
Analyzing manuscript traditions using
constraint-based data mining

Tara Andrews1 and Hendrik Blockeel2 and Bart Bogaerts2 and Maurice Bruynooghe2

and Marc Denecker2 and Stef De Pooter2 and Caroline Macé1 and Jan Ramon2

Abstract. Data mining tasks and algorithms are often cat-
egorized as belonging to one of a few specific types: cluster-
ing, association rule discovery, probabilistic modeling, etc. For
some time now, it has been recognized that concrete tasks
do not always fit nicely in this categorization. The concepts
of constraint-based data mining and inductive querying have
been proposed to alleviate this problem; they offer more flex-
ibility with respect to specifying the task. In this paper, we
illustrate an approach that goes one step further: we show
how a general-purpose declarative modeling language can be
used to specify and solve data mining tasks in the area of
philology. These tasks have the following properties: they are
easily described in words; they are of real interest to philol-
ogists; they cannot be performed using standard querying
or data mining systems; manually programming a solution
for them is challenging, time-consuming and error-prone. We
show that a prototype declarative programming framework,
IDP, allows for easy modeling and efficient solving of these
tasks. We conclude from this case study that the declarative
modeling approach to data mining has a large potential and
deserves further investigation.

1 Introduction

In data mining, many standard types of techniques exist, such
as association rule discovery, decision tree induction, proba-
bilistic modeling, clustering, etc. Once the data have been
preprocessed into a format ready for analysis, these standard
techniques can be run by simply “pushing the button”, possi-
bly after setting a few parameters. However, these techniques
do not always produce exactly the type of results that the
user wants. The term “constraint-based data mining” is often
used to refer to data mining approaches where the user can
impose constraints on the patterns he is looking for. For in-
stance, association rule discovery algorithms may return only
rules that fulfill certain syntactical constraints; clustering al-
gorithms may accept must-link and cannot-link constraints
that impose certain conditions on the returned clustering, etc.
By allowing the user to specify such constraints, the data min-
ing techniques become much more flexible: the user can tune
them towards his own interests.

Instead of simply restricting the patterns returned by a
standard data mining system, constraints may more generally
be used to express background knowledge about the domain,

1 KU Leuven, Faculty of Arts
2 KU Leuven, Department of Computer Science

or define the task one wants to solve. Nijssen and Guns [9],
for instance, have shown that the classical task of frequent
pattern discovery, possibly with constraints imposed on these
patterns, can be defined completely as a constraint solving
problem, and solved efficiently using a general-purpose solver.
This shows that redefining classical data mining tasks in terms
of constraints, and using a standard solver, can add a lot of
versatility to the data mining process (users can define more
precisely what they want), at a low efficiency cost.

Taking this one step further, one may try to find a single
declarative language in which practically any data mining task
could be defined, and solved efficiently, removing the need for
many specialized systems. Even data mining tasks that do
not belong to one of the predefined categories can then be
solved quite easily. This approach is very similar to what is
sometimes called “inductive querying” or “query-based data
mining”, but is more flexible in the sense that some data
mining task descriptions may be too complicated to easily fit
into a query, and more suitable for the more modular type of
description that programming languages offer.

In this paper, we describe an approach where a declarative
modeling language, FO(·)IDP, is used to describe the data, the
background knowledge, and the data mining task. The appli-
cation of interest is situated in the area of stemmatology, a
sub-field of philology in which the history of manuscript tradi-
tions is studied. The mining tasks are motivated by real ques-
tions from philologists. The framework we use is called IDP.
It provides seamless integration of FO(·)IDP with a procedu-
ral language that can be used for reading files, preprocessing
data, formatting the output, and calling the solver.

The remainder of this paper is structured as follows. Section
2 describes the application domain, stemmatology, in some
more detail. Section 3 describes the IDP framework. In Sec-
tion 4 we discuss several data mining tasks that are relevant
for stemmatologists, and show how they can be solved using
IDP. Section 5 presents conclusions.

2 Stemmatology

Before the invention of the printing press, texts were copied
manually by scribes. This copying process was not perfect:
scribes often modified texts, accidentally or intentionally. As
a result, for many old texts the surviving copies vary signif-
icantly. No text written before the invention of the printing
press, and even up to the end of the 18th century, when the
habit of circulating texts in manuscript form practically dis-

appeared, can be read without a preliminary critical analysis
of its material witnesses. This is the purpose of stemmatol-
ogy. The Oxford English Dictionary defines the field as “the
branch of study concerned with analysing the relationship of
surviving variant versions of a text to each other, especially
so as to reconstruct a lost original.”

A stemma is a kind of “family tree” of a set of manuscripts.
It indicates which manuscripts have been copied from which
other manuscripts (“parents”), and which manuscript is the
original source. It may include both extant (currently ex-
isting and available) and non-extant (“lost” or conjectured)
manuscripts. Although stemmata are often assumed to be
tree-shaped, they need not be. Sometimes, a manuscript has
been copied partially from one manuscript, and partially from
another, so it has multiple parents. In general, a stemma is a
connected directed acyclic graph (DAG) [1].

The 19th century philologist Karl Lachmann was among the
first to apply a principled method for reconstructing stem-
mata from sets of manuscripts [11]. Nowadays, a variety of
methods exist. Many are borrowed from biology, where a
similar problem, reconstruction of phylogenetic trees, is well-
studied. However, these methods do not always fit the stem-
matological context well. First, they assume that phylogenies
are tree-shaped, while stemmata are DAGs.3 Second, these
trees contain only bifurcations, while stemmata can have mul-
tifurcations. Third, in most methods the trees are such that
each extant copy is at a leaf of the tree, whereas in stemmatol-
ogy one extant copy may be an ancestor of another (and hence
should be an internal node). Fourth, stemmatologists often
have additional information, for instance about the time or
place of origin of a manuscript, which ideally should be taken
into account. Research on new algorithms, better suited for
the stemmatological context, continues [2].

Apart from reconstructing stemmata from data, stemma-
tologists are also interested in other types of analyses, which
may, for instance, use a known stemma or a manually-
constructed best-guess stemma as an input. These types of
analysis have received even less attention, and they can be
very diverse. The data mining tasks we address in this paper
belong to this category. Multiple tasks will be addressed, but
before discussing them in more detail, we first introduce the
IDP framework.

3 IDP: an FO(·)IDP knowledge-based
programming environment

IDP [5] is a logic-based programming environment that ex-
tends the Lua [7] scripting language with support for con-
structing, manipulating, and performing inference with log-
ical objects such as vocabularies, theories (in the FO(·)IDP

language), structures, and terms.

3.1 FO(·)IDP

The term FO(·) is used to denote the family of extensions
of first-order logic (FO); for instance, FO(ID) is the exten-
sion of FO with inductive definitions. In this text, the focus
lies on FO(·)IDP, the FO(·) language supported by the IDP

3 Some methods return phylogenetic networks, but these represent
uncertainty about the real tree, which is different from claiming
that the network represents the actual phylogeny.

framework. FO(·)IDP extends FO with (among others) types,
arithmetic, aggregates, partial functions and inductive defini-

tions. This section focuses on what is needed for this paper;
more information on FO(·)IDP can be found in [13] and [4].

An FO(·)IDP theory is a set of typed FO sentences and in-
ductive definitions. We explain its syntax using a theory for
solving a shortest path problem, presented in Figure 1. First,
one declares a vocabulary, sp voc in the example. It con-
tains declarations of types (e.g., node), typed constants (e.g.,
from) and predicates (e.g., edge(node,node)). Next, one de-
fines a theory over some vocabulary. It contains (well-typed)
FO sentences constructed from symbols of the vocabulary and
connectors and quantifiers, including &(∧), |(∨), ∼(¬), !(∀),
?(∃) and ∼=(6=). Finally, it also contains inductive definitions,
sets of rules of the form ! x1 ...xn : (P(t1,...,tn) <- B)

where B is an FO formula. The semantics of inductive defi-
nitions is the well-founded semantics [12], as this semantics
formalizes the intended meaning of all common forms of def-
initions [6].

The theory in Figure 1 expresses that the predicate
edgeOnPath is the set of edges of a path from the node from

to the node to. The following conditions must hold for such
paths. (1) edgeOnPath is a subset of edge. (2) from and to

are the first, respectively last node and hence, have no en-
tering, respectively exiting edge in the path. (3) Each node
on the path has at most one entering and at most one exit-
ing edge in the path. Here, ?<2 y : edgeOnPath(y,x) means
that there are strictly less than 2 y’s that have an edge to x
in the path. This can be expressed also using an aggregate #{
y : edgeOnPath(y,x)} < 2 or using a sentence ! y1 y2 :

edgeOnPath(y1,x) & edgeOnPath(y2,x) => y1=y2. (4) from
can reach to using edges of the path and (5) from can reach
each node on the path (e.g., { (from,to), (c,c)} is not a
path). The predicate reaches(x,y) is defined inductively.

The model semantics of FO and FO(·)IDP is based on the
notion of structures. A structure is an assignment of values to
symbols: sets to type symbols, domain elements to constants,
relations to predicate symbols and functions to function sym-
bols. A model of a theory is an assignment that satisfies all
expressions of the theory. In many problems, structures are
useful to represent data. The structure defined in Figure 1
interprets the symbols node, edge, from and to from vocab-
ulary sp voc. Note that no value is specified for edgeOnPath,
which means that this is a partial structure of sp voc.

3.2 The IDP programming environment

Apart from vocabularies, theories and structures, the pro-
gramming environment also contains procedures and terms.
As said above, procedures are written in the language Lua
and may call a range of predefined methods operating on the
logical objects. The most relevant are the following:

• sat(<theory>,<structure>) is a boolean function that re-
turns true iff the theory is satisfied by the structure.

• modelexpand(<theory>,<structure>) takes as input a
theory over vocabulary Σ and a partial structure assigning
values to some symbols in Σ, and returns a list of models
of the theory that expand the partial structure.

• minimize(<theory>,<structure>,<term>) returns a list
of models of the theory expanding the input structure in
which the numerical term is minimal.

vocabulary sp_voc {
type node
from, to: node
edge(node,node)
edgeOnPath(node,node)
reaches(node,node)

}
theory sp_theory: sp_voc {

! x y : edgeOnPath(x,y) => edge(x,y).
~(? x : edgeOnPath(x,from)) & ~(? x : edgeOnPath(to,x)).
!x: (?<2 y: edgeOnPath(y,x)) & (?<2 y: edgeOnPath(x,y)).
{ reaches(x,y) <- edgeOnPath(x,y).

reaches(x,y) <- reaches(x,z) & reaches(z,y). }
reaches(from,to).
! x y : edgeOnPath(x,y) => reaches(from,y).

}
structure sp_struct: sp_voc {

node = {A..D} // shorthand for A,B,C,D
edge = {A,B; B,C; C,D; A,D}
from = A
to = D

}
term lengthOfPath: sp_voc {

#{ x y : edgeOnPath(x,y) }
}
procedure main() {

sols = minimize(sp_theory,sp_struct,lengthOfPath)
if sols
then print(sols[1])
else print("No models exist.\n")
end

}

Figure 1. main() finds the shortest path for the given data.

These methods are implemented with state-of-the-art tech-
nologies, such as the grounder GidL [14] and solver Min-
iSat(ID) [8]. The solver is an extended SAT solver with
support for aggregate expressions, inductive definitions and
branch-and-bound optimization. MiniSat(ID) also has sup-
port for finite domain constraints, using the propagation tech-
niques described in [10] or, alternatively, interfacing with the
Gecode Constraint Programming engine.

In Figure 1, main() performs the minimization inference
on the path theory sp theory and prints out the first model
in the list if it exists. The term to be minimized here is
called lengthOfPath and is declared as the number of pairs in
edgeOnPath. A minimal model of this term is indeed a shortest
path from A to D.

An IDP-program is a collection of declarations of vocabu-
laries, theories, structures, terms and procedures. For an in-
depth treatment of the framework, see [4].

3.3 Illustration: frequent itemset mining

Figure 2 shows how the task of frequent itemset mining can be
described in IDP. We include it only as an example of how
a classical data mining task can be defined in IDP; an in-
depth study of the use of general-purpose solvers for frequent
itemset mining is given by Nijssen and Guns [9].

The vocabulary declares two types Transaction and Item,
the threshold Freq, the predicate Includes(t,i) which ex-
presses that transaction t includes item i, and finally, the
unary predicate FrequentItemset. The theory simply ex-
presses that the number of transactions that include all items

vocabulary FrequentItemsetMiningVoc {
type Transaction
type Item
Freq: int
Includes(Transaction,Item)
FrequentItemset(Item)

}
theory FrequentItemsetMiningTh: FrequentItemsetMiningVoc {

#{t: !i: FrequentItemset(i) => Includes(t,i) } >= Freq.
}
structure Input : FrequentItemsetMiningVoc {

Freq = 7 // threshold for frequent itemsets
Transaction = { t1; ... ; tn } // n transactions
Item = {i1 ; ... ; im } // m items
Includes = {t1,i2; t1,i7; ...} // items of transactions

}

Figure 2. An IDP description of frequent itemset mining.

in FrequentItemset is at least Freq. The structure describes
the data: it specifies the threshold, all transactions and items,
and the Includes relation.

In any structure of this vocabulary that extends Input and
satisfies the theory, FrequentItemset represents a frequent
itemset. As a consequence, the task of computing all frequent
itemsets is solved by letting IDP generate all such models.

4 Data mining tasks

4.1 Formalization of the context

A tradition is a set of manuscripts that are related in a par-
ticular way (specifically, they can be considered variants of
the same text, the variation having been introduced through
imperfect manual copying). A dataset represents one tradi-
tion. Each manuscript is described by a fixed set of attributes
A1, . . . , An, each of which has a nominal domain Dom(Ai).
Typically, one attribute represents a particular location in the
text, and the different elements of its domain represent the
different variant readings at that location.

A stemma is a connected DAG G(V,E), where V con-
tains one element for each manuscript, and (v, w) ∈ E if and
only if manuscript w was (wholly or partially) copied from
manuscript v.

Given an attribute Ai, we can label nodes in G with their
value for Ai (observed or predicted). The whole labeling is
then a partial or complete function λ : V → Dom(Ai). A
labeling λ extends another labeling λ′ if and only if, whenever
λ′(v) is defined, λ(v) is also defined and λ(v) = λ′(v).

4.2 The datasets

We will evaluate the feasibility of our declarative modeling ap-
proach on five datasets (http://byzantini.st/stemmaweb/).
Three are artificial traditions, constructed with the purpose
of testing stemmatological methods; for these, the correct
stemma is known. They may be found at http://www.cs.

helsinki.fi/u/ttonteri/casc/data.html. The other two
(Sermon 158 and Florilegium) are real traditions, with stem-
mata that have been constructed according to current philo-
logical best practice. Table 1 gives an overview of the number
of manuscripts and attributes for each tradition, as well as the

number of edges in the DAG. Note that a tree with n nodes
always has n− 1 edges. Thus, three of the five stemmata are
tree-shaped; two are “almost” tree-shaped, in the sense that
they have few additional edges.

Table 1. The five traditions used in this work.

Name nodes edges attributes
Notre Besoin 13 13 44
Parzival 21 20 122
Florilegium 22 21 547
Sermon 158 34 33 270
Heinrichi 48 51 1042

4.3 Task 1: Consistency checking

New variants are introduced when a scribe, intentionally or
accidentally, changes a text. Often, a variant reading at one
particular location is complicated enough to consider it un-
likely that exactly the same reading has been introduced mul-
tiple times independently. We therefore introduce the follow-
ing terminology. A manuscript is a source for an attribute if
none of its parents have the same value for that attribute. An
attribute is consistent with a stemma if the values observed
for the attribute can be explained using only one source per
value. Formally, given a stemma G(V,E), an attribute A, and
a (partial) labeling λ indicating which nodes in V have which
value for A, A is consistent with G if and only if a complete
labeling exists that extends λ and has one source for each
value. Figure 3 illustrates these concepts.

Figure 3. Left: a partial labeling showing for a given attribute
which manuscripts have which value (indicated by colors). Right:
a complete extension of that labeling with one source per label.
Because such an extension exists, the attribute is consistent with

the stemma.

Now consider the task of checking whether a given attribute
is consistent with a given DAG. This requires searching for a
complete extension of the given labeling that has one source
per label. This problem is NP-hard [3] and does not reduce
to any problem solved by standard data mining techniques.

The problem is easily modeled in IDP, however. Figure 4
shows an IDP program that determines for each attribute
in each dataset whether it is consistent with the stemma.
The problem of checking consistency of a single attribute
with a stemma is defined under the header “Knowledge
base”. This definition is very simple: besides introducing the
vocabulary (there are manuscripts; there are variant read-
ings; manuscripts may be copied by other manuscripts; with

procedure main() {
process("besoin")
process("parzival")
process("florilegium")
process("sermon158")
process("heinrichi")

}

/* ---------- Knowledge base ------------------------- */
vocabulary V {

type Manuscript
type Variant
CopiedBy(Manuscript,Manuscript)
VariantIn(Manuscript): Variant

}
vocabulary Vsrc {

extern vocabulary V
SourceOf(Variant): Manuscript

}
theory Tsrc : Vsrc {

! x : (x ~= SourceOf(VariantIn(x))) =>
? y: CopiedBy(y,x) & VariantIn(y) = VariantIn(x).

}

/* --------- Check whether sample fits stemma -------- */
procedure check(sample) {

idpintern.setvocabulary(sample,Vsrc)
return sat(Tsrc,sample)

}

/* ---------- Procedures for processing -------------- */
procedure process(name) {

io.write("Processing ",name,".\n")
local path = "data/"
local stemmafilename = path..name..".dot"
local samplefilename = path..name..".json"
processFiles(stemmafilename,samplefilename)

}
procedure processFiles(stemmafilename,samplefilename) {

local stemma,nbnodes,nbedges = readStemma(stemmafilename)
io.write("Stemma has ",nbnodes," nodes and ",nbedges, " edges.\n")
local nbp,nbs,time = processSamples(stemma,samplefilename)
io.write("Found ",nbp," positive out of ",nbs," groupings ")
io.write("in ",time," sec.\n")

}
procedure readStemma(stemmafilename) {

... // 19 lines
}
procedure processSamples(stemma,samplefilename) {

... // 23 lines
}

Figure 4. The IDP code for checking the consistency of all the
attributes in a dataset with a hypothesized stemma for that
dataset. The .dot and .json files contain the stemma and

attribute-value-table, respectively.

each manuscripts is associated a variant; each variant has
one source, which is a manuscript), it only states that if a
manuscript is not the source of a variant, it must have a par-
ent with that same variant.

Besides this declarative specification, the IDP program con-
tains procedural code that loads the data files, builds for each
dataset and attribute a structure that represents a partially
labeled DAG, calls a solver to check the satisfiability of the
theory for this structure (sat(Tsrc, sample)), and produces
readable output. We include some of the procedural code to
illustrate the seamless integration of declarative and procedu-
ral knowledge in IDP.

The IDP program determines consistency for all attributes
and datasets in a matter of seconds:

> main()
Processing besoin.
Stemma has 13 nodes and 13 edges.
Found 26 positive out of 44 groupings in 0 sec.
Processing parzival.
Stemma has 21 nodes and 20 edges.
Found 45 positive out of 122 groupings in 1 sec.
Processing florilegium.
Stemma has 22 nodes and 21 edges.
Found 431 positive out of 547 groupings in 5 sec.
Processing sermon158.
Stemma has 34 nodes and 33 edges.
Found 64 positive out of 270 groupings in 4 sec.
Processing heinrichi.
Stemma has 48 nodes and 51 edges.
Found 1 positive out of 1042 groupings in 28 sec.
>

It is interesting to compare these results with earlier results
obtained using a procedural implementation of the consis-
tency check by one of the authors. This procedural implemen-
tation contained 370 lines of Perl code, using a graph library
as working horse, and could not be shown correct. This was
our main motivation for trying a declarative approach. Our
declarative specification is more easily verified, is solved faster
than with the Perl version, and eventually allowed us to show
that the original procedural implementation was not correct
[3]. This demonstrates the usefulness of the IDP framework
for non-traditional types of data analysis.

4.4 Task 2: Determining the minimal
number of independent sources

A remarkable result of the previous analysis was that for some
of the artificial traditions, very few attributes were consistent
with the stemma (for Heinrichi, 1 out of 1042). This indicates
that either the artificial traditions are not representative for
real traditions, or the assumption that each variant originates
only once is not realistic.

Given that inconsistent attributes occur so often, one may
wonder how often multiple introductions of the same vari-
ant must have occurred. In other words: what is the smallest
number of sources needed to explain the observations?

This question is again easily expressed in IDP, now as a
minimization problem. Figure 5 shows this. In the vocabu-
lary, the function SourceOf (which allows only one source
per label) is replaced by a predicate IsSource, which indi-
cates whether a node x is a source or not. The theory simply
defines IsSource as such; nothing else is needed. Further, a
term NbOfSources is introduced that counts the number of
sources, and a procedure is introduced that returns a model
in which the number of sources is minimal. The procedure
minimize performs model minimization, as explained before
(in this case, it finds a complete and consistent labeling with
a minimal number of sources). Apart from changing a call of
check(sample) into minSources(sample), and some output
formatting, no procedural code needs to be changed.

Figure 6 shows part of the output for the Notre Besoin
dataset. All datasets were processed in a few seconds, except
for Heinrichi, which took about 5 minutes. Adding more con-
straints may further reduce processing time, but this was not
investigated here.

/* ---------- Knowledge base ------------------------ */
vocabulary V {

type Manuscript
type Variant
CopiedBy(Manuscript,Manuscript)
VariantIn(Manuscript): Variant

}
vocabulary Vms {

extern vocabulary V
IsSource(Manuscript)

}
theory Tms : Vms {

{!x: IsSource(x) <- ~?y: CopiedBy(y,x) &
VariantIn(y)=VariantIn(x).}

}
term NbOfSources : Vms {

#{x:IsSource(x)}
}

/* --- Find model with minimal number of sources --- */

procedure minSources(sample) {
idpintern.setvocabulary(sample,Vms)
return minimize(Tms, sample, NbOfSources)[1]

}

Figure 5. IDP code for minimizing the number of sources
required to explain the data. Function SourceOf is replaced by
predicate IsSource; the term NbOfSources, which counts the

number of sources, is introduced; and a procedure is introduced
that returns a model with minimal NbOfSources.

Processing besoin.
Stemma has 13 nodes and 13 edges.
IsSource = { T2; U }
IsSource = { C; T2 }
IsSource = { D; J; L; M; T2; U; V }
... (40 output lines omitted)
IsSource = { B; F; J; T2 }
Minimized for 44 groupings in 0 sec.

Figure 6. IDP output indicating a minimal set of sources for
each attribute in Notre Besoin.

4.5 Task 3: Sources versus reversions

Up till now, we said a manuscript introduces a variant if none
of its parents have that variant. However, stemmatologists
distinguish the case where a manuscript reverts to an older
variant (which did not occur in the parents but occurs some-
where among the ancestors) from the case where it introduces
a completely new variant. It may be interesting to minimize a
cost function where sources have a higher cost than reversions.

This is again easily modeled in IDP. An inductive defini-
tion is provided for the predicate IndirectAncestor. Further,
there are now three types of nodes: sources, reversions, and
copies. This is modeled by introducing a function ClassOf

that classifies nodes as one of Source, Copy or Revert. The
theory and term-to-be-optimized are shown in Figure 7. In
this case, some more changes to the procedural code (not
shown) are required, for technical reasons beyond the scope
of this paper. A part of the output for Notre Besoin is shown
in Figure 8. Finding the model with minimal cost takes signif-
icantly longer than for the previous tasks: seconds to minutes
for the first four datasets, and about 18 hours for Heinrichi.
We currently do not know why it takes so much longer for

vocabulary Vcls {
extern vocabulary V
type Cost isa nat
type Class
Copy: Class
Revert: Class
Source: Class
ClassOf(Manuscript): Class
IndirectAncestor(Manuscript,Manuscript)

}
theory Tcls : Vcls {

!x: (ClassOf(x)=Copy) <=>
?y: CopiedBy(y,x) & VariantIn(y) = VariantIn(x).

!x: (ClassOf(x)=Revert) <=>
ClassOf(x) ~= Copy &
?y: IndirectAncestor(y,x) &

VariantIn(y) = VariantIn(x).
{!x y: IndirectAncestor(x,y) <-

?z: CopiedBy(x,z) & IndirectAncestor(z,y).
!x y: IndirectAncestor(x,y) <-

?z: CopiedBy(x,z) & CopiedBy(z,y).}
NbOfSources = #{x: ClassOf(x)=Source}.
NbOfReverts = #{x: ClassOf(x)=Revert}.

}
term TotalCost : Vcls {

3 * NbOfSources + NbOfReverts
}

Figure 7. IDP code for minimizing the cost of a labeling, where
each source has a cost of 3 and each reversion a cost of 1. The
function ClassOf indicates which of three classes a node belong
to: Source, Revert or Copy. The theory inductively defines the
IndirectAncestor predicate, and defines the conditions under

which a node has class Copy or Revert.

Processing besoin.
Stemma has 13 nodes and 13 edges.
ClassOf = {T2->s; U->s}
ClassOf = {C->s; T2->s}
ClassOf = {A->s; D->r; J->r; L->s; M->r; T2->s; U->r; V->r}
... (40 output lines omitted)
ClassOf = {A->s; B->s; F->r; J->r; T2->s}
Minimized for 44 groupings in 3 sec.

Figure 8. IDP output (edited for conciseness) showing sources
(s) and reversions (r) for minimal-cost models in Notre Besoin.

Heinrichi. It may be possible to reduce runtime by adding
more constraints to better guide the solver. Alternatively, ap-
proximate methods for optimization could be explored.

Tasks 2 and 3 demonstrate the ease with which new data
mining tasks can be defined and solved, once the procedural
code for preprocessing etc. is in place.

5 Conclusions

While many data mining tasks can be solved using off-the-
shelf tools, some tasks deviate significantly from the stan-
dard ones and cannot be performed using any of the standard
methods or query languages. Inductive query languages may
provide a solution when the data mining task can be formu-
lated as a relatively simple query. Here, we have explored an
alternative approach that consists of defining the task using a
declarative modeling language, then performing inference us-
ing advanced, built-in, constraint solving and optimization
techniques. More concretely, the IDP framework has been

used for addressing data mining tasks in stemmatology. As it
turns out, IDP has the power and versatility to define these
data mining tasks with relative ease, and solve them efficiently
and provably correctly. Important elements of IDP that con-
tribute to this are the ability to formulate constraints in full
first-order logic, to include inductive definitions, to define ag-
gregate functions, and to solve satisfiability and optimization
problems. One opportunity for improvement is the minimiza-
tion procedure, which might benefit from approximate meth-
ods. We conclude that declarative modeling frameworks such
as IDP have a large potential for data mining, and this type
of approaches deserves further investigation.

Acknowledgements

Research supported by Research Foundation - Flanders
(FWO-Vlaanderen), KU Leuven CREA/10/004, and ERC
Starting Researcher Grant 240186.

REFERENCES

[1] T. Andrews and C. Macé, ‘Beyond the tree of texts: Building
an empirical model of scribal variation through graph analysis
of texts and stemmata’, In preparation (2012).

[2] P. Baret, C. Macé, P. Robinson, C. Peersman, R. Mazza,
J. Noret, E. Wattel, Van Mulken M., Robinson P., A. Lantin,
P. Canettieri, V. Loreto, H. Windram, M. Spencer, C. Howe,
M. Albu, and A. Dress, ‘Testing methods on an artificially cre-
ated textual tradition.’, in The evolution of texts: Confronting
stemmatological and genetical methods, 255–283, Istituti edi-
toriali e poligrafici internazionali, Pisa (2006).

[3] H. Blockeel, B. Bogaerts, M. Bruynooghe, B. De Cat,
S. De Pooter, M. Denecker, A. Labarre, J. Ramon, and S. Ver-
wer, ‘Modeling machine learning and data mining problems
with FO(.)’, in Proc. 28th ICLP, Leibniz International Pro-
ceedings in Informatics (2012). To appear.

[4] B. Bogaerts, B. De Cat, S. De Pooter, and M. Denecker. The
idp framework reference manual. http://dtai.cs.kuleuven.
be/krr/software/idp3/documentation.

[5] S. De Pooter, J. Wittocx, and M. Denecker, ‘A prototype
of a knowledge-based programming environment’, in Interna-
tional Conference on Applications of Declarative Program-
ming and Knowledge Management (2011).

[6] M. Denecker and E. Ternovska, ‘A logic of nonmonotone in-
ductive definitions’, ACM Transactions on Computational
Logic (TOCL), 9(2), Article 14 (2008).

[7] R. Ierusalimschy, L.H. de Figueiredo, and W. Celes, ‘Lua – an
extensible extension language’, Software: Practice and Expe-
rience, 26(6), 635–652 (1996).

[8] M. Mariën, J. Wittocx, M. Denecker, and M. Bruynooghe,
‘SAT(ID): Satisfiability of propositional logic extended with
inductive definitions’, in Proc. SAT 2008, volume 4996 of
LNCS, pp. 211–224. Springer (2008).

[9] S. Nijssen and T. Guns, ‘Integrating constraint programming
and itemset mining’, in ECML/PKDD (2), volume 6322 of
Lect. Notes in Comp. Sc., pp. 467–482. Springer (2010).

[10] C. Schulte and P.J. Stuckey, ‘Efficient constraint propagation
engines’, ACM Transactions on Programming Languages and
Systems, 31(1) (2008).

[11] S. Timpanaro and G.W. Most (translator), The Genesis of
Lachmann’s Method, University of Chicago Press, 2005.

[12] A. Van Gelder, K.A. Ross, and J.S. Schlipf, ‘The well-founded
semantics for general logic programs’, Journal of the ACM,
38(3), 620–650 (1991).

[13] J. Wittocx, M. Mariën, and M. Denecker, ‘The idp system: a
model expansion system for an extension of classical logic’, in
LaSh, pp. 153–165 (2008).

[14] J. Wittocx, M. Mariën, and M. Denecker, ‘Grounding FO
and FO(ID) with bounds’, Journal of Artificial Intelligence
Research, 38, 223–269 (2010).

