to guide the autonomous driving, the multimodality data will often
work. Their simulations reveal that decisions made from single modal data provide 46% of
accuracy whereas fused multimodal data provides 56% of accuracy in the decision-making
of the AVs.

Guan-Horng Liu et al. [50], have proposed a versatile model, namely Sensor Dropout,
to improve multisensory policy robustness and handle partial failures in the sensor set.
Sensors usually fail when they perceive data other than the data supported by them.
To minimize this failure, a policy-switching mechanism is proposed by the authors. In
the AD process, multiple targeted hybrid image pixel-level fusion typically makes use
of the remediable parts of radar and LiDAR or produced images and then extracts the
target parameters and environmental features from the fusion data for further decision-
making. Without performing extensive information extraction, FSBDU simply blends the
data. Although data collected from several sensors are fused as much as feasible, the data
redundancy existing in the fused data further reduces the efficiency of the fused data.

Athma Narayana et al. [51] have suggested a temporal fusion architecture, namely
Gated Recurrent Fusion (GFRU) in which they fuse large sensory data and analyze the data
further for effective processing. Their model collects sensor data to analyze the drivers’
behavior for effective decision-making. Their proposed architecture produces an optimal
fusion strategy for every time interval to select the best data fusion approach. GFRU
does away with the requirement to create and train distinct network blocks for acquiring
transitional abstractions, cleaning sensor input, and understanding driver behavior. The
study attempts to see how well GRFU works in other difficult temporal multimodal contexts
that are not related to autonomous driving.

Yi Xiao et al. [49] have analyzed RGB and depth data to see whether they can
provide relevant information to guide autonomous vehicles. The authors have suggested
an innovative data fusion algorithm that meritoriously fuses the raw data for further
processing. The authors have fused the data using three stages. Raw RGB and depth data
are fused in the first stage, CIL architecture input is fused in the second stage, and RGB, D,
and CIL architecture output maneuver commands are fused in the third stage.
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3.1.3. Fusion Strategy Based on Complimentary Features (FSBCF)

With the use of fused multiple sensory features, the FSBCF technique, based on the
desired features, accomplishes classification and recognizes multi-target characteristics
that have been retrieved from matching sensor data. Since uncorrelated dimensions of the
same target can be captured by diverse sensors, it results in better identification of target
detection and recognition. The intended characteristics and data features are two of the
retrieved features in the AD system.

1. Target parameter extraction: From the pre-processed data, it extracts target information
such as dimension, range, orientation, velocity, and acceleration. Many studies create
regions of interest (ROIs), which immediately translate the position of the object
detected by the radar into an image to produce a region, extract location characteristics
from radar or LiDAR targets, and aid image identification;

2. Data feature extraction: The main objective of feature extraction is to separate the
needed features from all formats of processed data to classify and detect the objects.
A few examples are color, shape, edge, spectral frequency, texture, velocity, latitude,
longitude, etc.

Therefore, in order to produce fewer ROIs, many studies first extract the target’s
distance and azimuth information using radar and LiDAR and then integrate that data
with the image data. In order to precisely classify the target’s category and further pinpoint
these areas of interest, the pre-trained model is applied. Many studies used machine
learning techniques for additional perception tasks after obtaining ROIs. In order to
categorize these features using SVM, AdaBoost [52], and other techniques, traditional
machine learning approaches typically first extract common features from pictures using
the Haar operator, HOG operator, and gray-level co-occurrence matrix (GLCM). In recent
studies, neural networks such as YOLO, CNN, and ANN are frequently used to classify
and recognize targets. According to Ref. [53], the use of a near-infrared camera and radar
allows for the accurate, dynamic identification of humans on platforms for AD vehicles.
The cascade-improved classifier makes it simple to combine the radar and camera data
with the feature layer. The time-frequency spectrogram of human activities is employed in
radar-based human motion recognition, and the short-time Fourier transform (STFT) is a
common technique for examining time-frequency properties [54]. Due to the differences
in the objects’ dimensions, the features collected for identical destination objects from
several sensors increase the detection performance of the target object. However, the
deep learning-based approach is more advantageous in terms of recognition accuracy
and does not require a process for artificially extracting features. Without the artificial
feature extraction procedure, the neural network architecture must have a fusion process
based on complementary characteristics. As a result, with the advent of deep learning, the
analysis of an attribute-oriented fusion of heterogeneous sensory data has all but ceased.
Recently, FSBCF has relied heavily on the positional properties of MMW radar and LiDAR
for complementary fusion.

Another innovative technique to obtain sequential characteristics for atomizing movement
categorization is the long-term and short-term memory (LSTM) unit superposition recurrent
neural network (RNN) in Ref. [55]. A method of MMW-Radar and camera fusion sensing was
suggested in Ref. [56]. The corresponding picture regions are created from the radar coordinates,
which also include distance and angle information, and the ROIs are then categorized using
the deformable part model (DPM). The detection accuracy for the recognition result was
98.4%. Additionally, LiDAR was used to create the potential target coordinates in Ref. [55].
After creating ROIs from point cloud pictures and performing 3D target identification and
categorization, Ref. [57] implemented a high-level region architecture to describe targets in 3D
form. To segment the road in front of the car, Ref. [58] proposed a composite stochastic domain
architecture based on the conditional random field model, integrating camera, and LiDAR
features. The KITTI-ROAD benchmark dataset has been the subject of a significant number
of trials, and the results demonstrate that this approach outperforms the present approach.
It is important to note that Ref. [43] uses a complete CNN model to process the LiDAR and
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camera inputs (FCN). Early fusion strategy (EFS), late fusion strategy (LFS), and cross fusion
strategy (CFS) were utilized to merge LiDAR and camera data, and FCN was used to create
safe driving zones on existing roadways. There are 21 layers in the FCN as a whole. LFS inputs
the first 20 layers with 2 distinct kinds of information and merges 2 distinct output values in
the final layer. A weighting concept is introduced by the CFS with successive data layers and
is fully fused at the last layer. LiDAR and camera signals are intrinsically linked by EFS to
create a six-dimensional tensor, and the information is then trained using FCN to provide a
safety zone. By implementing various fusing techniques, it is possible to fuse different formats
of data successfully. However, we cannot conclude that the separated data can have distinct
networking data obtained from the fusion techniques, due to the huge volume of data collected
from the sensors. A significant amount of information related to the extracted features from
the raw data is necessary for FSBCF in order to blend the statistically independent features or
parameters found in various sensors. Higher dimension features are better at distinguishing
between targets, increasing the effectiveness of the fusion, and overcoming the limitations of
a single feature. Due to the direct application of the existing neural network design for visual
pattern recognition, there has not been a significant study in recent years on merging the features
of multi-sensor systems. The majority of research focuses on the target parameter extraction
technique to implement the FSBCF fusion strategy.

Ref. [59], have proposed an innovative fusion model that covers both early and late
fusion. The authors select the best classification model using advanced ensembling and
gating techniques to improve the accuracy of the fusion. The authors also propose and
evaluate both static and deep learning-based context identification strategies. In another
similar study, Ref. [60] collected data from the forward-facing camera and LiDAR sensors
fixed in AVs and effectively fuse them to improve the contextual accuracy of the AVs. The
author’s approach helps AVs identify objects during the winter season when the visibility
of the roads is not clear due to snow and fog. The authors have used seven models to
perform all types of fusion (early, intermediate, and late) with all combinations of the
perceiving devices.

3.1.4. Fusion Strategy Based on Target Attributes (FSBTA)

A distributed fusion methodology based on target attributes (FSBTA) uses every
sensor to gather target attributes and identify various targets to create a target list. To
obtain accurate, trustworthy targeted information, and prevent anomalies and missed
inspections, multiple target lists will be combined. Multiple cameras, MMW-Radar groups,
and LiDAR are used in Ref. [61] to obtain information from the vehicular environment
and produce the matching destination lists. The destination lists that match allow for
the planning of a safe driving area for AD vehicles to reduce the possibility of collision.
ROIs are created for the image in Ref. [48] using the MMW-retrieved Radar’s overall
performance, and a CNN model is then used to locate the destination inside the ROIs.
In the meantime, the objective lists viewed by the camera and MMW-Radar, respectively,
were compared and integrated. Destination type, proximity, velocity, position, and angular
velocity are all included in the merged information. The fusion result increases resilience
and to some extent withstands the missing recognition of a single sensor. According to
Ref. [62], the motion characteristics of several targets are extracted using the 2D Fast Fourier
transform (2FFT) and scattered attribute identification in a radar and visionary component,
respectively. In addition, the divided entities are tracked using the Gaussian inverse Wishart
probability hypothesis density filter (GIW-PHD). According to Ref. [63], goal objectives
produced by LiDAR, MMW-Radar, and camera are finally combined. Low-level information
fusion was carried out by LiDAR and a camera, and they subsequently utilized the range
and angular information of LiDAR to build ROIs in alternate visualization. The redundancy
between the sensors is managed through target fusion. The camera provides high levels of
2D data such as hue, luminosity, concentration, and texture features while LiDAR provides
3D point cloud data. Compiling as many attributes as is practical, enables the interpersonal
relationship between humans and computers followed by intent identification. For the
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purpose of detecting pedestrians, Ref. [64] applies the fusion processing of LiDAR and
camera sensors. Additionally, the 3D point cloud data is used in this study to determine the
target’s shape in order to lower the pseudo alarm rate and address the object obstruction
issue when detecting the individuals using cameras. In this study, ROIs for the image is
created using LiDAR target information. In order to accelerate pedestrian detection and
achieve mean accuracy results of 99.16%, the objectives identified by LiDAR data and
photos are compared simultaneously. Ref. [65] detected the front vehicle’s lane change
behavior using a stereo camera and LiDAR. They used a NN model based on particle swarm
optimization to categorize the proximity, tangential velocity, and longitudinal velocity of the
vehicle to determine the line of traffic attitude, and the overall classification score was over
88%. The degree to which the data are abstract after integration by FSBTA is somewhere
between FSBCF and FSBMD. This type of fusion technique employs several sensory devices
to detect the objects and accordingly combines the object qualities or ambient variables
that are extracted. This fusion technique will enhance the perception system’s stability
and dependability in order to deal with the possibility of false alarms or missed detections
when individual detection and recognition are conducted on a single sensor. Ref. [66]
have proposed a study to detect 3D objects in the autonomous driving environment. The
authors propose a multiview 3D network (MV3D) and a sensory fusion architecture that
uses LIDAR point cloud data and RGB images of the surrounding environment as inputs
to generate 3D boundary boxes. To encode the 3D point cloud data, the authors use an
advanced encoding scheme. Furthermore, they developed a deep fusion methodology
that allows interaction between intermediate layers of different paths by combining region-
wise features extracted from multiple views. The author’s proposed method outperforms
existing LiDAR-based and image-based solutions. However, the optimization time of the
proposed model is high, which thus reduces the efficiency of the fusing model.

In yet another interesting study, Namen Patel et al. [67] proposed a novel end-to-end
system for autonomous vehicle navigation, based on decisions made by combining raw
pixels from a front-facing camera with depth measurements from LiDAR. Even if the sensor
fails, their proposed networking model effectively conducts modality fusion and predicts
steering commands. The proposed architecture consists of three networking layers: NetGated,
NetEmb, and NetConEmb, which make up the CNN model’s convolutional layers.

Ref. [68] proposed a fuzzy logic-based data fusion technique. The model proposed
by the authors uses magnetic sensors to estimate the occupancy probability of the relevant
parking space. The model removes, the bias of the previous model, but the scope of the
study is minimized due to complicated fuzzy rules. Ref. [69] investigated the functionality
of a multimodal vision sensor that combines data from three types of cameras: stereo,
polarization, and panoramic. Each sensor provides information on a particular dimension. The
authors have proposed a CNN model, namely ERF-PSPNet, to effectively segment the image
data by using advanced encoding and decoding techniques. Their suggested multimodal
sensor has already been applied in several intelligent vehicle systems for nighttime semantic
comprehension, visual topological positioning, and panoramic image parsing.

Another interesting trust evaluation model proposed by Ref. [70] fuses the GPS data
and the contextual information of the multiple AVs to ensure that the vehicles are close
to each other. The authors use distance metrics and clustering techniques to accomplish
their study. The authors in Ref. [71] proposed a Global Navigation Satellite System (GNSS)
spoofing attack detection framework for AVs. The authors collected data from minimal-cost
internal AV sensors (accelerometer sensor, steering angle sensor, speed control sensor,
and GNSS), and fed them into an LSTM-based recurrent neural network to forecast the
positional change, which is the distance traveled by the AV between two consecutive time
stamps. The information obtained is compared with the GNSS-based location shift, to
detect the attacks.
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3.1.5. Fusion Strategy Based on Multi-Source Decision (FSBMD)

FSBMD determines the target’s location, characteristics, and categories using only
one sensor’s data. It then uses a particular fusion technique to accumulate the choices
made by several sensors, and the necessary techniques are used to arrive at the final
fusion result. The fusion effects have a significant effect on determining whether the
final choice outcomes are correct., and FSBMD integration directly creates decisions for
specific aims. Rule-based fusion, decision-making, fusion based on trustworthiness, and
probability fusion are typical subcategories of FSBMD [72]. Subjective Bayesian probabilistic
reasoning, Dempster-Shafer (D-S) evidence-theory-based reasoning, artificial intelligence
(AI), and fuzzy subset hypothesis are among the approaches used by FSBMD. In Ref. [61],
a framework with numerous sensors was established for the AVs. This platform is used
to extract, through data processing, the target’s motion characteristics, road limits, lane
markers, traffic signs, and barriers. Controlling the mobile status of AD vehicles can be
accomplished by using a rule-based strategy based on the system’s training data. For a
heterogeneous data-based vehicle classification system, an ANN post-fusion technique was
suggested in Ref. [73]. This system used optical image, 3D LiDAR range data, and spectral
response data as three distinct methodologies, each with its own identification process. Joint
re-scoring and non-maximum inhibition were used to combine the results of each modality.
Additionally, FSBMD’s object recognition effectiveness has increased by 1.2% points in
comparison to the individual modal. A framework for fusing thorough fuzzy theory with
the nervous system was put forward in Ref. [63]. The author’s proposed architecture helps
create an effective knowledge combination system to identify the navigation framework,
by combining Kalman separation and fine processing requirements. New concepts for
developing data collection models, workflows, selection, and analyzing methods are
offered by fuzzy sets. Among the most significant foundations of the neural system is
the adaptive neuro-fuzzy inference system (ANFIS). ANFIS is an effective instrument
to control experimental inconsistency in any model and also has high acceptance and
predictive power [74,75]. In addition, a framework for fusing evidence based on the D-S
evidence theory is suggested in Ref. [76] to deal with the targets’ uncertain mobility and
the noise-proneness of sensor data. The target is then classified, particularly for pedestrian
detection, using a classification index that is established by combining a reliability function
with the measured value. Additionally, when the uncertainty model is erroneous, the
assured characteristics in the study change the probabilistic approach provided by the
sensor to enable trustworthy decision-making. Ref. [77] suggested a localization algorithm
by combining a camera, GPS, and onboard sensors for precise vehicle placement. They
combined GPS data with ocular odometry using the extended Kalman filtering algorithm,
increasing the accuracy above conventional GPS positioning techniques by 40%.

The final fusion impact is determined by the performance of the fusion strategy, in
which FSBMD synthesizes numerous judgments made by several sensors. This level of data
fusion resulted in the direct production of Refs. [78,79], which was the ultimate conclusion.
By using this approach, it is possible to successfully prevent the ambiguity and unreliability
that can occur from making a final judgment based solely on the perceptual results of
one sensor. Data complementarity is also quite low, and FSBMD does not considerably
enhance the efficiency of object identification at the computational level. This tactic was
frequently used with others in various research. Table 3 lists the particular tasks completed
by a variety of sensors in diverse investigations. Similarly, Table 4 depicts the datasets that
are frequently used by researchers to evaluate their contributions related to AD.
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Table 3. Task analysis based on sensor fusion.

Scenario Specific Task Ref Sensor Types

Perception of Moving Objects in Traffic Environment

(Including pedestrians, bicycles, vehicles, etc.)

Pedestrians

[56,80] L

[81] RL

[57,82] CL

[83] RC

Vehicle

[62,83–87] RC

[88,89] CL

[90] RCLUV

[91,92] GI

[93] GL

[94] VG

[95] LV

[81] RL

[96] CLGI

[97] RL

Pedestrian and Vehicle

[98] R

[88,99–101] RC

[102] RCLGI

[103] LV

[47] CL

[51] CL

Lane detection, Obstacle Detection, and Path Planning

[104] RCLG

[105] RCL

[58,82] CL

[95] VG

[77] CG

[106] L

Reconstruction and Visualization of the Front Area

Safety Zone Division
[107] RC

[108] RC

Motion Analysis
[96] CLGI

[82] CL

Visualization

[80] L

[44] RC

[69] CL

Safety Zone Construction and Collision Warning
Obstacle Avoidance

[109] CL

[87] RC

[109] C

[94] VG

Safety Zone Division
[107,110] RC

[43] LC

Multisensory Calibration and Data Fusion Platform

Data Fusion Platform

[76,111,112] N/A

[112] RCL

[69] CLGI

Multi sensor Calibration
[113,114] RC

[115–117] CL

Object Characteristics Driver Behaviour [51] CL

Occupancy Probability Parking Space [68] CL
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Table 4. Frequently used datasets for AVs.

Dataset Year Hours Traffic Scenario Diversity

KITTI [118] 2012 1.5 Urban,
Suburban,
Highway

-

Waymo [119] 2019 6.4 Urban,
Suburban

Locations

nuScenes [120] 2019 5.5 Urban,
Suburban,
Highway

Locations,
Weather

ApolloScape [121] 2018 2 Urban,
Suburban,
Highway

Weather,
Locations

PandaSet [122] 2021 - Urban Locations

EU Long-term [123] 2020 1 Urban,
Suburban

Seasons

Brno Urban [124] 2020 10 Urban,
Highway

Weather

A * 3D [125] 2020 55 Urban Weather

RELLIS [126] 2021 - Suburban -

Cirrus [127] 2021 - Urban -

HUAWEI ONCE [128] 2021 144 Urban,
Suburban

Weather,
Locations

Table 5 illustrates the chronological summary of various fusion strategies along with
their pros and cons. The tick mark indicates that the drawbacks identified in the previous
study are rectified by the current study organized in chronological order.

Table 5. Chronological summary of various fusion methods (ML—machine learning, MM—mathe-
matical model).

Citation Model Advantages Disadvantages Drawbacks Rectified from
Previous Study (?)

[120] MM Use of large 3D dataset for evaluation Have not discussed image point level
semantic labels. X

[49] MM Effectively handled 3D image data using
CARLA

Unexploited to evaluate multisensory
data X

[50] MM Evaluated their model using hetero-
geneous dataset.

Missed testing in real-time robotic
environment. X

[129] ML Better in handling larger datasets in real-
time scenarios. Not expected level of accuracy (74%) X

[130] ML Enhanced accuracy (84%) Can use advanced Fuzzy concepts
optimize their model X

[131] ML An effective optimization method for
heterogeneous data Difficulty in obtaining proper metrics. X

[132] ML Involved more metrics to enhance the
accuracy

Missed collecting data from different
sensor points X

[68] ML Uses different data points collected
using magnetic sensors Complicated fuzzy rules X

[133] ML More accuracy Evaluation done with minimum
dataset. X

[66] ML Outperforms existing LiDAR and image
based fusion models Consumes more optimization time X
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Table 5. Cont.

Citation Model Advantages Disadvantages Drawbacks Rectified from
Previous Study (?)

[97] ML CNN framework improves optimization
time of fusion Minimum classes. X

[67] ML Multiple classification Needs changes in network topologies
and training techniques X

[51] ML Eliminates the need to design and train
separate network blocks Missing complex multimodal context X

[134] ML Uses multiple inputs Did not use structural restrictions. X

[69] ML Used structured CNN architecture to
fuse data Lacks optimization problems. X

[49] ML Better optimization of parameters using
advanced statistics Needs more real-world evaluation X

[135] ML Advanced image transformation using
real time data.

The model misses tackling data
missed from defective sensors. X

3.2. Situation Awareness

Fusing the raw multimodal sensory data improves the accuracy of the environment
perceived by the AVs.This section discusses the basics of contextual awareness in AVs
and the influence of data fusion on the accuracy of conceptual awareness. There are
several models used to measure the situation awareness of AVs. The two major challenges
associated with launching AVs in real-time environments are (1) the need for robust, self-
diagnosing, and explainable embedded perception and (2) the need for understandable
driving decisions. Most of the SA models use the following approaches to perceive
environmental information. The first approach is Embedded Bayesian Perception. The main
aspects that are covered by this approach are reasoning about uncertainty and time window
using past and future events, improving the robustness using Bayesian Sensors Fusion,
interpreting the dynamic scene using Contextual and Sensor Information, and software
and hardware integration using GPU, multicore and microcontrollers. Multisensory data is
collected using LiDAR, radar, and stereo cameras. It is a probabilistic environment model
including dynamics. The model provides a clear distinction between static and dynamic
environments. The model is designed for highly parallel processing. It includes embedded
models for motion prediction and collision risk assessment. The second approach is a
dynamic probabilistic grid and Bayesian Filtering, which is exclusively used to exploit
dynamic information for a better understanding of the scene. Mica. R. Endsley have
analyzed various factors related to AVs, where SA plays an important role. They found
that although it is difficult to collect clear vehicular data, some useful information can
be grabbed from the disengagement reports collected from the manufacturers testing the
vehicles. Some of the disengagements include (i) manual takeovers by the human drivers
completely disengaging the automation facility, and (ii) charges taken by the humans when
the software that helps in automation completely disengages itself.

From Table 6, it is evident that Waymo changed from automated mode to manual
mode after covering approximately 5000 km [136]. From the results, it is apparent
that further analysis has to be done by the leading manufacturers before launching
level 5 autonomous vehicles. Common disengagements occur due to the following reasons.

The above failures are related to a specific region to a particular place where the
testing is performed. However, the scenarios might change if the test is carried out in yet
another place (or) under different environmental conditions. Most of the failures in the
AVs happen due to a lack of collection of proper environmental information. Situation
awareness is significantly reduced by automating several tasks in the AVs. Some of the
major reasons for SA failures are increased trust in human monitors over automated
vehicles, limited information perceived by the AVs as a result of deliberate or accidental
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design choices, and reduced level of information coming from passive processors rather
than active processor information. Passive processing of environmental data can still lead
to poor SA, transforming drivers to act as passengers with a lesser understanding of SA.
Automation increases SA, but the continuous automation process decreases SA due to the
overconfidence of the driver’s over-automation. “The more automation is introduced to a
system and the more dependable and robust that automation is, the less likely that human
operators monitoring the automation will be aware of vital information and able to take
over manual control when needed”, as stated by the automation paradox. This conclusion is
based on a number of studies that suggest that as mechanization becomes more proficient,
the public is paradoxically more inclined to lose SA and trust it. Furthermore, when
more functions are automated and the hierarchy of mechanization develops, their SA
is harmed, making them relatively ineffective at manual monitoring and intervention.
SA in AVs is established using advanced AI techniques that develop with time and
helps to observe analytical connection in data and also find the relationship between
the identified features of the surroundings with set performance outcomes. According to
AI expert Perl, developing these enhanced systems is very difficult and several trial-and-
error techniques have to be implemented with their techniques to obtain the actual result.
Figure 8 depicts the failure rate due to irregular engagements caused in the AVs due to
its poor perception. Similarly, Ref. [137] explored various methods to measure the SA in
AVs. Some of the techniques used are Eye Tracking, which is level 1 tracking, measured by
the drivers as what they observe from the road, and Physiological measures, which use
psycho-physiological measures such as measurements of brain activity and blood flow and
relating these observed measures with the environment data. The Situation Awareness
Global Assessment Technique (SAGAT) involves halting the current simulation and further
querying the person to acquire various information such as position, type, and future
status of the elements within the scene. Another method is SART (Subjective Ranking
Technique), in which the drivers rank themselves or by the observers, their behavior,
and decision in driving according to their perceived environment information. Similarly,
another method, Question Probes, provides objective measures of elements perceived in
the environment and also addresses levels 2 and 3 of situation awareness. On account of
the above discussion, Ref. [138] proposed an innovative Eye Tracking method to aid in
understanding how visual engagements in non-driving related tasks affect changes in SA
of the driving environment after a takeover request. Ref. [16] discusses various factors
related to SA in remote operation and also highlights the advantages and disadvantages
related to SA in both manual and automated driving.

Table 6. Behavior of AVs over the distance covered.

Manufacturer 2015 2016 2017

Google/Waymo 1244 5128 5596

Nissan 14 146 208

Delpi 41 17.5 22.4

Mercedes Benz 1.5 2 4.5

Ref. [139] have proposed AI/ML models to improve the SA of the AVs by comparing
the image frame with the previous frames. By correctly adjusting the analytical neural
networks and applying late fusion methods, they suggest unique multi-modal systems
that achieve robustness to adversarial attacks. To be more precise, the authors suggest a
comprehensive strategy that strengthens the robustness of a 2D segmentation DL model
to adversarial noise by adding new layers to it. Then, using a cutting-edge late fusion
technique, direct features were extracted from the 3D space and projected into the 2D
segmented space to look for discrepancies. The KITTI odometry dataset has been extensively
evaluated, and the performance results are encouraging. Fusing the data by extracting the
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salient features has improved the accuracy of their models. The CNN models produced
72% accuracy and the PointRCNN model produced 78% accuracy. Ref. [140] proposed an
innovative strategy to measure the SA of the humans inside the AVs. Their model created a
semantic pattern of human awareness and vehicle state to estimate the SA, based on which
effective decisions are taken by the AVs to maintain a safe trip. This survey has analyzed
all these facts and further explored how multimodal data fusion improves the SA of the
AVs, which further has an impact on the accuracy of decision-making in the AVs. Eminent
articles from different reputed sources are analyzed in detail. Articles representing the key
areas are further grouped based on different pointers (a purpose to derive a strategy to
address a specific problem) and methods.

Mis-engagements in Situation Awareness of 

AVs

Software Failures Hardware Issues

Weater Conditions Road Surface Conditions

Figure 8. Percentage of failures due to misengagements in AVs.

The architecture consists of three stages, namely: Firstly, Unimodal architecture, which
gives results for each information signal’s baseline segmentation separately. Secondly, VGG
(convolutional neural network model), which is used in this encoder-decoder architecture.
To reconstruct the original picture, the VGG’s normal layers are replaced with three up-
sampling layers. Thirdly, Early-Fusion architecture, which uses CNN to remove joint
features by fusing two signals prior to potential extraction and Multimodal Mid-Fusion
Architecture, which fuses color, motion, and depth information altogether using the Mid-
Fusion approach. For increased performance, future studies could entail proposing a
more complicated network architecture that supports all three information cues. Further
structural restrictions can be integrated to improve segmentation outcomes.

Similarly, in yet another interesting study, The importance of motion, depth, and color
for taking important decisions in autonomous vehicles are explored by Ref. [134]. Depth
cues are used to detect the road conditions, and motion cues are used to analyze the dynamic
environmental scenarios such as the movement of objects such as vehicles, pedestrians,
etc. The authors’ proposed research improves picture quality by using geometric details
modeled by depth maps and motion cues, which simplifies the decision-making even
further. To get the most out of all details, the authors propose a CNN architecture that fuses
depth, color, and motion using their proposed fusion algorithm. The CNN architecture
extracts features from three input signals before performing feature-based fusion. The
encoded output is up-sampled to reach the final image scale, based on which autonomous
vehicle navigation decisions are made. Early and Mid fusion have improved the accuracy
of the AVs context to a great extent. Greater improvement was attained for several classes,
such as the Truck, Van, Building, and Traffic Lights classes, which had improvements of
32%, 28%, 9%, and 8%, respectively. The authors improved the mean IoU with imperfect
depth maps by 3% compared to RGB-only. Further, they utilized flowNet as a realistic
flow estimate for optical flow and ground truth as the best estimator for other types of
flow. Moving classes were greatly enhanced, while mean IoU improved by 4% as a result
of fusion with ground truth. For the Truck, Van, and Car classes, improvements of 38%,
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28%, and 6%, respectively, were attained. Fusion with FlowNet raised the average IoU by
2.37%. Early fusion is denoted by RGBD, mid-fusion is denoted by RGB + D, and ground
truth is denoted by GT. A similar approach is used for optical flow fusion.

3.3. Decision-Making

The final decision-making in AVs is one of the important tasks. Decisions are made
on various events related to AVs. For reliable and accurate instant decision-making in
AVs, clarity in the fused data is essential. Hence, much importance is given to data pre-
processing and data fusion tasks. Autonomous vehicles are anticipated to alleviate road
congestion, reduce collisions and fatalities, improve flexibility for kids, senior citizens, and
the disabled, and eliminate the demand for parking space in cities. An autonomous vehicle’s
planning strategy fulfills three tasks: mission planning, in which the vehicle resolves a
navigational issue to accomplish a task, decision-making, in which the automobile selects an
appropriate action for the next time step from a set of options, and path planning, in which
the vehicle predicts its future course as a consequence of time or space. The survey has
grouped decision-making strategies proposed by various eminent research scholars based
on various events such as lane changing, rule-based decision-making strategies, collision
avoidance, platoon management, pedestrian crossing, congestion avoidance, highway
overtaking, and decision-making in uncertain conditions.

Decision-making articles related to both manual and autonomous vehicles are reviewed
to explore various innovative decision-making strategies suggested by various researchers.
Contents are gathered and reviewed based on decision types, methods, pointers, and
events. Decision types fall under three categories, namely sequential, actions, and end-to-
end. The sequential approach uses advanced visualization techniques in decision-making
processes to plan and control autonomous vehicles. Decision-making and preparation are
incorporated in interactive planning to control the behavior of the vehicles, and items of
interest are detected and fused into a scene summary using an end-to-end strategy, based
on which driving commands are computed. Pointers represent various types of research
articles that highlight the importance of the decision-making process, while methods
correspond to the various empirical, statistical, and machine-learning approaches used in
decision-making strategy. Finally, the fourth category of taxonomy summarizes various
research articles that have proposed innovative strategies in decision-making to overcome
various roadside events that are faced by autonomous vehicles. The below paragraphs
summarize the major contributions and drawbacks in the existing literature related to
decision-making in autonomous vehicles.

3.3.1. Lane Changing

An interactive behavior-generating and responding game theoretic architecture has
been suggested by David Isele et al. [141]. Their primary contribution is to demonstrate
how an AV can use a game-tree decision-making approach, including approximations
and justifications to computationally simplify the tree search. Teng Liu et al. [142] have
designed a controller that focuses on the safety and performance of AVs. The modeling of
the overtaking plot is addressed first, and the comparative strategies known as the smart
driver model and the minimization of braking scenarios caused by lane changes are defined
in the later stages. For highway overtaking decision-making, the Dyna-H algorithm is used,
which blends the modified Q-learning algorithm with a heuristic planning approach. The
outcomes demonstrate that the suggested decision-making approach could give superior
results in convergence rate and control. Yonggang Liu et al. [143] have developed an
innovative lane-changing model for AVs. The authors used various parameters such as
benefit, tolerance, and safety to decide whether autonomous vehicles can change their lanes
or not. Since nonlinearity exists in the model due to multiple parameters, the study uses
SVM and Bayesian optimization to solve the problem. For connected autonomous vehicles,
Jianqiang Nie et al. [144] proposed a decentralized cooperative lane-shifting decision-making
system (DCLDF). The authors have suggested a system for autonomous vehicles to make
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successful lane-changing decisions. The system is made up of three main modules: state
prediction, candidate coordinates, and candidate decision. To predict the current state of
related cars, the state prediction module uses a cooperative car-following model.

3.3.2. Collision Avoidance

Constantin Hubmann et al. [145] proposed a partially observable Markov decision
process for AD. It generates near-optimal behavior on intersections with unpredictable layouts
and a diverse count of traffic respondents who have uncertain maneuver intentions. This
research looks at two highly fascinating features of other road users’ uncertain predictions.
This work’s central aspect is the representation of an online Partially Observable Markov
Decision Process (POMDP) for AD. Jimim Rhim et al. [146] suggested a system to examine
human moral reasoning ability in order to frame guidelines for autonomous vehicles to make
successful collision avoidance decisions. They looked at driver actions in two countries: Korea,
which has a strong communal civilization, and Canada, which has a typical independent
civilization. Real-world crash scenarios are produced first, followed by interviews with both
courtiers. Three types of human conduct clusters are generated based on the data collected:
Moral Altruist, Moral Non-deterministic, and Moral Deontologist.

Ref. [94] proposed a modern Dedicated-Short-Range-Communication (DSRC) inter-
vehicle communication system along with vehicle localization-based rear-end collision avoidance
methods, to help the AVs avoid rear-end collisions. Hongliang Yuan et al. [147] suggested a
decision-making strategy for autonomous driving to avoid traffic collisions. The authors used
a unique optimization technique to effectively decide whether autonomous vehicles should
apply straight-line brakes or steer to change direction during inevitable crashes. They tackled
collision avoidance directly from the standpoint of limited progressive optimization.

Table 7 illustrates the chronological ordering of articles related to lane changing and
collision avoidance of AVs. The tick mark indicates that the drawbacks identified in the
previous study are rectified by the current study organized in chronological order.

Table 7. Chronological summary of the decision-making for Lane Change (LC) and Collision
Avoidance (CA).

Citation Event Advantages Disadvantages Drawbacks Rectified from
Previous Study (?)

[141] LC Instant decisions making (Intelligent
agent)

More time-consuming to train new
models X

[142] LC Minimizes training time Missing detailed analysis on various
lane changing scenarios X

[143] LC Considers all lane changing possi-
bilities (85%) accuracy

Used limited datasets to evaluate the
model X

[144] LC Optimal decision-making Efficiency of model over many
metrics not discussed properly. X

[145] CA Makes effective decision in limited
visibility scenarios Requires more detailed analysis X

[146] CA More decision rules Evaluation done with minimum
dataset X

[147] CA Effective decision-making with con-
strained dynamic optimization

Needs adaptive optimal mechanisms
to handle dynamic scenarios X

[94] CA Innovative DSRC based model to
avoid rear-end collision

Needs more real-time scenarios to
evaluate the model X

3.3.3. Multiple Decisions on Roadside Events

Dimia Iberraken et al. [148], using a Sequential Level Bayesian Decision Network
(SLBDN) and an effective empirical formalization of parameters for anemology detection
based on a Dynamic Predicted Inter Distance Profile (DPIDP) between vehicles, suggested
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a probabilistic overall strategy for risk evaluation and management of AV in highways.
The system proposed by the authors takes an appropriate decision on the current risk
scenarios and takes appropriate actions to help autonomous vehicles to find alternate
solutions to overcome the obstacles. The crash data obtained between 2016 and 2017
from GIS open data held by the Nevada Department of Transportation, city of Las Vegas,
was analyzed by DaiQuan Xiao et al. [149]. The results of the analysis by the authors
summarize that buses are the major sources of accidents, as they have contributed to 466
crash occurrences. Alkis Papadoulis et al. [150] developed the Connected Autonomous
Vehicles (CAV) algorithm and implemented it using the VISSIM simulation tool. Their
proposed application interacted with an interface, namely the External Driver Model
Application Program Interface. Real-time data is used by the simulated model to effectively
frame the rules and associated actions, which are applied when the vehicles cross the lanes
or brake due to instant conditions. Christopher G. Burns et al. [151] used the concepts
of Human Machine Interface, and analyzed the behavior of autonomous vehicles when
humans cross their normal routes. The authors have tried and experimented with various
possibilities of pedestrian behavior and accordingly framed rules based on which decisions
are made by autonomous vehicles. Their approach needs more research into the ideal
communication methods between AVs and pedestrians. Changxi You et al. [152] suggested
a method to assist autonomous vehicles in making appropriate decisions to respond to
multiple roadside events. The proposed model of the authors used a Markovian decision
process (MDP) to create a relationship between autonomous vehicles and their environment,
with the expert driver’s driving style as the goal to be mastered. The MDP uses road geometry
to learn various driving styles from the drivers. To measure the MDP’s reward function and
estimate the drivers’ driving behavior, reinforcement learning strategies are used.

Jaime. F. Fisac et al. [153] have suggested a system using a game theory approach
for autonomous vehicles to predict the vehicles and driver’s behavior for taking effective
decisions to overcome various events such as lane crossing, accidents, and congestion.
To handle the mutual impact between a human and an AV while keeping computational
tractability, the authors have developed a multilayered game theory paradigm. Their
framework has suggested a coupled interaction model, which accurately predicts the
change in the driver’s behavior during multiple seconds. Table 8 illustrates the chronological
ordering of the referred articles related to decision-making for multiple roadside events.
The tick mark indicates that the drawbacks identified in the previous study are rectified by
the current study organized in chronological order.

Table 8. Chronological summary of decision-making for multiple roadside events (ME).

Citation Event Advantages Disadvantages Drawbacks Rectified from
Previous Study (?)

[148] ME Frames multiple decision rules Short response time, safety mechanism not
included X

[149] ME Covers safety metrics. Uses various
features for model evaluation

Uses minimum dataset for model
evaluation X

[150] ME Model works for both AVs and
CAVs Difficulty in accessing real word CAV data X

[154] ME Use real-time data for evaluation No full-fledged data for evaluation
(partially observed) X

[151] ME Discuss various possibilities of
pedestrian behavior

Needs more research in ideal commu-
nication method between AVs and
pedestrians

X

[152] ME Better optimized approach for
overtaking and tailgating decisions Fewer cases to evaluate the model X

[153] ME Model tested using real-time data. Efficiency of the model not discussed. X
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Similarly, appropriate decision-making in the formation of platoons in AVs is another
challenging task. Various innovative models and ideas have been proposed by eminent
researchers for efficient platoon management in AVs. Refs. [154–161] are a few of
the current studies in which the researchers have proposed various innovative ideas
related to all salient aspects of platoons in AVs. Studies done by eminent scholars,
see Refs. [162–166], portray various decision-making strategies in autonomous vehicles.
Different ideas proposed by several authors give a new dimension to how effective
intelligent decisions are taken by AVs to overcome roadside events.

Table 9 illustrates the chronological ordering of contents related to decision-making
for platooning events of AVs. The tick mark indicates that the drawbacks identified in the
previous study are rectified by the current study organized in chronological order.

Table 9. Chronological summary of decision-making for platooning (PL) in AVs.

Citation Event Advantages Disadvantages Drawbacks Rectified from
Previous Study (?)

[155] PL Simplifies the demand in
resource poling.

Limited scenarios used for
evaluation. X

[156] PL Uses more evaluating scenarios. Cannot handle complex scenarios. X

[157] PL Handles larger datasets. Time-consuming to optimize the
model. X

[158] PL Good optimized model to handle
spatial data.

Needs to consider mixed platooning
issues. X

[159] PL Considers all platooning cases. Latency issues affecting accuracy. X

[160] PL Can better handle emergency
scenarios.

Needs valid proof to verify decision-
making. X

3.3.4. Surveys Related to Decision-Making

Wilko Schwarting et al. [167], have conducted an exclusive survey on various emerging
developments and challenges in the area of self-driving vehicles. In their survey, they
examine recent developments in the fields of perception, planning, and decision-making
in great detail. For decision-making, the studies analyzed in their survey have proposed
various innovative strategies. One of their preferred studies [168] uses a partial observable
decision-making process (POMDP) to make effective decisions in autonomous vehicles. In
POMDP, other vehicles’ intentions are represented as hidden variables. They record the
states of various recorded vehicle motions and accordingly plan the paths of the vehicles.
Another research [169] used the POMDP technique to combine the highway background
and the mobility purpose of other vehicles for effective decision-making in lane changing of
the new autonomous vehicle in their survey. By examining the departure from the reference
behavior, the responses of the other cars can be deduced, which is specified to conform to
the road background. Another intriguing study [170] mentioned in their analysis proposes
a unique POMDP solver that proliferates numerous band-defined principles, including
hyper-parameters, and calculates the predominant closed-loop repercussions on the AV’s
principles for decision-making. The main assumption is to evaluate each sample using a
single set of policy assignments while condensing the decision to a minimal number of
policies. To compute secure trajectories, the authors used a coupled POMDP to predict the
potential trajectory of the interacting traffic participants and a chance-constrained nonlinear
MPC planner. In the case of occlusions and imperfect vision, another important article
referred to in the author’s survey [171] suggested a continuous POMDP with an emphasis
on balancing discovery and exploitation. During value iteration, the continuous POMDP is
solved by incrementally learning an effective space representation. To detect potentially
unknown objects, the authors took into account the experiences of road users. Although the
authors propose innovative strategies for instant decision-making in autonomous vehicles
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for lane changing, they fail to address new emerging paradigms such as interactive planning
and end-to-end learning related to the safety and reliability of autonomous driving.

Table 10 pinpoints the background behind various methods used by the authors
to design their suggested decision-making models to frame effective decision rules in
autonomous driving.

Table 10. Summary of Decision-making in AV (LC—Lane Crossing, AC— Accidents, PC—Pedestrian
Crossing, CC—Collision Conditions, and AI/ML—Artificial Intelligence/Machine Learning,
MM—Mathematical Models.

Reference No. Vehicle Type Category Events Methodology

AV Manual Survey Model LC AC PC CC AI/ML MM

[167] X × X × X × × × × X

[144] X × × X X × × × × X

[153] X × × X X X × × X ×

[143] X × × X × × × × × X

[148] X × × X X X × × × X

[146] X × × X X X × × X X

[152] X × × X X X X × × X

[149] × X X × X X × × × ×

[154] X × × X X × × × × X

[151] X × × X × × X × X ×

[150] X × × X × X × × X ×

[160] X × × X X X X × × X

[147] X × × X X X × X × X

4. Pitfalls and Future Research Direction

This section summarizes the limitations of relevant research literature to the three major
areas namely: multi-modal fusion, situation awareness, and decision-making literature related
to autonomous driving.

4.1. Analysis of Fusion Strategies And Perceived Results

It is challenging to compare which strategy is superior because different studies
employ varying statistics for a variety of purposes or situations, and the precise methods
employed during the implementation process vary as well. However, FSBDU and FSBCF
can best utilize the complementary use of various sensor data from the viewpoint of
information fusion. Additionally, several research combines different methodologies in
order to further increase the reliability of fusion. Table 3 lists the exact tasks that several
sensors in various experiments were able to complete. The ongoing study focuses on
two categories for specialized sensing tasks: the detection of dynamic targets and the
perception of the surroundings. Moving target perception includes barriers such as bicycles,
cars, and individuals, among others. Many researchers only achieve the detection and
recognition of the target, while others go beyond and examine the movement pattern of
the target, considering the outcomes of the detection. Target tracking loss can be avoided
by examining the motion trend since it is challenging to guarantee the reliability of each
frame’s detection. The methods for determining an object’s existence and producing its
trajectory are covered in many recent articles. Consequently, to control the front driving
area of the AV safely, some works merge lane detection strategies with obstacle detection
methodologies. Meanwhile, other researchers have based their data visualization on the
above-mentioned approach. Visualizing the data is obviously vital to confirm that the
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safety zones are accurately marked, but it is not necessary for AD at the L4 or L5 levels.
When using different sensors for target identification and tracking, a target corresponds
to multiple distinct positions in various data because of the varying coordinates that each
sensor is positioned in, the data sampling rate, and the range of view (FOV). To receive the
target location data after fusion, these coordinate systems must be unified. MMW-Radar
and camera calibration as well as LiDAR and camera calibration are the two main types
of sensor calibration currently in use. Currently, the camera, LiDAR, and MMW-Radar
are generally used in the AD process to accomplish the detection and identification of
objects. The addition of additional sensors (such as communication tools, GPS, and IMU)
will increase the vehicle’s range of real-time sensing capabilities. To fuse larger datasets,
the SVM model performs better than the Bayesian approach.

4.2. Decision-Making Models

The accuracy level reached by most of the referred decision-making frameworks and
models is not satisfactory for various critical maneuvers and use cases [172]. Moreover, the
literature studies have either used fewer datasets with minimum features (or) collected
data from minimum sources to evaluate their decision models. Given the limitations of
the datasets, it is difficult to gauge the effectiveness of the decision-making approaches
described in the literature [143,144,146,173]. Furthermore, most of the relevant research
literature did not focus on the ensemble concept and thus is unable to accommodate the
newly arriving features or instant environmental changes. Moreover, they suffer from a
lack of studying the efficiency and success and failure rates of their proposed decision-
making models.

4.3. Influence of Data Fusion towards Situation Awareness

From the overall analysis of articles related to the impact of data fusion on SA, it is
identified that most of the works not only focus on the estimation of various factors related
to SA but also on multiple ways to represent the surrounding environment of the AVs.
Many authors have used advanced mathematical models that involve polynomials and
coefficients as states to measure the lane geometry [142,144,174]. The authors have fused
the motion information of the ego vehicle and its corresponding neighboring vehicles using
cameras and computer vision to improve the estimation of the lane geometry. Similarly,
for identifying the road borders and other objects in the AVs environment, most of the
studies use mathematical models that use discretization and probability concepts such
as grid mapping techniques and quadratic probing concepts, to improve the accuracy of
SA [143,175,176]. More pre-processing of the camera and sensor data is required in the
referred studies to improve the accuracy of the data, and further efficient utilization of
computer vision concepts to study non-planar road conditions will improve the accuracy
of the SA. The contribution of various authors towards improving the SA in AVs can
consider the difference in height between the camera and the sensor framework, to improve
further estimations, especially when there are few radar measurements as input to the
system. Parameter and model uncertainty has to be considered to improve the accuracy
of the SA. Further SA has an impact on the accidents caused by the AVs, which in turn
indirectly declines the faith among the users to use the AVs. Figure 9 clearly illustrates
the relationship between the accident ratio and the faith of AV users. Thus, accurate and
clear environment data perceived by the AVs help them make proper decisions, resulting
in minimizing accidents [177].
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Figure 9. The relation between SA, accidents, and driver faith in AVs [177].

5. Conclusions

Instant decision-making based on enhanced contextual awareness is crucial to ensure
safety in autonomous driving. The clarity in multi-modal sensor data followed by fusing
the multi-modal data into a suitable format is an important task for creating accurate
situation awareness and decision-making in autonomous vehicles. This survey identified
the key concepts related to data preprocessing, preferably multi-modal fusion, situation
awareness, and decision-making in autonomous vehicles. Our extensive research literature
survey advocates that among others, data preprocessing stands out as one of the major
categories for research contributions, owing to the huge potential for enhancements of
state-of-the-art solution approaches. In the case of data fusion, many researchers stop
at detecting and recognizing the target, whilst others go further and look at the target’s
movement pattern. Since it is difficult to ensure the accuracy of frame detection, target
tracking loss can be prevented by analyzing the motion trend. Many recent studies tackle
the strategies for determining an object’s existence and producing its trajectory. Most
of the studies fail to propose a generic multimodal fusion methodology to handle the
diversity existing among different datasets. The relevant research literature also did not
clearly explain key operations such as feature selection and dimensionality reduction of
multimodal data, the mechanisms for 2D to 3D multimodal data transformation and storage,
and the methodology for converting multimodal data to a single unique data format.
Regarding decision-making, the accuracy level reached by most of the referred decision-
making frameworks and models is not satisfactory for various critical maneuvers and use
cases [172]. Moreover, the literature studies have either used fewer datasets with minimum
features (or) collected data from minimum sources to evaluate their decision models. Given
the limitations of the datasets, it is difficult to gauge the effectiveness of the decision-
making approaches described in the literature [143,144,146,173]. Furthermore, most of the
relevant research literature did not focus on the ensemble concept and thus is unable to
accommodate the newly arriving features or instant environmental changes. Moreover, the
literature suffers from a lack of studying the efficiency, success, and failure rates of their
proposed decision-making models. Finally, Section 4.3 discusses the impact of situation
awareness on effective decision-making in AVs. The survey also discussed the major
contributions and pitfalls associated with the four main areas focused on in this survey and
also highlighted the limitation of existing models prevailing in the current research.
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