
 Open access Book Chapter DOI:10.1007/11841760_3

Analyzing interacting BPEL processes — Source link

Niels Lohmann, Peter Massuthe, Christian Stahl, Daniela Weinberg

Institutions: Humboldt University of Berlin

Published on: 05 Sep 2006 - Business Process Management

Topics: Business Process Execution Language, Petri net and Business process

Related papers:

 Web Services Business Process Execution Language Version 2.0

 The application of Petri-nets to workflow management

 Transforming BPEL to petri nets

 An Operating Guideline Approach to the SOA

 Analyzing web service based business processes

Share this paper:

View more about this paper here: https://typeset.io/papers/analyzing-interacting-bpel-processes-
4kmkdhko5n

https://typeset.io/
https://www.doi.org/10.1007/11841760_3
https://typeset.io/papers/analyzing-interacting-bpel-processes-4kmkdhko5n
https://typeset.io/authors/niels-lohmann-3zjdem6e5n
https://typeset.io/authors/peter-massuthe-qp1vs2bdoz
https://typeset.io/authors/christian-stahl-1zxa6z3t7c
https://typeset.io/authors/daniela-weinberg-4i49edvf43
https://typeset.io/institutions/humboldt-university-of-berlin-1smin2jg
https://typeset.io/conferences/business-process-management-xno9txuv
https://typeset.io/topics/business-process-execution-language-3avjslh5
https://typeset.io/topics/petri-net-1xqxexw7
https://typeset.io/topics/business-process-1duww34h
https://typeset.io/papers/web-services-business-process-execution-language-version-2-0-585xt8ksvl
https://typeset.io/papers/the-application-of-petri-nets-to-workflow-management-3iqpogfzoa
https://typeset.io/papers/transforming-bpel-to-petri-nets-3iozgcc7n3
https://typeset.io/papers/an-operating-guideline-approach-to-the-soa-4xd6jjitse
https://typeset.io/papers/analyzing-web-service-based-business-processes-1h0o7q1g2b
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/analyzing-interacting-bpel-processes-4kmkdhko5n
https://twitter.com/intent/tweet?text=Analyzing%20interacting%20BPEL%20processes&url=https://typeset.io/papers/analyzing-interacting-bpel-processes-4kmkdhko5n
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/analyzing-interacting-bpel-processes-4kmkdhko5n
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/analyzing-interacting-bpel-processes-4kmkdhko5n
https://typeset.io/papers/analyzing-interacting-bpel-processes-4kmkdhko5n

Analyzing Interacting BPEL Processes⋆

Niels Lohmann, Peter Massuthe, Christian Stahl, and Daniela Weinberg

Humboldt–Universität zu Berlin
Institut für Informatik
Unter den Linden 6

10099 Berlin, Germany
{nlohmann, massuthe, stahl, weinberg}@informatik.hu-berlin.de

Abstract. This paper addresses the problem of analyzing the interac-
tion between BPEL processes. We present a technology chain that starts
out with a BPEL process and transforms it into a Petri net model. On
the model we decide controllability of the process (the existence of a
partner process, such that both can interact properly) and compute its
operating guideline (a characterization of all properly interacting partner
processes). A case study demonstrates the value of this technology chain.

Key words: Business process modeling and analysis, Formal models in busi-
ness process management, Process verification and validation, Petri nets

1 Introduction

To an increasing extend interorganizational cooperation is crucial for enterprises
to meet the new challenges of ever faster changing business conditions and the
growing number of competitors in all kinds of business fields.

In this context, services play an important role: they serve as the basic
building blocks of such interorganizational cooperations. Recent publications
apply the term service in different contexts with varying denotations (see [1]
for a survey). A common understanding is that a service basically encapsulates
self-contained functions that interact through a well-defined interface via asyn-
chronous message passing.

A service can typically not be executed in isolation – services are designed for
being invoked by other services, or for invoking other services themselves. The
interaction of services is described by the paradigm of service-oriented comput-

ing (SOC) [2]. Thereby, two different approaches can be distinguished: service

orchestrations consider one particular service that directs the logical order of all
other services, whereas service choreographies consider the case where individ-
ual services work together in a loosely coupled network. The participants of such
interactions are called partners.

The most common implementation of services are web services. The Business

Process Execution Language for Web Services (BPEL, also known as WS-BPEL

⋆ Partially funded by the BMBF project “Tools4BPEL”.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 17–32, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

or BPEL4WS) [3] is an accepted language to describe web services. We shall
refer to a web service that is described in BPEL as a BPEL process or process

for short.

A choreography of BPEL processes may cause nontrivial interaction between
them. Thus it is a challenging task to decide whether the whole choreography of
processes interacts properly, i. e. it is free of deadlocks and there are no messages
being sent that cannot be received any more. There are two main reasons for
non-proper interaction: (1) a process may have an erroneous design. For instance,
the process may contain an internal choice relevant for the expected behavior of
a partner, but the partner is not informed which decision is actually made; (2)
the interactional behaviors of two processes of the choreography exclude each
other. For example, the processes run into a situation where one process waits
for a message of the other one and vice versa.

Thus a BPEL process needs to be analyzed thoroughly before it is deployed.
For this purpose, we can make use of several results in the context of the analysis
of services and of backing BPEL processes with a formal semantics. In [4] the
notion of controllability was developed. A service is controllable if there exists
a partner such that both interact properly. Thus an erroneous design of a ser-
vice itself is detected by analyzing its controllability. We further developed the
operating guideline of a service. The operating guideline characterizes all prop-
erly interacting partners in a compact way [5]. With the aid of the operating
guideline it can be checked whether the interactional behaviors of two services
exclude each other. As a formal model for BPEL processes open workflow nets

(oWFNs) [6], a special class of Petri nets, are used. Further, we developed a
feature-complete Petri net semantics for BPEL [7]. The semantics allows for
an automatic transformation of BPEL processes into Petri net models [8]. The
resulting Petri net models are well-suited for computer-aided verification. The
verification, however, is restricted to the internal behavior of a BPEL process so
far and does not consider the interactional behavior.

BPEL2oWFN
BPEL

process

pattern

repository

Petri net (PNML,

LoLA, PEP, APNN)

model checkers

(CTL, LTL, deadlocks)

open workflow net
Fiona

(controllability, OG)

Fig. 1. Proposed tool chain to analyze BPEL processes.

In this paper we extend the analysis of BPEL processes presented in [8]
by interactional behavior. We introduce two tools – BPEL2oWFN and Fiona.
BPEL2oWFN transforms a BPEL process into an oWFN. That way it is possi-
ble to analyse the interaction between BPEL processes with Fiona, a tool that
decides controllability and computes the operating guideline. Thus, we present
a technology chain (Fig. 1) that starts out with a BPEL process, transforms it
into an oWFN or a Petri net and that finally analyses the process by either using

18

Fiona or by using a common model checker. Throughout this paper we restrict
ourselves to the interaction of two processes only. For the interaction of more
than two processes, some theoretical results [9] exist, which are not implemented
yet.

The rest of the paper is organized as follows: in Sect. 2, we provide an
overview of the general concepts of BPEL and introduce our model, open work-
flow nets. We also explain controllability of oWFNs and operating guidelines
for oWFNs. A BPEL example process, an online shop, is presented in Sect. 3.
Section 4 explains the concepts of our advanced transformation and translates
the online shop into an oWFN. The resulting oWFN is then analyzed in Sect. 5.
We present a slightly modified version of that process in Sect. 6 and analyze
it, too. In Sect. 7 we describe related work in detail. Finally, we conclude with
directions to future research.

2 Background

2.1 BPEL

The Business Process Execution Language for Web Services (BPEL) [3], is a
language for describing the behavior of business processes based on web ser-
vices. For the specification of a business process, BPEL provides activities and
distinguishes between basic and structured activities. A basic activity can com-
municate with the partners by messages (invoke1, receive, reply), manipulate
data (assign), wait for some time (wait) or just do nothing (empty), signal faults
(throw), or end the entire process instance (terminate).

A structured activity defines a causal order on the basic activities and can be
nested in another structured activity itself. The structured activities include se-
quential execution (sequence), parallel execution (flow), data-dependent branch-
ing (switch), timeout- or message-dependent branching (pick), and repeated
execution (while). The most important structured activity is a scope. It links
an activity to a transaction management and provides fault, compensation, and
event handling. A process is the outmost scope of the described business pro-
cess.

A fault handler is a component of a scope that provides methods to handle
faults which may occur during the execution of its enclosing scope. Moreover,
a compensation handler can be used to reverse some effects of successfully exe-
cuted activities. With the help of an event handler, external message events and
specified timeouts can be handled.

2.2 Open Workflow Nets

Open workflow nets (oWFNs) [6] are a special class of Petri nets and can be seen
as a generalized version of van der Aalst’s workflow nets [10]. As a substantial
difference, in an oWFN the interface of a service is explicitly represented as sets

1 We use a typewriter font for BPEL activities.

19

of input and output places. In our model we concentrate on control flow aspects
of services and abstract from data (like, e. g., the content of messages). For data
with finite domain, however, important message content can be represented in
our approach. For instance, a channel receiving messages with Boolean values can
be represented by its separation into two channels: one for messages with content
true and one for messages with content false. Hence, oWFNs provide a simple
but formal representation of services, still preserving sufficient information to
analyze proper interaction of such services.

We assume the usual definition of Petri nets. An open workflow net is a Petri
net N = (P, T, F), together with (1) an interface I = in ∪ out such that I ⊆ P ,
in ∩ out = ∅, and for all transitions t ∈ T it holds: if p ∈ in (p ∈ out), then
(t, p) /∈ F ((p, t) /∈ F), (2) a distinguished marking m0, called the initial marking,
and (3) a set Ω of distinguished markings, called the final markings. The places
in in (out) are called input (output) places. The inner of an oWFN N can be
obtained from N by removing all interface places, together with their adjacent
arcs. As a convention, we label a transition t connected to an input (output)
place x with ?x (!x).

Throughout this paper we only consider acyclic open workflow nets, i. e. nets
where the transitive closure of F contains no cycles. As an example, consider
the oWFN N1 depicted in Fig. 2.

Fig. 2. An example oWFN N1. The net has
three input places, login, terms, and order, and
two output places, confirm and invoice. The ini-
tial marking m0 is [p0] which denotes one to-
ken on place p0. N1 has only one final marking,
[p6,p7].
In m0 the net waits for the login message from a
partner. If the message arrives, transition ?login
can fire and produces a token on place p1.
Then, firing transition t1 yields the marking
[p2,p3]. This means that the net is ready to con-
currently receive an order message (order) and a
terms of payment message (terms). The order is
confirmed (!confirm) and the terms of payment
are followed by an invoice (!invoice). If both tran-
sitions have fired, the final marking [p6,p7] is
reached.

p0

p1

p2

?login

t1

?order

login

p3

?terms

p4

!confirm

p5

!invoice

order

p6 p7

terms

confirm

invoice

The interplay of two oWFNs N and M is represented by their composition,
denoted by N ⊕ M . Thereby, we demand that the nets only share input and
output places such that an input place of N is an output place of M and vice
versa. The oWFN N ⊕ M can then be constructed by merging joint places and
merging the initial and final markings. Merged places become internal to N⊕M .

20

A marking (sometimes called a state) m of N is called a deadlock if m enables
no transition. An oWFN in which all deadlocks are final markings is called weakly

terminating. Obviously, the net N1 in Fig. 2 itself is not weakly terminating. N1

requires a partner who sends and receives messages. N1 is not able to reach its
final marking [p6,p7] on its own. Given an oWFN N , we call an oWFN S a
strategy for N iff N ⊕ S is weakly terminating.

2.3 Controllability of oWFNs

Intuitively, controllability of an oWFN N means that N can properly interact
with some other net. Formally, N is controllable iff there exists a strategy for
N . Like the soundness property for workflow nets (cf. [10]), controllability is a
minimal requirement for the correctness of an oWFN.

In [4] we developed an algorithm to efficiently decide the controllability of an
oWFN N . Intuitively, the algorithm tries to construct (synthesize) a strategy,
i. e. an oWFN S, which imposes the weak termination property of S ⊕N . If the
construction fails, N is not controllable. If it succeeds, N is controllable and we
have constructed a strategy, S. This construction is, in fact, a problem known in
the literature as controller synthesis (see [11]). Technically we do not construct
a strategy S, i. e. an oWFN, but an automaton that reflects the interactional
behavior of S instead. To avoid confusion, we call the constructed automaton
controller, but denote it with S as well.

To construct such a controller S, we first construct the interaction graph

(IG) of N which has also been introduced in [4]. The IG represents a controller’s
point of view of N . A node of the graph represents the set of all states that
N can reach by consuming (already present) messages or producing messages
itself. The actual state of N is hidden for S. S knows the history of sent and
received messages only. From that information, in each node, S can deduce a set

of states of N which contains the state that N is really in. Thus a node of the
graph represents a hypothesis of the controller with respect to the actual state
of N .

S can control the net in a limited way by sending or receiving messages.
Each edge of the graph represents an event of S. A sending event (labeled by !)
means that S sends a message to N . The new message may enable N to fire
previously disabled transitions, i. e. deadlocks may get “resolved”. A receiving

event (labeled by ?) of S represents the receiving of a message by the controller.
Thereby, the controller gets some more knowledge about the state that N might
be in.

In the constructed IG, we then look for a controller S for N . The controller
is a subgraph of the IG containing the root node and fulfilling the following
property: for every node v of the subgraph and each deadlock in v which is no
final marking, there exists an event at v that resolves that deadlock and leads to
a node of the subgraph again. This property can easily be checked while the IG
is constructed. The oWFN is controllable iff such a controller can be found. In a
final step, the controller could be transformed into an oWFN by using the theory
of regions [12], for instance. This oWFN is then a strategy by construction.

21

Fig. 3. The IG for the net N1 of Fig. 2. The first
node of the IG represents the hypothesis that
the controller of N1 has about N1 when neither
messages have been sent nor received: the net
must be in state [p0], which is a deadlock. Hence,
the first node contains the state [p0] only.
However, sending a login message resolves the
deadlock. Hence, we add an edge labelled with
the sending event !login and a new (yet empty)
node to the IG. N1 is now in state [p0,login] and
may fire transition ?login reaching the state [p1].
After successively firing all enabled transitions
the next reachable deadlock is [p2,p3]. So the
new node contains the states [p0,login], [p1], and
[p2,p3].
Now one of two sending events is possible: !order
or !terms. So we add two edges and two empty
nodes, and so on.
The last node of the controller represents the
states where N1 can be in after all the mes-
sages are exchanged. There is only one deadlock,
[p6,p7], in that node which is the final marking
of N1.

[p0]

[p0, login]
[p1]

[p2, p3]

 !login

[p0, login, order]
[p1, order]

[p2, p3, order]
[p3, p4]

[p3, p6, confirm]

!order

[p0, login, terms]
[p1, terms]

[p2, p3, terms]
[p2, p5]

[p2, p7, invoice]

 !terms

[p3, p6]

 ?confirm

[p3, p6, terms]
[p5, p6]

[p6, p7, invoice]

 !terms

[p6, p7]

?invoice

[p2, p7]

 ?invoice

[p2, p7, order]
[p4, p7]

[p6, p7, confirm]

 !order

 ?confirm

As an example, the IG of the oWFN N1 (see Fig. 2) is depicted in Fig. 3.
As we can see in the IG of N1 each deadlock in any node (except for the final
marking in the last node) is resolved. Hence, the IG itself represents a controller,
and we conclude that N1 is controllable. Please note that two other subgraphs
constituting controllers can also be found in the IG of N1.

2.4 Operating Guidelines for oWFNs

The IG of an oWFN N contains only some controllers of N . For a representation
of all controllers (all properly interacting partners) of N , the concept of the
operating guideline (OG) for N was introduced in [5]. As we did in the section
before, we do not directly represent the strategies as oWFNs, but represent their
behaviors as automata.

The OG of N is constructed as follows: in a first step, an extended interaction
graph for N is computed which considers more events than the original one. This
results in a controller performing more events than the one given by the original
IG. In [9] it has been proven that every (properly interacting) controller must
be a subgraph of the constructed one. Unfortunately, the converse is not true –
only subgraphs that fulfill some further conditions are controllers for N , too. The
second construction step is devoted to these conditions. In [5] we have shown
that it is possible to code the conditions as a Boolean formula for each node
of the controller. For a node v, the formula at v is in conjunctive normal form

22

(CNF) over the events at v. Adding the corresponding formulae to the controller
results in an annotated controller, the operating guideline for N .

The OG characterizes the set of all strategies for an oWFN and can be read
as follows. We are allowed to remove nodes (except for the root node) and edges
from the OG as long as, in each node v, the formula at v is still satisfied. To
evaluate such a formula, the (remaining) outgoing edges constitute an assignment
of truth values to the literals of the formula: an outgoing edge from node v with
label x assigns true to the literal x in the formula at v. Each subgraph that can
be constructed this way is a controller per construction.

Operating guidelines can be used to efficiently check whether two oWFNs
will interact properly even before actually composing them. Given a controller
representing an intended partner’s behavior, we developed an algorithm to check
whether it is characterized by the OG or not [13].

Figure 4 shows the operating guideline of the oWFN N1 depicted in Fig. 2.
In a node of the OG, the corresponding annotation is depicted. The reachable
states of N1 are hidden.

!terms ∨ !login ∨ !order

!terms ∨ !order

 !login

!terms ∨ !login

!order

!login ∨ !order

!terms

!terms ∨ ?confirm

!order

!invoice ∨ ?order

!terms

?invoice ∨ ?confirm

!terms

!terms

 ?confirm

?confirm

?invoice

?invoice

?confirm

true

?confirm ?invoice

!terms

!order

!order

?invoice

!order

 !login

!login

!terms

 !login

 !login !order

Fig. 4. The OG for the oWFN N1 of
Fig. 2. The annotation of the first node
is a disjunction (!terms ∨ !login ∨ !order),
i. e. a one-clause CNF formula. It means
that every controller must, as its first
event, send one of the three correspond-
ing messages. The controller of Fig. 3, for
instance, performs the event !login which
is obviously correct according to the OG.
The OG also allows a controller which
first sends its order to N1. This possi-
bility results from the proposed asyn-
chronous way of interaction. Even if the
order was sent first, it would keep pend-
ing on the place order until N1 has con-
sumed the login message sent later.
The annotation true of the last node
means that no event has to be performed
any more.
In sum, the OG of N1 characterizes 77
different controllers for N1.

3 Example Process: Online Shop

In this section we present an online shop as our example process. It is a simple
but realistic business process and a modification of an online shop presented
in [14]. The online shop’s BPEL specification consists of 15 activities and an

23

event handler and is depicted in Fig. 5. We abstract from the BPEL syntax and
use a more intuitive graphical notation: a box frames an activity. For structured
activities the corresponding BPEL construct is additionally depicted in the top
left corner of the box. We use icons for basic activities, optionally with a mes-
sage name shown below it. A sequence is depicted by arcs whereas concurrent
activities are grouped in parallel separated by a dashed line.

new customerknown customer

login

invoice

order

sequence

confirm

order

sequence

invoice

terms

sequence

deliver

flow

switch

sequence

abort

sequence

eventHandlers

Stop

process
Legend:

Stop

receive

invoke

terminate

Fig. 5. The online shop process.

When the online shop receives the login information from a customer, its
business strategy distinguishes between already known customers and new cus-
tomers. In case of a known customer the left branch is executed: first the shop
expects an order, and then it sends the invoice to the customer. In case of a
new customer (right branch) the shop initiates two tasks concurrently: in the
first task (left sequence) the shop first receives the order and then confirms it. In
the second task (right sequence) the shop receives the terms of payment before
it sends an invoice to the customer. In either case the shop finally sends the
delivery information to the customer. The customer may send an abort message
at any time. We modeled this as an onMessage event handler that receives the
abort message and then terminates the whole process. In Fig. 5 we depicted the
event handler as a box, too. The expected message is also depicted by a receive
icon.

4 Translating BPEL to Open Workflow Nets

4.1 Petri Net Semantics for BPEL

Our goal is to formally analyze BPEL processes. To achieve this goal we translate
a BPEL process into an open workflow net using the semantics of [7]. As the

24

semantics itself is not the focus of this paper, we only summarize the main ideas
of it. The semantics is guided by the syntax of BPEL. In BPEL, a process is built
by plugging instances of BPEL constructs together. Accordingly, we translated
each construct of the language separately into a Petri net. Such a net forms
a pattern of the respective BPEL construct. Each pattern has an interface for
joining it with other patterns as it is done with BPEL constructs. The semantics
aims at representing all properties of each BPEL construct within its respective
pattern.

Please note that a pattern itself is not an open workflow net. Only the com-
position of all patterns of the activities of the process forms an open workflow
net. The collection of patterns forms our Petri net semantics for BPEL. The
semantics is complete (i. e. it covers all the standard and exceptional behavior
of BPEL) and formal (meaning it is suitable for computer-aided verification).
However, to decide controllability or to construct the operating guideline of a
BPEL process it is not necessary to model all features of BPEL. As an example,
Fig. 6(a) shows the receive activity “login” as it is used in the online shop.
Figure 6(b) shows its corresponding Petri net pattern that is used to check con-
trollability in the following sections. It is an abstraction of the original pattern of
the semantics and does neither model variables nor correlation sets. As a means
of simplification, we also do not model the occurrence of BPEL standard faults
in the whole process.

<receive

partnerLink="customer"

portType="customerPT"

operation="login"

variable="var">

</receive>

(a) A receive activity.

init

final

?login

t2

t1
stop

stopped

login

(customer)

(b) The corresponding pattern.

Fig. 6. The input place login is determined by the given partnerLink, portType, and
operation. The dotted box frames the pattern. The places on the frame (init, final, stop,
and stopped) describe the interface of the pattern used to join it with other patterns.
The execution of the activity can be stopped any time by marking place stop and firing
either t1 or t2.

4.2 The Tool BPEL2oWFN

The described Petri net semantics for BPEL was prototypically implemented
in the tool BPEL2PN [8]. The resulting Petri net does not model the interac-
tional behavior and therefore only allows for verification of the internal behavior.

25

Another drawback of BPEL2PN is its “brute-force” mapping approach which re-
sults in huge models for BPEL processes of realistic sizes and therefore does not
permit efficient analysis.

To scale down the model size we pursue three objectives. (1) We improve the
Petri net patterns of the semantics. (2) We choose specific (smaller) patterns
from a repository with the help of information gained by static analysis. (3)
We use structural simplification rules to compact the generated Petri net model
and thus reduce its state space. These features were implemented in the tool
BPEL2oWFN2, the successor of BPEL2PN. BPEL2oWFN is capable of gener-
ating oWFNs and other file formats (PNML, low-level PEP notation, APNN,
and LoLA low-level nets) and thus supports a variety of analysis tools.

Novel patterns. The Petri net semantics as described in [7] was designed
to formalize BPEL rather than to automatically generate compact Petri net
models that are necessary for computer-aided verification. Some patterns were
designed to be easily understood and made use of quite “expensive” constructs
such as reset arcs. We improved these patterns and replaced them by less intuitive
patterns with simpler structure. As mentioned before, we abstract from data
and model data-driven decisions by non-determinism. As a result, the generated
oWFN is a 1-safe low-level Petri net which improves the verification performance.

Static analysis. Instead of mapping each BPEL activity to a single pattern
modeling its behavior in all possible contexts, BPEL2oWFN employs a reposi-
tory of several patterns for each activity. Each pattern (e. g. the receive pattern
in Fig. 6(b)) is designed for a certain context or to preserve specific properties
only. To choose the most compact pattern for a certain verification task, we
perform static analysis (see [15] for an overview) for the BPEL process.

Structural simplification. Finally, we use structural reduction rules to further
scale down the size of the generated Petri net model w. r. t. the requirements
of the given analysis task. Currently, three reduction rules are implemented: at
first, all structural dead places and transitions are removed. Secondly, duplicate
transitions are merged. Thirdly, simple sequences (a transition with exactly one
place in its preset and postset) are collapsed. As the nodes of the IG consist of
sets of reachable markings, structural reduction may dramatically scale down
the size of the IG. The rules are exemplified in Fig. 7.

4.3 Translating the Online Shop

Using BPEL2oWFN, we now translate the online shop example process into an
oWFN3. The generated net originally has 112 places (including 4 input and 3
output places), 117 transitions, and 371 arcs. Structural reduction simplifies the
net to 61 places (including the 4 input and 3 output places), 58 transitions, and
191 arcs. The structural reduction also affects the state space of the inner of the
generated oWFN. The number of reachable states is reduced from 510 to 205.

2 available at http://www.informatik.hu-berlin.de/top/tools4bpel/bpel2owfn
3 As the process terminates after receiving an abort message, we modeled the event

handler to receive at most one abort message. Thus, the generated oWFN is acyclic.

26

t1 t2 t3

p3p1

p4 p5

p2

t4

p6

(a)

t1 t2

p1

p4

p2

t4

p6

(b)

t1,t2

p1

p4

p2

t4

p6

(c)

t1,t2

p1

p4,p6 (t4)

p2

(d)

Fig. 7. The implemented structural reduction rules. From the original net (a) all
structural dead places and transitions are removed (b). Then duplicate transitions
are merged (c), and simple sequences are collapsed (d).

5 Analyzing the Interaction of oWFNs

5.1 The Tool Fiona

Fiona4 is a tool to automatically analyze the interactional behavior of a given
oWFN N . Fiona provides two techniques: it checks for the controllability of
N , and it calculates the operating guideline for N . Fiona uses oWFNs as its
input which is the output of BPEL2oWFN. Thus we can easily analyze BPEL
processes.

Depending on the goal the user wants to achieve (controllability analysis or
calculation of the operating guideline) the tool either builds up the interaction
graph or the operating guideline. Fiona computes the nodes and the events of
the respective graph as described in Sect. 2. To compute the states of the graph
nodes we use efficient algorithms that were implemented in the model checking
tool LoLA [16].

To find a controller in the computed graph (IG or OG), each of its nodes is
analyzed. The analysis is done while the graph is constructed. It is a backward
analysis starting at the leaf nodes. The analysis makes use of colors: black nodes
are yet to be analyzed, blue nodes denote nodes of the controller and red nodes
are not part of the controller. Initially, each node is colored black. If we have
calculated a leaf node of the graph which contains only such deadlocks that
are final markings, we color this node blue. If a leaf contains further deadlocks,
it is colored red (since every such deadlock is not resolved). An internal node
becomes blue if there exists for each deadlock (which is no final marking) an
activated event leading to a blue node again. If this is not the case, the node
becomes red. In case of building the OG, the analysis additionally computes the
Boolean annotation of the node. Finally, each node has been colored either blue
or red. The graph contains a controller iff the root node is blue. The controller is
constituted by the largest connected blue subgraph that contains the root node.

4 available at http://www.informatik.hu-berlin.de/top/tools4bpel/fiona

27

Fiona implements several optimizations: for instance, the red color of a node
can sometimes be concluded before all of its successors are known. For such a
node, we do not need to compute the remaining successors, since they cannot
be part of the controller later on. Furthermore, not all states in a node must be
stored to compute the successors – these states are rejected.

5.2 Analyzing the Online Shop Model

We now want to analyze our online shop example from Sect. 3. Firstly, we
use Fiona to calculate the IG of the corresponding oWFN which we got from
Sect. 4.3. The IG consists of 16 nodes and 19 edges. A blue subgraph can be
found that has 8 nodes and 8 edges, containing the root node. Thus this subgraph
constitutes a controller and the online shop is controllable.

The controller found reflects the intended behavior of a customer. First he
sends a login, followed by an order. Then he must be able to either receive an
invoice (in case he is known to the shop) or to receive the confirmation (in case
he is a new customer). If he actually has received the confirmation, he must send
a terms of payment message. After that he will receive the invoice. In either case
he finally receives the delivery information. At any time he may abort. We did
not depict the IG due to the lack of space and because it can be found as a
subgraph in the corresponding OG. The latter has 12 nodes and 15 edges and is
depicted in Fig. 9(a). Compared to the IG, the OG contains more interleavings
of sending or receiving messages. For instance, a customer may reverse the order
of sending the login and the order message.

6 The Online Shop Revised

Let us take a look at the online shop presented in Sect. 3 once again. The shop
now modifies its business strategy: every known customer that orders something
can choose a gift. The modified online shop is depicted in Fig. 8.

The changes only affect the left branch of the switch. The shop initiates two
tasks concurrently now: in the first task (left sequence) the shop first receives the
order and then confirms it. In the second task (right sequence) the shop receives
which gift is chosen before it sends the invoice to the customer. The rest of the
process is as in Fig. 5.

The analysis with Fiona reflects that this simple change has a crucial effect
on the behavior of the process. The IG of the revised online shop has 32 nodes
and 40 edges. The corresponding controller inside the IG consists of 6 nodes
and 5 edges which is less than the original controller of Sect. 5.2. Our algorithm
concludes that the process is controllable, too. However, the reflected strategy is
not the intended one. The controller in the IG represents a customer who sends
an abort message during the interaction.

The IG represents only one customer’s behavior. For further information we
need Fiona to calculate the OG. It is depicted in Fig. 9(b) and consists of 7
nodes and 7 edges. A closer look at the OG reveals that actually every customer

28

new customerknown customer

login

confirm

order

sequence

invoice

terms

sequence

deliver

flow

switch

sequence

abort

sequence

eventHandlers

Stop

process

confirm

order

sequence

invoice

gift

sequence

flow

Fig. 8. The modified online shop.

of the modified shop must eventually send an abort message. This surely means
that the process is controllable. However, the way this is done is obviously a not
intended one. There is no way that a customer can get what he has ordered from
the process.

Let us take a look at what went wrong when we modified our online shop from
Sect. 3. We can see that the shop does not communicate its inner decision about
which branch (known customer, new customer) is chosen. In the original online
shop (Fig. 5) the controller must send an order, but receives either an invoice or
a confirmation w. r. t. which branch the shop has chosen before. That way the
controller knows what branch the shop is actually in and hence knows how to
continue. In contrast, in the modified shop the controller must send an order and
receives undistinguishable confirmation messages in either case. The modified
shop expects a choice of a gift in case it decided for the known customer branch.
In the other case it expects the terms of payment. The controller, however,
does not know about the decision of the shop. That means, it does not know
what message to send. This is reflected by the OG of the new shop as well (see
Fig. 9(b)): in the situation where a partner receives the confirmation he does
not know whether the shop decided for the left or the right branch. Hence, he
can choose either to send a gift choice or the terms of payment. In either case
it is not guaranteed that the message will always be consumed, and therefore it
should not be sent in the first place. However, sending an abort is always correct.

This simple example shows that even a small modification of a process may
result in an unintended interactional behavior. The effect on the interactional
behavior of a BPEL process is not obvious. Since this is not obvious even for
small processes as in our shop example, it is even more challenging for BPEL
processes of realistic size. In general, processes may have a complex structure
that it is not possible to detect such erroneous structures in the BPEL process

29

!abort ∨ !login ∨ !order

true

!abort

!order

 !login

!login

 !order

true

(?invoice ∨?deliver) ∧(?confirm)

!order

?invoice

?deliver?deliver

?invoice

!abort ∨ !terms

?confirm

true

 ?invoice

?deliver

?deliver

?deliver ∨?invoice

?deliver ?invoice?deliver

 !abort !terms

 !login

(a)

!abort ∨ !login ∨ !order

true

!abort

 !order

 !login

!login

 !order

?confirm

 !order

!abort

 ?confirm

true

 !abort

 !login

(b)

Fig. 9. Operating guidelines (a) of the original online shop of Fig. 5 and (b) of the
modified shop of Fig. 8. The OG in (a) characterizes different intended customers of
the original shop, whereas the OG in (b) documents that there is only one possible
way to interact with the modified shop: to abort.

manually. With the help of the operating guideline we can see if there exists
a controller that interacts with our process as we have expected it during the
process design.

7 Related Work

Several groups have proposed formal semantics for BPEL. Among them, there
are semantics based on finite state machines [17, 18], the process algebra Lo-
tos [19], abstract state machines [20, 21], and Petri nets [22, 7]. The group of van
der Aalst also follows a Petri net-based approach [22]. Their semantics, however,
does not cover the communication of BPEL. It enables several analysis meth-
ods including the detection of unreachable activities and BPEL standard faults
like “conflicting receive” (two concurrent receive activities are waiting for the
same input message). Further, it is possible to perform a reachability analysis
for the garbage collection of unconsumable messages later on. Those methods
are implemented in the tool WofBPEL [23].

30

In [24] BPEL processes are transformed into an annotated subset of oWFNs,
BPEL annotated Petri nets (BPNs). The transformation is oriented on a mod-
ified version of our semantics [7], which does not include most of the fault and
compensation handling. For BPNs a technique for analyzing the controllability
has already been introduced in [14] – the communication graph. It is similar
to our proposed IG. As a main difference, this graph performs communication
steps, where each step consists of a (possibly empty) sending phase followed by
a (possibly empty) receiving phase. Therefore, the communication graph tends
to be more complex than our IG (cf. [4]).

8 Conclusion and Further Work

We presented a framework to formally analyze the interactional behavior of
BPEL processes. Both the translation from BPEL into compact Petri net models
as well as the further analysis of controllability and the computation of the
operating guideline are implemented which allows for a fully-automatic analysis.
The results show that we can detect non-trivial model flaws of interacting BPEL
processes that would have been hard or impossible to find manually.

In the current translation approach we use static analysis to compact the
generated model only. However, it is possible to check certain properties stat-
ically, i. e. without generating a model at all. In future work we want to use
control flow analysis to detect unreachable (thus dead) activities or other design
flaws. To further support this analysis, we have to add data aspects to our model
and replace non-determinism by data-driven decisions.

To analyze interactions consisting of more than two interacting processes,
existing theoretical results have to be integrated into Fiona. In addition, algo-
rithms to decide controllability and to compute the operating guidelines of cyclic
oWFNs have to be established to complete the analysis spectrum.

To support the redesign of erroneous (e. g. not controllable) services, the
analysis results (e. g. counter-examples) have to be translated back into BPEL
source code. This will be extremely helpful to support process designers during
the modelling.

Finally, our tool Fiona is not restricted to analyze BPEL processes only. Since
Fiona uses oWFNs as its input we have a very general formalism at hand that
can be used to model various kinds of interacting processes. Therefore Fiona
can, for instance, also be used to analyze interorganizational workflow as well.

References

1. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-Services: A Look Behind the
Curtain. In: PODS ’03, New York, USA, ACM Press (2003) 1–14

2. Papazoglou, M.P.: Agent-Oriented Technology in Support of E-Business. Commu-
nications of the ACM 44(4) (2001) 71–77

3. Andrews, T., et al.: Business Process Execution Language for Web Services, Ver-
sion 1.1. Technical report, BEA, IBM, Microsoft (2003)

31

4. Weinberg, D.: Reduction Rules for Interaction Graphs. Technical Report 198,
Humboldt-Universität zu Berlin (2006)

5. Massuthe, P., Schmidt, K.: Operating Guidelines – An Automata-Theoretic Foun-
dation for Service-Oriented Architectures. In: QSIC 2005, Melbourne, Australia,
IEEE Computer Society (2005) 452–457

6. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. AMCT 1(3) (2005) 35–43 To appear.

7. Stahl, C.: A Petri Net Semantics for BPEL. Techn. Report 188, Humboldt-
Universität zu Berlin (2005)

8. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri Nets. In: BPM 2005.
Volume 3649 of LNCS., Nancy, France, Springer-Verlag (2005) 220–235

9. Schmidt, K.: Controllability of Open Workflow Nets. In: EMISA. LNI, Bonner
Köllen Verlag (2005) 236–249

10. Aalst, W.: The Application of Petri Nets to Workflow Management. Journal of
Circuits, Systems and Computers 8(1) (1998) 21–66

11. Ramadge, P., Wonham, W.: Supervisory Control of a Class of Discrete Event
Processes. SIAM J. Control and Optimization 25(1) (1987) 206–230

12. Badouel, E., Darondeau, P.: Theory of Regions. In: Lectures on Petri Nets I: Basic
Models. Volume 1491 of Lecture Notes in Computer Science. (1998) 529–586

13. Massuthe, P., Schmidt, K.: Operating Guidelines – An Automata-Theoretic Foun-
dation for Service-Oriented Architectures. to appear (2006)

14. Martens, A.: Verteilte Geschäftsprozesse – Modellierung und Verifikation mit Hilfe
von Web Services. PhD thesis, Humboldt-Universität zu Berlin (2004)

15. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. 2nd edn.
Springer-Verlag (2005)

16. Schmidt, K.: LoLA: A Low Level Analyser. In: ICATPN 2000. Number 1825 in
LNCS, Springer-Verlag (2000) 465–474

17. Arias-Fisteus, J., Fernández, L.S., Kloos, C.D.: Formal Verification of BPEL4WS
Business Collaborations. In: EC-Web’04. Volume 3182 of LNCS., Springer (2004)
76–85

18. Fu, X., Bultan, T., Su, J.: Analysis of Interacting BPEL Web Services. In:
WWW ’04, ACM Press (2004) 621–630

19. Ferrara, A.: Web Services: A Process Algebra Approach. In: ICSOC, ACM (2004)
242–251

20. Fahland, D., Reisig, W.: ASM-based Semantics for BPEL: The Negative Control
Flow. In: ASM’05, Paris XII (2005) 131–151

21. Farahbod, R., Glässer, U., Vajihollahi, M.: Specification and Validation of the
Business Process Execution Language for Web Services. In: ASM. Volume 3052 of
LNCS., Springer (2004) 78–94

22. Ouyang, C., Verbeek, E., van der Aalst, W.M., Breutel, S., Dumas, M., ter Hofst-
ede, A.H.: Formal Semantics and Analysis of Control Flow in WS-BPEL. Technical
report (revised version), Queensland University of Technology (2005)

23. Ouyang, C., Verbeek, E., Aalst, W., Breutel, S., Dumas, M., ter Hofstede, A.:
WofBPEL: A Tool for Automated Analysis of BPEL Processes. In: ICSOC 2005.
Volume 3826 of LNCS., Amsterdam, The Netherlands (2005) 484–489

24. Martens, A., Moser, S., Gerhardt, A., Funk, K.: Analyzing Compatibility of BPEL
Processes – Towards a Business Process Analysis Framework in IBM’s Business
Integration Tools. In: ICIW’06, IEEE Computer Society Press (2006)

32

