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Abstract

This paper describes how low-level statistical vi-
sual features can be analyzed in our content-based
image retrieval system named PicSOM. The low-
level visual features used in the system are all sta-
tistical by nature. They include average color, color
moments, contrast-type textural feature, and edge
histogram and Fourier transform based shape fea-
tures. Other features can be added easily. A gen-
uine characteristic of the PicSOM system is to use
relevance feedback from the human user’s actions
to direct the system in scoring the relevance of par-
ticular features in the present query. While the link
from features to semantic concepts remains an open
problem, it is possible to relate low-level features to
subjective image similarity, as perceived instanta-
neously by human users. The efficient implementa-
tion of PicSOM allows tests using statistically suffi-
ciently large and representative databases of natural
images.
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1 Introduction
The structure and statistics of natural scenes

has an essential influence on visual system design.
First, it helps to understand the biological visual
systems, that by necessity have adapted over evo-
lutionary time scales to the real visual environment.
For instance, it was shown by Atick and Redlich [1]
how the statistics of images helps in predicting the
properties of ganglion cell receptive fields. Second,
natural image statistics have to be taken into ac-
count when designing imaging systems, like visual
displays and compression codes that optimize sub-
jective human evaluation criteria [2].

Yet a third field of research that is centrally af-
fected by natural image statistics is computer vi-
sion, especially semi-automatic or interactive ap-
plications in which the results of computerized pro-
cessing are used by humans. An emerging research
topic in interactive computer vision is content-
based image retrieval (CBIR) from image databases
that are unannotated, i.e. no textual explanations
are provided for the images. This is a wide and ver-
satile field of research whose popularity is largely
due to increasing computation power and the avail-
ability of huge image databases in the World Wide
Web.

Depending on the domain of interest, the
database in question, and the amount of a priori in-
formation available on the images, the CBIR prob-
lem exhibits a varying degree of difficulty. A rather
simple CBIR problem occurs when the database in
question consists of images of a strongly restricted
domain. For example, a widely-studied applica-
tion of this complexity is retrieval of trademark
images, mainly based on different shape features
as the lack of background enables automatic seg-
mentation of the trademark images. The results of
applying CBIR in such a setting have been rather
good.

In the other extreme lies the problem of retriev-
ing relevant images from large and dynamic collec-
tions of miscellaneous images. One massive exam-
ple of such a challenging domain is indexing the im-
ages contained in the World Wide Web. The basic
problem in CBIR is the gap between the high-level
semantic concepts used by humans to understand
image content and the low-level visual features ex-
tracted from images and used by a computer to in-
dex the images in a database. Good overall reviews
of CBIR include [3, 4, 5].

This paper describes how low-level visual fea-
tures are being used in our content-based image
retrieval system named PicSOM [6]. Low-level vi-



sual features used in the system are all statistical
by nature. They include average color, color mo-
ments, contrast-type textural feature, and edge his-
togram and Fourier transform based shape features.
A genuine characteristic of the PicSOM system is
to use relevance feedback from the user’s actions to
direct the system in scoring the relevance of partic-
ular features in the present query. While the link
from features to semantic concepts remains an open
problem, it is possible to relate low-level features to
subjective image similarity, as perceived instanta-
neously by human users.

In the sequel, Section 2 addresses what are low-
level visual features and gives some examples how
they can be extracted from images. The rele-
vance feedback techniques in the CBIR domain are
addressed in Section 3, while Section 4 discusses
feature-based image comparisons. The PicSOM
system and its use for content-based retrieval of im-
ages is shortly described in Section 5. Concluding
remarks are drawn and future directions addressed
in Section 6.

2 Low-Level Visual Features
Feature extraction in databases that contain

miscellaneous images, i.e. images that do not por-
tray any specific topic but come from various
sources and are without any common theme, is very
difficult. Segmentation of an object out from the
background is not possible as there generally is no
particular object in the image. Therefore, segmen-
tation is in such a case of very limited use as a stage
preceding feature extraction.

The images thus need to be described as a whole
and one should devise feature extraction schemes
that do not require segmentation. This restriction
excludes a vast number of well-known feature ex-
traction techniques: all boundary-based methods
and many area-based methods.

What is left are basic pixel-value-based statis-
tics, possibly combined with edge detection tech-
niques, that reflect the properties of the human
visual system in discriminating between image
patches. Such features are usable even when the im-
ages are not segmented beforehand. As the images
are stationary, no dynamic features can be used.

The basic static features can be categorized in
at least three groups, namely color features (two of
which will be addressed in Sections 2.1 and 2.2),
texture features (Section 2.3), and shape features
(Sections 2.4-2.8). Experiments performed with
the above-described features in the PicSOM system
have been described in detail in [7, 8].

Invariance to specific transforms is an issue of
interest in feature extraction. Feature extraction
methods that are global in their nature or per-
form averaging over the whole image area are often
inherently translation invariant. If the averaging
is performed after the image area is first divided

in separate zones, the degree of translation invari-
ance can be controlled by the number and layout
of the zones. Other types of invariance, e.g. in-
variance to scaling, rotation, and occlusion, can be
obtained with some feature extraction schemes by
using proper transformations. Whether these forms
of invariance are at all beneficial is task-dependent
and in the case of a general image database, they
should be exploited with care [8].

2.1 Average Color

Average color feature is in PicSOM system ob-
tained by calculating average R-, G- and B-values
in five separate zones of the image. The resulting
15-dimensional feature vector thus describes the av-
erage color of the image and gives rough informa-
tion on the spatial color composition. The image
zones are depicted in Figure 1.
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Figure 1: Five image zones used for low-level visual
feature extraction in the PicSOM system.

2.2 Color Moments

Color moments were introduced in [9]. The color
moment features are computed by treating the color
values in different color channels in each of the five
zones of Figure 1 as separate probability distribu-
tions. The first three moments (mean, variance,
and skewness) are then calculated from each color
channel. This results in a 3 × 3 × 5 = 45 dimen-
sional feature vector. Due to the varying dynamic
ranges, the feature components are normalized to
zero mean and unit variance.

2.3 Texture Neighborhood

Texture neighborhood feature in PicSOM is also
calculated in the same five zones. The Y-values
(luminance) of the YIQ color representation of ev-
ery pixel’s 8-neighborhood are examined and the
estimated probabilities for each neighbor being
brighter than the center pixel are used as features.
When combined, this results in one 40-dimensional
feature vector.

2.4 Histogram of Edge Directions

Low-level shape-based features can be formed
from the edges in the image. A histogram of edge
directions is translation invariant and it captures



the general shape information in the image. Be-
cause the feature is local, it is robust to partial
occlusion and local disturbance in the image.

The edge image in PicSOM is formed by con-
volving the intensity and saturation channels of the
image with the eight Sobel operators. The result-
ing gradient images are next thresholded to binary
images by a proper value for each channel. The
threshold values are manually fixed to certain lev-
els which are the same for all images. The bina-
rized intensity and saturation gradient images are
combined by the logical OR operation in which the
direction of the larger gradient value is chosen. Fi-
nally the 8-dimensional edge histograms are calcu-
lated by counting the edge pixels in each direction
and normalizing with the total number of pixels.

2.5 Co-occurrence of Edge Directions

The edge histogram can yet be generalized. By
taking every 8-neighboring edge pixel pair and enu-
merating them based on their directions a two-
dimensional histogram or co-occurrence matrix is
obtained. The resulting 64-dimensional histogram
is normalized by the number of pixels in the image.
Hence, the resulting values indicate the proportion
of neighboring edge pixel pairs oriented in the spec-
ified directions.

2.6 Fourier Features

The edge image contains the most relevant shape
information and the discrete Fourier transform can
be used to describe it. Before forming the edge im-
age, the image area is normalized to a maximum
size of 512 × 512 so that the aspect ratio is main-
tained. After edge detection, the Fourier trans-
form is computed for the normalized image using
the FFT algorithm. The magnitude image of the
Fourier spectrum is first low-pass filtered and there-
after decimated so that the resulting number of di-
mensions in the feature vectors is 128.

2.7 Polar Fourier Features

The Fourier features described above are trans-
lation invariant but not rotation invariant. Our
method, which is named as polar Fourier features, is
rotation invariant with respect to the center of the
image but not invariant to translation and scale.

At first the image is normalized and the edge
image is obtained similarly as with the Fourier fea-
tures. The binary edge image is then transformed
to the polar coordinates by using a procedure that
prevents the formation of gaps between the edge
pixels in the polar coordinate system.

For the polar image the Fourier transform and
decimation are performed similarly as with the
Fourier features and a 128-dimensional feature vec-
tor is obtained. The method is invariant to trans-
lation in the polar plane, and therefore rotation in-
variant with respect to the center of the image and
translation invariant along the radius from the cen-
ter.

2.8 Log–Polar Fourier Features

Even more invariances can be obtained by a
slight modification to the feature. Log–polar
Fourier features are invariant to affine transfor-
mations, i.e. to translation, rotation and scaling.
Translation invariance is obtained by setting the
centroid to the center of mass of the binary edge
image. Rotation invariance is obtained by using
the magnitude spectrum of the log–polar transform.
Accordingly, the invariance for scale is obtained by
taking logarithm of the radius in the polar coordi-
nate plane.

All the Fourier-based features presented here are
sensitive to occlusion: the direct use of the Fourier
transform may lead to very different magnitude
spectra for occluded images. In addition, if some
parts of an image are missing, the calculation of
the centroid will go wrong and significantly differ-
ing log–polar images will result.

3 Relevance Feedback in CBIR
Query by pictorial example (QBPE) is a com-

mon retrieval paradigm in content-based image re-
trieval applications [10]. With QBPE, the queries
are based on example images shown either from the
database itself or some external location. The user
classifies these example images as relevant or non-
relevant to the current retrieval task and the system
uses this information to select such images the user
is most likely to be interested in.

As image retrieval cannot be based on matching
the user’s query with the images in the database
on an abstract conceptual level, lower-level picto-
rial features need to be used. This changes the role
of the human using the system from a requester
to a mere selector who indicates the appropriate-
ness of the offered images. The appropriateness of
the images selected by the system implicitly reflects
also the relevance of the system’s low-level features
from the user’s point of view. As a retrieval system
is usually not capable of giving the wanted images
in its first response to the user, the image query be-
comes an iterative and interactive process towards
the desired image or images.

The iterative and automatic refinement of a
query is known as relevance feedback in information
retrieval literature [11]. Relevance feedback can be
seen as a form of supervised or reinforcement learn-
ing to adjust the subsequent queries using the in-
formation gathered from the user’s feedback. This
helps the system in the following rounds of the re-
trieval process to better approximate the present
need of the user.

4 Comparing Images in CBIR
A CBIR system is typically implemented with

prototype-based statistical methods. This means
that each image in the database is transformed with
a set of different feature extraction methods to a set



of lower-dimensional feature vectors, or prototypes,
in respective feature spaces. When the system tries
to find images which are similar to the positive-
marked images shown previously, it searches for im-
ages whose distance to the positive images in some
sense is minimal in any or all of the feature spaces.
The distances between prototypes in the feature
spaces can be defined in a multitude of ways, the
Euclidean distance being the one used most.

Figure 2 illustrates this idea. Each feature repre-
sentation can be used separately for finding a set of
image candidates. These per-feature subsets should
then be combined in a larger set of images which
will be processed in a more exhaustive manner. De-
pending on the sizes of the subsets either all images
in them or, for example, only those which are in-
cluded in more than one of them, can be taken in
the combined set. Nevertheless, in the final selec-
tion process there will be a substantially smaller
number of images than the whole database. This
enables to use computationally more demanding
techniques for selecting among them.
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Figure 2: The stages of image selection in CBIR.

In selecting the image subsets in huge databases,
vector quantization is a highly useful technique.
The feature vectors representing the images are
divided in subsets or quantization bins in which
the vectors and thus the corresponding images re-
semble each other. Those unseen images which
have fallen into the same quantization bins as the
positive-marked shown images are then good can-
didates for the next images to be displayed to the
user. One may also want to calculate the exact dis-
tance between the prototypes. In that case quanti-
zation serves as an effective method for pruning the
database before exhaustive search.

5 The PicSOM System
This section presents a short description of our

PicSOM retrieval system. A more detailed descrip-
tion of the system and results of experiments per-
formed with it can be found in [6]. The PicSOM
image retrieval system is a framework for generic re-
search on feature extraction, algorithms, and meth-
ods for content-based image retrieval.

The Self-Organizing Map (SOM) [12] is a neu-
rally motivated unsupervised learning technique
which has been used in many data analysis tasks.

A unique feature of the Self-Organizing Map is
its ability to form a nonlinear mapping of a
high-dimensional input space to a typically two-
dimensional grid of artificial neural units. During
the training phase of a SOM, the weight vectors
of its neurons get values which form a topographic
or topology-preserving mapping. As a result, fea-
ture vectors that reside near each other in the input
space are mapped to nearby map units in the map
layer. Images that are mutually similar in respect
to the given feature extraction scheme are thus lo-
cated near each other on the SOM.

PicSOM supports multiple parallel features,
which in the present implementation are color, tex-
ture, and shape. With a technique introduced in
the PicSOM system, the responses from the parallel
SOMs are combined automatically. This question
will be elaborated in detail in Section 5.3.

5.1 Forming the Image Maps

The PicSOM system uses a special form of the
SOM, namely Tree Structured Self-Organizing Map
(TS-SOM) [13, 14], which incorporates a hierarchi-
cal view in the database. The training of each TS-
SOM starts from its top level. When the top-most
level has been trained, it is frozen and the training
of the second level is started. Once a SOM level
has finished learning, all the data vectors in the
training set are mapped to that SOM, each into
the SOM unit which is nearest to it. Every map
unit is in turn associated with that image among
those mapped into it which is nearest to it.

The map units are thus given visual labels which
can be used to represent all the images mapped
in that particular map node. The image labels of
a 16 × 16 SOM trained with average color as the
feature are shown in Figure 3. In this experiment,
the size of the image database was about 60.000.
From the SOM surface, the topological ordering of
the label images based on their color content can be
observed: reddish images are located in the upper
left corner of the map and the overall color changes
gradually to blue when moving diagonally towards
the bottom right corner. On the other hand, light
images are situated in the bottom left corner and
dark images in the opposite position in the upper
right corner of the map.

5.2 Operation of PicSOM

The operation of PicSOM image retrieval is as
follows: 1) An interested user connects to the
WWW server providing the search engine with
her web browser. 2) The system presents a list
of databases available to that particular user. 3)
When the user has selected the database the system
presents a list of available features in that database.
4) After the user has selected the features, the sys-
tem presents an initial set of tentative images scaled
to a small “thumbnail” size. The user selects the
subset of these images which best matches her ex-



Figure 3: The surface of the 16 × 16-sized SOM
formed with the average RGB color feature.

pectations and to some degree of relevance fits to
her purposes. Then she hits the “Continue Query”
button in her browser, which sends the information
on the selected images back to the search engine.
5) Based on this data, the system then presents
the user a new set of images along with the images
selected so far and the query iteration is continued.

5.3 Combining the Maps

A novel technique introduced in the PicSOM sys-
tem implements relevance feedback and simultane-
ously facilitates automatic combination of the re-
sponses from multiple Tree Structured SOMs and
all their hierarchical levels. This mechanism aims
at autonomous adaptation to the user’s behavior in
selecting which images resemble each other in the
particular sense the user seems to be interested in.

Both the positive and negative images, i.e. im-
ages selected and not selected, respectively, by the
user, are located on each level of every TS-SOM in
use. The map units are scored with a fixed posi-
tive value for each positive image mapped in them.
Likewise, negative images contribute negative val-
ues. These values are then normalized so that the
sum of all the positive and negative terms on the
map equals zero. What thus results is a set of map
surface images whose sizes match the number of
map units in the two-dimensional SOM grid of the
particular TS-SOM level, see Figure 4.

Each TS-SOM uses different feature extraction
(color, texture, or shape) and therefore the spread-
ing of the positive and negative values is different
in every SOM. While some feature extractions may
spread the responses evenly all over the map sur-
face, other features may cluster the positive, i.e.
relevant responses densely in one area of the map.
The latter situation can be interpreted as being an
indication on the good performance of those partic-
ular features in the current query. The denser the
positive responses are, the better the feature coin-

cides in that specific area of the feature space with
the user’s perception on image relevance.

Now, all the three factors, namely 1) the degree
of the separation of the positive and negative im-
ages on the SOM, 2) the relative denseness of the
positive images, and 3) the similarity of images in
neighboring map units, can be accounted for in a
single action. This joint action is low-pass filter-
ing of response values on the two-dimensional map
surfaces. Strong positive values from dense relevant
responses get expanded to neighboring SOM units,
whereas weak positive and negative values in the
map areas where the responses are sparse cancel
each other out. What follows in the low-pass filter-
ing is the polarization of the entire map surface in
areas of positive and negative cumulative relevance.
In practice the filtering has been implemented by
convolving the map image with a Gaussian-shaped
mask whose size is approximately one fifth of the
width of the corresponding TS-SOM level. The im-
ages used as labels for the SOM units which have
the strongest positive relevance value after the low-
pass filtering are then obvious candidates for the
next images to be shown to the user. Figure 4 il-
lustrates how the positive and negative responses,
displayed with white and black colors, respectively,
are first mapped on three levels of a TS-SOM and
how the responses are expanded in the convolution.

5.4 Separation of Image Classes

One may also be interested in how sets of im-
ages that are known to be similar to each other
in some respect are mapped on the SOM surfaces.
This kind of inspection reveals the feature extrac-
tion method’s capability to map similar images near
each other in the feature space and, further, the
SOM training algorithm’s ability to preserve the
spatial ordering of the feature space. Figure 5 gives
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Figure 4: An example showing how the levels of a
TS-SOM, on which the images selected and rejected
by the user are shown with white and black marks,
respectively, are convolved with low-pass filters.
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Figure 5: Mappings of different image classes
(shown in columns) on the lowest-level SOMs of
different features (show in rows). The distributions
have been low-pass filtered to ease inspection.

an example. Each of the three columns represents
one of three hand-picked image classes, cars, faces,
or planes, respectively. The rows correspond to
three different feature extraction methods, average
color, shape histogram, and shape FFT. It can be
seen that the average color feature is able to clus-
ter only the images in the planes class whereas the
cars and faces classes are widely distributed. On
the other hand, shape histogram feature clusters all
three classes well, but the cars and planes classes
are somewhat overlapping on the left side of the
maps. Finally, shape FFT feature does not make
as tight clusters as shape histogram does, but sep-
arates the cars and planes classes better.

6 Discussion

We have shown in this paper that it is pos-
sible to extract powerful and representative low-
level visual features from natural images, for which
a preceding segmentation stage is not applicable.
When such feature representations are clustered us-
ing Self-Organizing Maps, the topological ordering
reflects well the mutual similarity of the images as
given by subjective human judgement.

In general, it cannot be known beforehand what
features are meaningful in a particular content-
based image query. To answer this problem, the
PicSOM system implements a novel automatic
technique for incorporating a large number of par-
allel features and for selecting new images by rele-
vance feedback from the user. In this way, the Pic-
SOM system can be used for extensive testing of
the relevance of statistical features with very large
image databases.
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