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Analyzing Homogeneity and Heterogeneity of
Change Using Rasch and Latent Class Models: A
Comparative and Integrative Approach
Thorsten Meiser

University of Heidelberg
Monika Hein-Eggers, Pamela Rompe, and Georg Rudinger

University of Bonn

The application of unidimensional Rasch models
to longitudinal data assumes homogeneity of change
over persons. Using latent class models, several
classes with qualitatively distinct patterns of develop-
ment can be taken into account; thus, heterogeneity of
change is assumed. The mixed Rasch model inte-
grates both the Rasch and the latent class approach by
dividing the population of persons into classes that
conform to Rasch models with class-specific param-
eters. Thus, qualitatively different patterns of change
can be modeled with the homogeneity assumption re-
tained within each class, but not between classes. In
contrast to the usual latent class approach, the mixed
Rasch model includes a quantitative differentiation

among persons in the same class. Thus, quantitative
differences in the level of the latent attribute are dis-

entangled from the qualitative shape of development.
A theoretical comparison of the formal approaches is
presented here, as well as an application to empirical
longitudinal data. In the context of personality de-
velopment in childhood and early adolescence, the
existence of different developmental trajectories is
demonstrated for two aspects of personality. Rela-
tions between the latent trajectories and discrete
exogenous variables are investigated. Index terms:
latent class analysis, latent structure analysis, mea-
surement of change, mixture distribution models,
Rasch model, rating scale model.

Latent structure analysis (LSA) is a methodological framework for modeling and testing hypotheses
about the occurrence and the source of multivariate associations in multidimensional contingency tables.
LSA models characterize the probabilities of manifest response vectors by an assumed unidimensional
latent person characteristic 0 or an assumed k-dimensional latent person vector 0 = (0~, ..., 0,) and a set of
structural item parameters (Andersen, 1982, 1988, 1990; Clogg, 1988; Lazarsfeld, 1968; Lazarsfeld &

Henry, 1968).
Because of conditional stochastic independence of responses given a value of the latent variable or vector,

the multivariate associations among the manifest indicators are reduced to their common dependence on the
latent variable for a unidimensional latent space, and to their dependence on the latent variables and the
associations between the latent variables if 0 is multidimensional. In the general view proposed here, the LSA
approach is the joint super model for unidimensional latent trait and latent class models, for multidimensional
latent trait and latent class models, as well as for multidimensional latent structure models with both continu-
ous and discrete latent variables. Common as well as distinctive features of latent trait and latent class models
are described by Langeheine & Rost ( 1988) and in the extended review by Andrich ( 1991 ). The present paper
focuses on a family of LSA models that is based on the assumption of a two-dimensional latent vector, with
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one discrete and one continuous latent variable.

In probabilistic test theory, the goal of most LSA applications is to explain the associations within a set
of discrete test items by a common latent variable (i.e., to achieve unidimensionality of the items in terms
of test construction or evaluation). Thus, the elimination of differential item functioning (DIF) is of crucial
importance. DIF is defined as any variation of the item-specific category probabilities due to manifest or
latent factors other than the (mostly unidimensional) latent attribute intended to be measured by the test.

Numerous generalizations of LSA models have made LSA a flexible method for the analysis of discrete
indicators that is comparable to the family of linear structural equation models for the multivariate analysis of
continuous indicators. Major contributions to this development have been the incorporation of several latent
variables as latent vectors (e.g., Andersen, 1985, 1988, 1991; Collins & Wugalter, 1992; Duncan, 1983,
1984; Embretson, 1991; Goodman, 1974a, 1974b; Hagenaars, 1988; Kelderman, 1992, 1993; Kelderman &

Rijkes, 1994; Langeheine, 1982, 1988a; Langeheine & van de Pol, 1993; Luijkx, 1988; van de Pol &

Langeheine, 1990), as well as the explicit integration of group differences and DIF phenomena that are mean-
ingful for substantive research (e.g., Clogg & Goodman, 1984, 1985; Kelderman & Macready, 1990; Mislevy
& Verhelst, 1990; Rost, 1990, 1991 ; Rost & von Davier, 1993; Westers & Kelderman, 1992, 1993). Particular
extensions of Rasch models for measuring change have been proposed by Fischer (1983), Fischer & Formann

(1982), Fischer & Parzer ( 1991 ) and Fischer & Ponocny (1994). Consequently, LSA models can be applied in
a wide range of contingency table analyses beyond test construction or test evaluation.

Here, different LSA approaches are discussed for modeling and testing specific hypotheses on latent
developmental processes in longitudinal research. For the sake of simplicity, the presentation is confined
to one indicator per measurement occasion. However, the generalization to a set of indicators is straight-
forward. In the case considered here, the manifest variables X,, ..., XM that span an M-way contingency
table refer to repeated observations of a discrete random variable X at M measurement occasions. If a
unidimensional 0 is presumed, one static latent variable affects the response behavior at all time points.
Nevertheless, latent change may occur that is located in the potential variability of the structural item
parameters over time (for models with explicitly dynamic time-related latent variables see Andersen, 1985,
1988, 1991; Collins & Wugalter, 1992; Embretson, 1991; Langeheine, 1988a, 1993; Langeheine & van de

Pol, 1993; Meiser, in press; van de Pol & Langeheine, 1990).
Particular longitudinal LSA models result from specifications of the latent variable or vector and of the

functional relation between the latent variable(s) and the category probabilities of the indicators. Specifi-
cation of a unidimensional continuous 0 yields a unidimensional latent trait model. If 0 is discrete, a latent
class model results. The concepts of change implied by Rasch latent trait models and by latent class models
are rather different: The application of unidimensional Rasch models to longitudinal data assumes homo-
geneity of change over persons. Using latent class models, different patterns of development can be stud-
ied for different classes; thus, heterogeneity of change is assumed. Latent class models, however, do not
permit a differentiation between persons of the same latent class. The mixed Rasch model (Kelderman &

Macready, 1990; Rost, 1990, 1991; Rost & von Davier, 1993) combines the Rasch model and the latent
class approach by dividing the population of persons into classes that conform to Rasch models with class-
specific parameters. Thus, qualitatively different patterns of change can be modeled and the homogeneity
assumption is retained within each class, but is dropped for persons of different classes. The mixed Rasch
model also facilitates a quantitative differentiation between persons of the same qualitative developmental
pattern by the inclusion of person parameters within the classes.

Rasch Models for the Investigation of Homogeneity of Change
The general unidimensional Rasch model for polytomous indicators specifies the conditional probabil-

ity that response x, is observed for person v in variable X, by the function
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where
L is the number of response categories, L > 2;
x, is one of the L response categories of indicator X,, x, E 10, ..., L - 1 };
a is the item-specific easiness parameter of threshold j, j E { 1, ..., L - 1 }; and
9v is the latent parameter of person v (i.e., the realization of 0) (Andrich, 1978; Masters, 1982, 1988;

Rost, 1988).
Because all LSA models assume conditional stochastic independence, the probability of an observed re-
sponse vector y = (Xl = Xl’ ..., XM = x~,) given 9v results from the product of Equation 1 over i:

where t is the total score of response vector y (i.e., the sum of the observed response categories x,). The
general unidimensional Rasch model for polytomous indicators (Equation 2) is called the partial credit
model (PCM).

From Equation 2, the conditional PCM can be derived by conditioning on the total score variable, which
is the sufficient statistic for 9v:

where the first summation in the denominator is over y with E,x, = t (Andersen, 1990; Kelderman, 1984;
Masters, 1982; Rost, 1988). This conditional representation of the Rasch model is often preferred because
it does not contain 9v. In order to achieve identifiability, one additional constraint must be imposed in
Equations 2 and 3. The usual marginal condition of centered scales is proposed:

For M repeated observations of a polytomous indicator, differences of threshold parameters between mea-
surement occasions, (x,, - a~,+,~ ~ 0, indicate that the conditional response probabilities given in Equation 1
have changed. Because this change is formally located in the parameters, it is independent from the respon-
dents and their locations on 0 (Fischer, 1987; Langeheine, 1993; Langeheine & van de Pol, 1990; Rost, 1989;
Spada & McGaw, 1985, Model I). Therefore, in the unidimensional Rasch model, the process of change is
subjected to the assumption of person homogeneity. The model in Equation 2 includes interindividual differ-
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ences in 0, which are stable over time, and intraindividual change, which is identical for all persons.
By the decomposition of the threshold parameters

into their initial values a and change parameters 7~,,~, which are defined as differences between easiness
parameters on consecutive measurement occasions, specific hypotheses about the latent process of devel-
opment can be specified. For this purpose, additional restrictions can be imposed on the change param-
eters, such as fixing ~,,,~ to 0 for modeling absolute stability or imposing equality constraints on the change
parameters over occasions for modeling stationarity of change (i.e., the same amount of change occurs
between any consecutive measurement occasions within a particular period of time). Another model fol-
lows from constraining the change parameters to be threshold-independent,

Equation 7 implies that the interthreshold distances remain unchanged over time

The model in Equation 2 with the restriction in Equation 8 is equivalent to the rating scale model (RSM;
Andrich, 1978).
When the data consist of one repeatedly observed indicator, the RSM is important for two reasons. First,

the RSM requires that the latent response format of the indicator is invariant over time; thus, it explicitly
takes into account that the same indicator is used at all occasions. The PCM (Equation 2) does not do this.
Second, only in the RSM are changes of the threshold parameters interpreted as a joint movement of the
persons’ locations on the latent continuum. Therefore, the RSM facilitates analyzing global change of per-
sons’ 0 levels, because X. can be thought of as the global difference in the latent trait between adjacent
measurement occasions h and h - 1. Therefore, the change parameters in the RSM correspond to the
&dquo;modifiabilities&dquo; in Embretson’s ( 1991 ) extension of the dichotomous Rasch model. The crucial difference
is that, in contrast to Embretson’s approach, the change parameters are invariant over persons (see also
Langeheine, 1993); that is, homogeneity of change is assumed.

In the longitudinal Pcnt model (Equation 2) without restriction (Equation 8), the 7~h~ parameters cannot be
interpreted as directly indicating the amount of change in the Os. In many applications, however, this type of
change is what is of interest. However, in some cases threshold-specific change can also be meaningful for
scientific theory (e.g., if it is assumed that persons acquire new solution strategies from one occasion to the
next that alter the relations of subtask easiness in an achievement item). This type of change, however, might
raise doubts about the suitability of a structural model based on a unidimensional latent space.
A very general framework of linear decompositions of parameters in polytomous Rasch models was

presented by Fischer & Parzer (1991) and Fischer & Ponocny (1994). They demonstrated the particular
advantages of the approach for measuring change.

Latent Class Analysis for Modeling Heterogeneity of Development

In latent class analysis (LCA), the latent variable 0 is discrete, 0, E { 1, ..., C}, dividing the population
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into C mutually exclusive and jointly exhaustive classes. All persons belonging to a certain latent class g,
g E { 1, ..., C}, have the same probability of responding in category x, of indicator X,:

with

The probability of observing response vector y = (X, = XI, ..., XM = xM) in class g results from Equations
9-10 and conditional independence:

The marginal probability of y is then

where n8 is the proportion of latent class g (Andersen, 1982, 1988, 1990; Dayton & Macready, 1980;
Erdfelder, 1990; Langeheine, 1988b; Lazarsfeld & Henry, 1968; van de Pol & Langeheine, 1990). Person
v is said to belong to class g if class g shows the highest probability given the person’s response vector y;
that is, if p(gl y) > p(g’l y) for all g’ # g. p(gly) can be calculated using Equations 11 and 12:

The modal recruitment probability (Equation 13) indicating membership in a certain class can be rather
low. For example, in a three-class LCA model p( 1 I y) = p(2I y) _ .25 and, consequently, p(3 I y) = .50 may
occur for some y. Persons with response vector y, therefore, are classified with a very large error rate into
the third class. For this reason, classification of persons made using LCA solutions should be regarded with
caution. Hagenaars & Luijkx (1990) presented equations for the evaluation of the strength of association
between the latent class variable and the observed response vectors. Often, however, LCA is not used for
classification purposes, but for modeling and testing the structure in an empirical dataset.

In order to specify hypotheses about the underlying structure in a given multiway contingency table, the
parameters in Equation 12 can be subjected to fixations or equality constraints. In the context of develop-
mental research, probabilistic models of cumulative growth can be specified by appropriate parameter
restrictions (e.g., see Henning & Rudinger, 1985; Schr6der, Edelstein, & Hoppe-Graff, 1991). In addition,
the latent classes may be regarded as representing classes with different developmental trajectories. Ac-
cordingly, in LCA intraindividual change is assumed to be heterogeneous over latent classes, and no
interindividual differentiation is available for persons of the same latent class. As a consequence of the
lack of class-internal quantitative differences, qualitative as well as quantitative aspects are mirrored by
the division of the population into classes. Thus, qualitative patterns of change and quantitative levels of
the persons may be confounded in LCA solutions, as illustrated below.
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Mixture Distribution Rasch Models Representing Distinct Patterns of Homogeneous Development

The mixture distribution Rasch model may be regarded as an integration of the unidimensional Rasch
model (Equation 2) and the LCA rationale (Equation 12). As in LCA, the population is divided into C
mutually exclusive classes, but in the mixed Rasch model each class conforms to a Rasch model with
class-specific parameters 9v and a, j (Kelderman & Macready, 1990; Rost, 1990, 1991 ; Rost & von Davier,
1993). Consequently, the mixed Rasch model can be derived by rewriting Equation 2 conditional on value
g of the discrete latent mixture variable:

The marginal probability of response vector y is given by

where n, is the proportion parameter of class g as in LCA, and p(Y = ylg) can be rewritten using the
conditional Rasch model in Equation 3 for each class g and the class-specific proportion of total score t,

where the first summation in the denominator is over y with 1:,x, = t. The 1t’lg are treated as model param-
eters that are estimated from the data (Rost, 1990, 1991 ). Thus, no distributional assumptions are necessary
in order to obtain the probability of response vector y in Equation 16.

Extreme response patterns with t = 0 and t = M(L - 1) do not contain any information about class
membership and their proportions cannot be estimated within a class. Consequently, in the mixed Rasch
model there are C[M(L - 1) - 2] independent 1t’lg parameters and two additional parameters for the propor-
tions of the minimum and the maximum total score patterns. Furthermore, C - 1 nonredundant class pro-
portions 7cg and C[M(L - 1 ) - 1 unconstrained class-specific threshold parameters aulg must be estimated,
unless the number of threshold parameters is reduced by additional restrictions. 

&dquo; ~

Because the extreme response patterns must be excluded from the partition of the population into classes,
in the mixed Rasch model the classes are not exhaustive. It follows that the class proportions n8 do not sum
to 1.0 as they do in LCA. Rather, they sum to the proportion of persons with nonextreme observed response
patterns.

Parameter estimation using the EM algorithm is discussed by Rost (1990, 1991) and implemented in the
program MIRA (Rost & von Davier, 1992). As in LCA, a person is said to be a member of the latent class that
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has the highest recruitment probability given his or her manifest response pattern. The recruitment prob-
abilities are obtained by inserting Equations 16 and 17 into the first ratio of Equation 13. Analogously, the
problem of potentially high rates of misclassifications for some response vectors may also arise.

The mixed Rasch model can be regarded as a two-dimensional LSA model with one continuous and one
discrete latent variable, because each person is characterized by the combination of membership in latent
class g and the individual intraclass parameter 8.. The unidimensional conditional Rasch model as well as
the LCA approach are special cases of this two-dimensional model resulting from Equation 14 by the
restrictions C = 1 and, respectively, 9v~ 1 = 0j for all persons in class g. Therefore, the mixed Rasch model
overcomes the major limitations of both hierarchically subordinated model families, the LCA and the Rasch
models.

Applied to the longitudinal data situation considered here, the mixed Rasch model allows the study of
qualitatively different patterns of change that are represented by the latent classes in combination with
quantitative differences of the latent trait within each qualitative pattern of development. In the unidimen-
sional models discussed above, the aspects of quantitative differences in level and qualitative differences
in change are either confounded-as in LcA--or one aspect is neglected entirely-as is the possibility of
different developmental trajectories in the unidimensional Rasch model. In the mixed Rasch model, the
range of the homogeneity assumption concerning the process of intraindividual development is limited to
the classes because the time-dependent variability of the threshold parameters is not restricted to be equal
over classes. Thus, with the mixed Rasch model it is possible to disentangle quantitative interindividual
differences in the latent characteristic under study and qualitative interindividual differences in intraindividual
change.

In Equation 14, additional restrictions can be imposed on the conditional threshold parameters in order
to specify hypotheses on the response format of the indicator and on the process of change within the
classes. The constraints discussed in the context of Equations 5, 7, and 8 are suitable candidates. In the
application described below, mixed Rasch models for two latent classes are discussed using the restriction
in Equation 8 for each class. These are two-class mixed RSMs. In this case, the interpretation of the longi-
tudinal RSM in terms of global change of the persons’ locations applies to each of the classes.

Example: Personality Development During the Transition
from Childhood to Early Adolescence

Method

The data were part of a reanalysis of the &dquo;German Postwar Generation Study&dquo; (Thomae, 1965). The
study was conducted from 1952 to 1961 and investigated the longitudinal development of children in
postwar Western Germany with respect to cognitive variables, personality, school performance, somatic
indicators, and social living conditions of the children and their families. Data were assessed from approxi-
mately N = 4,000 children at six research centers. The sample was divided into two cohorts. The younger
children were born in 1945/1946 and were assessed on 10 occasions; the older children were born in 1938/
1939 and were examined on five occasions (1952 to 1956).

Not all data were available for the reanalysis; thus, the analysis was based on a stratified subsample of
N = 600 younger children with uniform proportions in the gender and research center categories.

First, the existence of different latent developmental trajectories was demonstrated for two personality
indicators-Activity and Adjustment-using separate mixed Rasch analyses. In the original study, Activity
and Adjustment were two of eight personality dimensions that were rated at each measurement occasion
from observing the children’s overt behavior during the test situations and an interview (Thomae, 1965).
For the present analysis, the ratings were transformed into three categories according to the recoding
scheme suggested by Uhr (1966; see also Thomae, 1965) where 0 indicated a low degree of Activity or
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Adjustment, 1 indicated a medium degree, and 2 indicated a high degree of Activity or Adjustment. Activ-
ity and Adjustment assessed in 1955, 1956, and 1957 were selected as manifest indicators.

Finally, associations of the longitudinal patterns with the external variables school performance, gen-
der, and socioeconomic status were examined in order to evaluate potential predictors and concomitant
variables of the latent courses of change. Because of the uncertainty of class assignment to persons or
observed response vectors, the cross-classification of class membership in both attributes and discrete
exogenous variables were calculated using the explicit recruitment probabilities.

MIRA (Rost & von Davier, 1992) was used for the computations. A 5% statistical error rate was used as
the boundary for model rejection.

Results

Developmental trajectories of Activity and Adjustment. The three-way contingency table created by
the indicators of Activity and the empirical frequencies (n) of the 27 observable longitudinal patterns are
shown in Table 1. Due to missing values, the sample size was reduced to N = 545. The unidimensional PCM
(Equation 2) was rejected using the likelihood ratio test statistic: G2 = 30.92, with 15 degrees of freedom
(df ), p < .05. The mixture distribution PCM (Equation 14) with two latent classes yielded a value of G2 =
1.65, 5 df, p > .05; thus, it fit the data very closely. A two-class mixed RSM (Equation 14 with the restriction
of Equation 8) was also found to be compatible with the data: the likelihood ratio test statistic yielded a
value ofG2 = 6.24, 9 df, p > .05, which indicated that the goodness of fit of the two-class mixed PCM and the
two-class mixed RSM did not differ significantly. For reasons of parsimony and interpretability with respect
to homogeneous unidimensional change, the restricted mixed RSM with the constraints in Equation 8 per
class was preferred.

The expected category probabilities in the longitudinal two-class mixed RSM are shown in Figure 1. The
trajectory of Class 1 (Figure la) with an estimated class proportion of approximately ft, = .29 indicates that
there was almost no change at all, because the expected category probabilities were almost invariant over
time. This means that a child’s probability of being in a certain category was nearly the same for all measure-
ment occasions in this class. Note, however, that the actual probability depended on the child’s latent level
and was not completely determined by class membership. Contrary to Class 1, Class 2 (Figure lb) represents
a rather irregular course of development, because at the second point of time children were far more likely to
be rated in the highest category than at the other occasions. The proportion of this class was estimated as
approximately ft2 = .61. Thus, qualitatively distinct patterns of development were separated by this longitu-
dinal mixed Rasch model. The class proportions summed to approximately .90, because the rest of the chil-
dren had total scores across occasions of 0 or 6; that is, they were persistently rated to be low or high in
Activity.

Because the RSM was selected for both latent classes, the result can be interpreted in terms of class-specific
global change of person parameters. The estimated threshold parameters are given in Table 2. From these
estimates, values of i ~ = .015 and ^x = .06 were obtained for the change parameters (see Equations 5 and 7)
in Class 1; in Class 2, Â,2 = 3.71 and i =-3.63. From these values and from Figure 1 it was concluded that the
eVil parameters were almost completely stable, whereas evl2 increased remarkably from the first to the second
assessment occasion and decreased again from the second to the third. At the same time, invariance of the
underlying rating structure per class is part of the model, because the interthreshold distances remained
invariant over time for each class (see Equation 8).

For comparison, the data were also analyzed with unrestricted LCA using PANMARK (van de Pol,
Langeheine, & de Jong, 1991). Only the three-class solution was accepted-the likelihood ratio statistic
was G2 = 8.88, 6 df, p > .05. The expected response probabilities are shown in Figure 2. In the three-class
solution, both Class 2 (Figure 2b) and Class 3 (Figure 2c) indicated an increase in the highest category at
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Table 1

Longitudinal Patterns of Activity
and Observed Frequencies (N = 545)

the second occasion. These classes represent qualitatively similar trajectories of development and differ
primarily in level. Class 1 (Figure 2a) is distinguished from the other classes by qualitative differences in
the shape of the developmental process. Nevertheless, Figure 2 illustrates that the classes reflected quanti-
tative differences rather than qualitative patterns of development, because in Class 1 the low category had
the highest probability at all occasions, in Class 2 this occurred for the medium category, and in Class 3 for
the high category. Class 1 had an estimated proportion of Xl = .06, which is very small. The major portion
of the population belonged either to Class 2 (X2 = .72) or to Class 3 (ft3 = .22).

In the LCA solution, the classes represent both quantitative and qualitative aspects; however, these are
disentangled in the mixed Rasch model. This finding was emphasized when comparing the class-specific
expected total scores of response vectors in the two models. In the two-class mixed RSM, the expected
scores were very similar-3.0 and 3.37-whereas in the three-class LCA solution the expected scores were
.85, 3.09, and 5.05. These vary over a much broader range. Thus, the advantage of the mixed Rasch model
of including quantitative differences of persons within the latent classes becomes obvious: The latent
classes were distinguished by mainly qualitative criteria and hardly differed quantitatively. This did not
hold true for the LCA solution.

Similar to the analysis of Activity, a two-class mixed RSM was also the appropriate model for the Ad-
justment ratings (G2 = 10.29, 9 df, p > .05). The resulting classes can also be interpreted as representing
classes with a rather stable (Class 1) and a rather irregular shape of development with an excess in the high
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Figure 1
Class-Specific Expected Category Probabilities in the Two-Class
Mixed RSM for Low, Medium, and High Levels of Activity

category at the second occasion (Class 2). The unidimensional POM (Equation 2) was rejected for the
Adjustment data, because of a likelihood ratio test statistic of GZ = 25.23, 15 df, p < .05.

Potential predictors of change and concomitant variables. Associations of the longitudinal patterns
with external variables were examined in order to evaluate potential predictors and concomitant variables
of the latent course of change. Associations were investigated between the latent classes of personality
development and discrete external variables, such as gender, school performance, and social indexes. Be-
cause of the uncertainty of class assignment of persons or observed response vectors, the cross-classifica-
tions of class membership and discrete exogenous variables were calculated using the explicit recruitment
probabilities (see Appendix). The shape of development in Activity was not significantly associated with
gender (Pearson’s X2 = 2.26, 1 df, p > .05), although there was a tendency for boys to be slightly overrep-
resented in the class of children showing an excess of Activity at the second occasion. In contrast, class
membership in Adjustment was highly related to gender (Pearson’s x2 = 111.57, 1 df, p < .05). Girls were
far more likely to show a peak in Adjustment in the middle of the time interval (i.e., to belong to Class 2)

Table 2
Estimated Threshold Parameters in the

Two-Class Mixed RSM

for the Indicators of Activity
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than boys. These relations between the shape of personality development and gender correspond with
assumptions about gender-specific behavior and coping styles in a period of individual transitions. Thus,
these results may be regarded as a tentative validation of the substantive meaning of the mixed RSMs.
Indicators of school performance and the families’ income (dichotomized by median) were not associated
with class membership in either of the personality dimensions.

Discussion

The mixed Rasch model is a feasible tool in longitudinal research for unmixing qualitatively different
patterns of change that are &dquo;hidden&dquo; in a population. The model overcomes the major limitations of both
the Rasch and the latent class approaches by dropping the restrictive assumption of person homogeneity of
change for the entire population and by introducing a quantitative differentiation of persons within the
same qualitative class.

These theoretical advantages of mixed Rasch models over the usual Rasch and LCA approaches were
supported by the results of this study. The two-class mixed Rasch models fit the contingency tables of
Activity and Adjustment satisfactorily, whereas the usual Rasch models were rejected. It may be con-
cluded that the existence of qualitatively different developmental trajectories caused the misfit of the uni-
dimensional Rasch models. In terms of probabilistic test theory, the different patterns of change induce
differential item functioning or item bias, which violates the basic assumptions of the unidimensional
Rasch model but is explicitly part of the mixture distribution approach. In addition, the comparison of the
LCA solution and the mixed RSM for the Activity indicator illustrated that in LCA qualitative aspects of
development are not clearly disentangled from the quantitative level of Activity; in contrast, the mixed
Rasch model does disentangle qualitative from quantitative aspects.

The family of mixture distribution Rasch models appears to be a valuable alternative to unidimensional
LSA models for the analysis of longitudinal discrete data. Hypotheses about the process of change can be
confirmatorily specified by additional constraints on the class-specific threshold parameters, such as the
hypothesis of homogeneous unidimensional quantitative development in each of the classes (the restric-
tion in Equation 8 for each class) or absolute stability for one of the classes (restricting ÀhJ = 0 in one class).
Also, equality constraints of parameters from different classes could and should be considered. In all of
these models, the latent classes may be seen as an optimal partition of the total population with respect to
the maximum of the loglikelihood of the model, whereas manifest grouping variables may fail to provide
an appropriate and powerful splitting in order to detect qualitative heterogeneity (Rost, 1990).

As stated above, the generalization to more than one indicator per occasion is straightforward. In the
case of multiple indicators, the Rasch model refers to all of the indicators observed at all of the assessment
occasions. By using appropriate parameter restrictions, change parameters of the type in Equations 5 and 6
can be specified that are independent from the thresholds and the items and thus reflect global change of
the persons’ locations in unidimensional Rasch models (Meiser, in press). If such Rasch models are speci-
fied as components in. a finite mixture multinomial model, qualitative differences can be disentangled from
the quantitative level of the latent trait as discussed above for the simplified case.

Appendix: Cross-Classification of Class Membership and Discrete Exogenous Variables

Let Z be a discrete random variable with observed categories z. Then, the cross-tabulation of Z and
latent class membership in the personality dimension of Activity, for instance, can be written as
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The terms in Equation 18 are obtained from either the estimated parameters of the mixed Rasch model ~i. e.,
the recruitment probabilities p(ga¡; IYa¡; ) or from the relative frequencies of response vectors ~i. e., p(y~ ~ I z) ].
Here, for each y~ both latent classes of Activity enter the calculation of the cross-classification, which is
not the case when assigning latent classes to response patterns on the basis of modal recruitment probabili-
ties. Equation 18 is based on a procedure suggested by van de Pol & Langeheine (1989) in the context of
mixed Markov models.
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