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Abstract

In this paper, we investigate G-commerce —

computational economies for controlling resource

allocation in Computational Grid settings. We de-

fine hypothetical resource consumers (represent-

ing users and Grid-aware applications) and re-

source producers (representing resource owners

who “sell” their resources to the Grid). We then

measure the efficiency of resource allocation un-

der two different market conditions: commodities

markets and auctions. We compare both mar-

ket strategies in terms of price stability, market

equilibrium, consumer efficiency, and producer

efficiency. Our results indicate that commodities

markets are a better choice for controlling Grid

resources than previously defined auction strate-

gies.

1 Introduction

With the proliferation of the Internet comes the

possibility of aggregating vast collections of com-✄
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puters into large-scale computational platforms.

A new computing paradigm known as the Com-

putational Grid [17, 3] articulates a vision of dis-

tributed computing in which applications “plug”

into a “power grid” of computational resources

when they execute, dynamically drawing what

they need from the global supply. While a great

deal of research concerning the software mecha-

nisms that will be necessary to bring Computa-

tional Grids to fruition is underway [3, 16, 20, 8,

4, 24, 21, 1, 34], little work has focused on the

resource control policies that are likely to suc-

ceed. In particular, almost all Grid resource al-

location and scheduling research espouses one of

two paradigms: centralized omnipotent resource

control [18, 20, 28, 29] or localized application

control [9, 4, 2, 19]. The first is certainly not a

scalable solution and the second can lead to un-

stable resource assignments as “Grid-aware” ap-

plications adapt to compete for resources.

In this paper, we investigate G-commerce —

the problem of dynamic resource allocation on the

Grid in terms of computational market economies

in which applications must buy the resources they

use from resource suppliers using an agreed-upon

currency. Framing the resource allocation prob-



lem in economic terms is attractive for several

reasons. First, resource usage is not free. While

burgeoning Grid systems are willing to make re-

sources readily available to early developers as

a way of cultivating a user community, resource

cost eventually must be considered if the Grid is

to become pervasive. Second, the dynamics of

Grid performance response are, as of yet, diffi-

cult to model. Application schedulers can make

resource acquisition decisions at machine speeds

in response to the perceived effects of contention.

As resource load fluctuates, applications can ad-

just their resource usage, forming a feedback con-

trol loop with a potentially non-linear response.

By formulating Grid resource usage in market

terms, we are able to draw upon a large body of

analytical research from the field of economics

and apply it to the understanding of emergent

Grid behavior. Last, if resource owners are to be

convinced to federate their resources to the Grid,

they must be able to account for the relative costs

and benefits of doing so. Any market formulation

carries with it an inherent notion of relative worth

which can be used to quantify the cost-to-benefit

ratio for both Grid users and stake-holders.

While there are a number of different plausible

G-commerce market formulations for the Grid,

we focus on two broad categories: commodi-

ties markets and auctions. The overall goal of

the Computational Grid is to allow applications

to treat computational, network, and storage re-

sources as individual and interchangeable com-

modities, and not specific machines, networks,

and disk or tape systems. Modeling the Grid as a

commodities market is thus a natural choice. On

the other hand, auctions require little in the way

of global price information, and they are easy to

implement in a distributed setting. Both types of

economies have been studied as strategies for dis-

tributed resource brokering [11, 35, 25, 6, 7, 10].

Our goal is to enhance our deeper understanding

of how these economies will fare as resource bro-

kering mechanisms for Computational Grids.

To investigate Computational Grid settings and

G-commerce resource allocation strategies, we

evaluate commodities markets and auctions with

respect to four criteria:

1. Grid-wide price stability

2. Market equilibrium

3. Application efficiency

4. Resource efficiency

Price stability is critical to ensure scheduling sta-

bility. If the price fluctuates wildly, application

and resource schedulers that base their decisions

on the state of the economy will follow suit, lead-

ing to poor performance, and therefore ineffec-

tiveness of the Grid as a computational infrastruc-

ture. Equilibrium measures the degree to which

prices are fair. If the overall market cannot be

brought into equilibrium, the relative expense or

worth of a particular transaction cannot be trusted,

and again the Grid is not doing its job. Applica-

tion efficiency measures how effective the Grid

is as a computational platform. Resource effi-

ciency measures how well the Grid manages its

resources. Poor application and/or resource ef-

ficiency will mean that the Grid is not succeed-

ing as a computational infrastructure. Thus, we

use these four criteria to evaluate how well each

G-commerce economy works as the basis for re-

source allocation in Computational Grids.

The remainder of this paper is organized as fol-

lows. In the next section, we discuss the specific

market formulations we use in this study. Sec-

tion 3 describes the simulation methodology we

use and the results we obtain for different hypo-

thetical market parameterizations. In Section 4

we conclude and point to future work.

2 G-commerce — Market Economies

for the Grid

In formulating a computational economy for

the Grid, we make two assumptions. #1: The rel-
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ative worth of a resource is determined by its sup-

ply and the demand for it. This assumption is im-

portant because it rules out pricing schemes that

are based on arbitrarily decided priorities. For ex-

ample, it is not possible in an economy for an

organization to simply declare what the price of

its resources are and then decree that its users

pay that price even if cheaper, better alternatives

are available. While there are several plausible

scenarios in which such Draconian policies are

appropriate (e.g. users are funded to use a spe-

cific machine as part of their individual research

projects), from the perspective of the Grid, the re-

source allocation problem under these conditions

has been solved.

Further, we assume that supply and demand are

functions of price, and that true relative worth is

represented at the price-point where supply equals

demand – that is, at market equilibrium. Con-

versely, at a non-equilibrium price-point (where

supply does not equal demand), price either over-

states or understates relative worth.

#2: Resource decisions based on self-interest

are inescapable in any federated resource system.

If we are to simulate a computational economy,

we must ultimately hypothesize supply and de-

mand functions for our simulated producers and

consumers respectively. Individual supply and

demand functions are difficult to measure at best,

particularly since there are no existing Compu-

tational Grid economies which we can observe.

Our admittedly less-satisfactory approach is to

define supply and demand functions that represent

each simulated producer and consumer’s “self-

interest.” An individual consumer buys only if

the purchase is a “good deal” for that consumer.

Analogously, producers sell only when a sale is in

their best interest.

In the next section, we detail the specific func-

tions we investigate, but generally our approach

relies on these two assumptions.

2.1 Producers and Consumers

To compare the efficacy of commodities mar-

kets and auctions as Grid resource allocation

schemes, we define a set of simulated Grid

producers and consumers representing resource

providers and applications respectively. We then

use the same set of producers and consumers to

compare commodity and auction-based market

settings.

We simulate two different kinds of producers

in this study: producers of CPUs and produc-

ers of disk storage. That is, from the perspec-

tive of a resource market, there are two kinds

of resources within our simulated Grids: CPUs

and disks. While the results should generalize

to include a variety other commodities, networks

present a special problem. Our consumer model

is that an application may request a specified

amount of CPU and disk (the units of which we

discuss below) and that these requests may be ser-

viced by any provider regardless of location or

network connectivity. Since network links can-

not be combined with other resources arbitrarily,

they cannot be modeled as separate commodities.

We believe that network cost can be represented

in terms of “shipping” costs in more complicated

markets, but for the purposes of this study, we

consider network connectivity to be uniform.

2.1.1 CPU Producer Model

In this study, a CPU represents a computational

engine with a fixed dedicated speed. A CPU pro-

ducer agrees to sell to the Grid some number of

fixed “shares” of the CPU it controls. The real-

world scenario for this model is for CPU owners

to agree to host a fixed number of processes from

the Grid in exchange for Grid currency. Each pro-

cess gets a fixed, pre-determined fraction of the

dedicated CPU speed, but the owner determines

how many fractions or “slots” he or she is willing

to sell. For example, in our study, the fraction is

10% so each CPU producer agrees to sell a fixed
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number (less than 10) of 10%-sized slots to the

Grid. When a job occupies a CPU, it is guaran-

teed to get 10% of the available cycles for each

slot it consumes. Each CPU, however, differs in

the total number of slots it is willing to sell.
To determine supply at a given price-point,

each CPU calculates☎✝✆✟✞✡✠ ☛✌☞✎✍✑✏✒✆ ✓ ☞✔✆✒✕✖✆✗✠✙✘✚✆✜✛✢✠✤✣✢✥✦✛✎✧✟★✩✣✜✪✫✧ (1)

where ✬✖✭✎✮✌✭✎✯✱✰✲✭ is the total amount of Grid cur-

rency (hereafter referred to as $G which is pro-

nounced “Grid bucks”), ✯✴✳✔✵ is an incrementing

clock, and ✶✔✷✸✳✺✹✻✶ is the total number of process

slots the CPU owner is willing to support. The✼ ✭✺✽✾✯ ✿❀✬❂❁❄❃✢✭ value is the average $G per time unit

per slot the CPU has made from selling to the

Grid. In our study, CPU producers will only sell

if the current price of a CPU slot exceeds the✼ ✭✺✽✾✯ ✿❀✬❂❁❄❃✢✭ value, and when they sell, they sell

all unoccupied slots. That is, the CPU will sell all

of its available slots when it will turn a profit (per

slot) with respect to the average profit over time.

2.1.2 Disk Producer Model

The model we use for a disk producer is similar
to that for the CPU producer, except that disks
sell some number of fixed-sized “files” that ap-
plications may use for storage. The ✼ ✭✺✽✾✯ ✿✙✬✡❁❅❃✟✭
calculation for disk files is☎✝✆✟✞✡✠ ☛✌☞✎✍✑✏✒✆ ✓ ☞✺✆✗✕✖✆✗✠✙✘✚✆✢✛✢✠✤✣✜✥✦✛✜✏❆✞✟☛❇✞✖✏❆✍✸✪❉❈ (2)

where ❃✟✽✎✿✤✽❊❃✟❁✑✹●❋ is the total number of files a disk

producer is willing to sell to the Grid. If the cur-

rent price for a file is greater than the ✼ ✭✺✽✾✯ ✿✙✬✡❁❅❃✟✭ ,
a disk producer will sell all of its available files.

Note that the resolution of CPU slots and file

sizes is variable. It is possible to make a CPU

slot equivalent to the duration of a single clock

cycle, and a disk file be a single byte. Since our

markets transact business at the commodity level,

however, we hypothesize that any real implemen-

tation for the Grid will need to work with larger-

scale aggregations of resources for reasons of effi-

ciency. For the simulations described in Section 3

we choose values for these aggregations that we

believe reflect a market formulation that is cur-

rently implementable.

2.1.3 Consumers and Jobs

Consumers express their needs to the market in

the form of jobs. Each job specifies both a size

and an occupancy duration for each resource to

be consumed. Each consumer also sports a bud-

get of $G that it can use to pay for the resources

needed by its jobs. Consumers are given an initial

budget and a periodic allowance, but they are not

allowed to hold $G over from one period until the

next. This method of budget refresh is inspired by

the allocation policies currently in use at the NSF

Partnerships for Advanced Computational Infras-

tructure (PACIs). At these centers, allocations are

perishable.

When a consumer wishes to purchase resources

for a job, it declares the size of the request for

each commodity, but not the duration. Our model

is that job durations are relatively long, and that

producers allow consumers occupancy without

knowing for how long the occupancy will last. At

the time a producer agrees to sell to a consumer,

a price is fixed that will be charged to the con-

sumer for each simulated time unit until the job

completes.

For example, consider a consumer wishing to

buy a CPU slot for 100 minutes and a disk file for

300 minutes to service a particular job. If the con-

sumer wishes to buy each for a particular price, it

declares to the market a demand of 1 CPU slot

and 1 disk slot, but does not reveal the 100 and

300 minute durations. A CPU producer wishing

to sell at the CPU price agrees to accept the job

until the job completes (as does the disk producer

for the disk job). Once the sales are transacted, the

consumer’s budget is decremented by the agreed-

upon price every simulated minute, and each pro-

ducer’s revenue account is incremented by the
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same amount. If the job completes, the CPU pro-

ducer will have accrued 100 times the CPU price,

the disk producer will have accrued 300 times the

disk price, and the consumer’s budget will have

been decremented by the sum of 100 times the

CPU price and 300 times the disk price.

In defining this method of conducting resource

transactions, we make several assumptions. First,

we assume that in an actual Grid setting resource

producers or suppliers will commit some fraction

of their resources to the Grid, and that fraction is

slowly changing. Once committed, the fraction

“belongs” to the Grid so producers are not con-

cerned with occupancy. This assumption corre-

sponds to the behavior of some batch systems in

which, once a job is allowed to occupy its proces-

sors, it is allowed to run either until completion,

or until its user’s allocation is exhausted. Produc-

ers are concerned, in our models, with profit and

they only sell if it is profitable on the average. By

including time in the supply functions, producers

consider past occupancy (in terms of profit) when

deciding to sell. We are also assuming that nei-

ther consumers nor producers are malicious and

that both honor their commitments. In practice,

this requirement assuredly will be difficult to en-

force. However, if consumers and producers must

agree to use secure authentication methods and

system-provided libraries to gain access to Grid

resources, then it will be possible.

2.1.4 Consumer Demand

The consumer demand function is more complex

than the CPU and disk supply functions. Con-

sumers must purchase enough CPU and disk re-

sources for each job they wish to run. If they can-

not satisfy the request for only one type, they do

not express demand for the other. That is, the de-

mand functions for CPU and disks are strongly

correlated (although the supply functions are not).

This relationship between supply and demand

functions constitutes the most difficult of mar-

ket conditions. Most theoretical market systems

make weaker assumptions about the difference in

correlation. By addressing the more difficult case,

we believe our work more closely resembles what

can be realized in practice.
To determine their demand at a given price,

each consumer first calculates the average rate at
which it would have spent $G for the jobs it has
run so far if it had been charged the current price.
It then computes how many $G it can spend per
simulated time unit until the next budget refresh.
That is, it computes✞❂✕✔❍ ☞✺✞✡✪✫✆ ✓ ■❑❏ ✪❄✣✜✪❅✞❂★ ✥▲✣✜☞✔▼ ❏✚◆ ☛✌☞✎✍✑✏✒✆ ❏ ✍✠✤✣✜✥ (3)✏❖✞✗☛✚✞✖P❆★◗✆ ☞✺✞✡✪✫✆ ✓ ☞✺✆✗☎❘✞✡✍✑✠✙✍✸✠❀❍ P❙✘✚❚✺❍✖✆✗✪❯ ☞✔✆✟❱✚☞✔✆✢✧✢❲❨❳❩✠✤✣✢✥✦❬ (4)

where ✹❙✳✺✹❙✽❊✷ ✵❭✳✔✬✖❪ ❏ is the total amount of

work performed so far using commodity ❁ ,✿✙✬✡❁❅❃✟✭ ❏ is the current price for commodity ❁ ,✬❂✭ ✼ ✽✾❁❄✯✱❁❉✯❴❫ ❵✒✰❴❛❜❫❇✭✜✹ is the amount left to spend be-

fore the budget refresh, ✬❂✭✔❝❴✬❂✭✔✶✔❞ is the budget re-

fresh time, and ✯✴✳✔✵ is the current time. When❃✟✽✎✿✤✽❊❵✟✷✸✭ ✬✖✽❜✹❙✭ is greater than or equal to ✽✾✮❊❫ ✬❂✽❜✹❙✭ ,
a consumer will express demand.

Unlike our supply functions, the consumer de-

mand function does not consider past price per-

formance directly when determining demand. In-

stead, consumers using this function act oppor-

tunistically based on the money they have left to

spend and when they will receive more. They use

past behavior only as an indication of how much

work they expect to introduce and buy when they

believe they can afford to sustain this rate.

Consumers, in our simulations, generate work

as a function of time. We arbitrarily fix some sim-

ulated period to be a “simulated day.” At the be-

ginning of each day, every consumer generates a

random number of jobs. By doing so, we hope

to model the diurnal user behavior that is typi-

cal in large-scale computational settings. In ad-

dition, each consumer can generate a single new

job every time step with a pre-determined proba-

bility. Consumers maintain a queue of jobs wait-

ing for service before they are accepted by pro-

ducers. When calculating demand, they compute
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✽✾✮✾❫ ✬✖✽❜✹❙✭ and ❃✟✽✺✿✙✽✌❵✗✷✸✭ ✬✖✽❜✹❙✭ and demand as many

jobs from this queue as they can afford.

To summarize, for our G-commerce simula-

tions:❡ All entities except the market-maker act in-

dividually in their respective self-interests.❡ Producers consider long-term profit and past

performance when deciding to sell.❡ Consumers are given periodic budget replen-

ishments and spend opportunistically.❡ Consumers introduce work loads in bulk at

the beginning of each simulated day, and ran-

domly throughout the day.

We believe that this combination of characteris-

tics captures a reasonable set of producer and con-

sumer traits in real Grid settings.

2.2 Commodities Markets

In a real-world commodities market, commodi-

ties are exchanged in a central location. Impor-

tant features of a commodities market are that

the goods of the same type brought to market by

the various suppliers are regarded as interchange-

able, market price is publicly agreed upon for

each commodity regarded as a whole, and all buy-

ers and sellers decide whether (and how much)

to buy or sell at this price. Contrast this type of

commerce with one based upon auctions, wherein

each buyer and seller acts independently and con-

tracts to buy or sell at a price agreed upon pri-

vately.

Since the goal of a computational Grid is to

provide users with resources without regard to the

particular supplier, it seems very natural to model

a Grid economy using commodities markets. To

do so, we require a pricing methodology that pro-

duces a system of price adjustments which bring

about market equilibrium (i.e. equalizes supply

and demand).

2.2.1 Pricing in Commodities Markets: Re-

sults of Economic Research

Our model is an example of anexchange economy,

namely a system involving agents (producers and

consumers), and several commodities. Each agent

is assumed to control a sufficiently small segment

of the market. In other words, the individual be-

havior of any one agent will not affect the system

as a whole appreciably. In particular, prices will

be regarded as beyond the control of the agents.

Given a system of prices, then, each agent decides

upon a course of action, which may consist of

the sale of some commodities and the purchase of

others with the proceeds. Thus we define supply

and demand functions for each commodity, which

are functions of the aggregate behavior of all the

agents. These are determined by the set of market

prices for the various commodities.

Naturally, we use the language of vectors for

price, supply, and demand; each of these will be

an ✯ -vector, where ✯ is the number of commodi-

ties, of non-negative real numbers. Observe that

given a commodity bundle, that is an ✯❣❢❤✮✌✭✺❃✗✹❙✳✔✬
of quantities ✐❦❥♠❧✴♥✟♦✎♣q♣r♣r♦❆❧✙s of the commodities,

and a price vector t the value of the bundle is

equal to t✈✉❆✐ . For given price vector t , define the

excess demand ✇①❥②✇✲③✑t⑤④ to be the difference of

the demand and supply vectors for this price level.

Equilibrium for the economy is established when

supply is equal to demand; in other words, a price

vector t is an equilibrium price when ✇✲③✑t⑤④⑥❥⑧⑦ .

It should be noted that, for our purposes, currency

will be regarded as another commodity. Thus a

producer of a non-currency commodity (CPU or

disk for the purposes of this paper) will simply be

regarded as a “consumer” of currency; presum-

ably, the currency will be used in some way for

the benefit of the producer.

In general equilibrium theory, there are three

hypotheses made on the function z: homogeneity,

continuity, and adherence to Walras’ Law. Homo-

geneity means that only the ratios between prices

are important to how commodities are exchanged.
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That is, ✇✲③❄⑨✙t⑩④❶❥❷✇✲③✑t⑤④ for any positive number⑨ . This relationship is naturally true, since cur-

rency is regarded as a commodity. Continuity is

the property that excess demand is a continuous

function of the prices, which cannot hold liter-

ally in our situation, due to the indivisibility of the

commodities. However, we assume that the num-

ber of agents is large enough that all functions

may be approximated by continuous functions of

continuous variables. Finally, Walras’ Law states

that for any price, ✇✲③✑t⑤④❸✉❇t❹❥❻❺ . This assump-

tion is justified as follows: When each agent is

supplying the same total value as that agent is de-

manding, the value of the total supply bundle ❼ is

equal to that of the total demand bundle ❽ . Thus,

as observed above, t❾✉❇❼❿❥➀t➁✉❇❽ , and thereforet➂✉✌✇➃❥②t➄✉✲③❉❽①❢➅❼✺④➆❥♠⑦ . Walras’ Law will ap-

ply as long as demand is locally non-satiated, that

is, given a level of consumption, there is always a

preference for greater consumption (price not be-

ing an object).

When these assumptions have been met, an

equilibrium price vector has been proven to ex-

ist via topological methods, namely the Brouwer

fixed-point theorem (see [13], Chapter 5, for the

result in its original form, or a remarkably clear

exposition in [15], Chapter 6). These methods

are non-constructive, so that the problem remains

to find a method of price adjustment that brings

about equilibrium or at least approximates equi-

librium within reasonable tolerances.

A few words on this last point are in order.

From a purely “engineering” standpoint, reach-

ing precise economic equilibrium is surely im-

possible. Thus we must content ourselves with

the more modest goal of producing a price vec-

tor for which the excess demands are all close

to ❺ . Since the excess demand functions can

be quite general, it is always possible that there

exists a price vector which produces excess de-

mands which are all within a prescribed tolerance

of ❺ and yet is not close to an actual equilibrium

point; further, there is no “engineering” method

which will distinguish this from a point which re-

ally is very near to an equilibrium price. Even

Scarf’s algorithm, described below, which has er-

roneously been called a “constructive version of

the Brouwer fixed-point theorem,” is only guar-

anteed to produce points which are approximate

equilibria in the first sense. Thus we will use

the phrase “approximate equilibrium” to refer to a

price which makes the excess demands all close to❺ without judging whether it lives near a genuine

equilibrium point. In any event, the theoretical

existence of an equilibrium price guarantees the

existence of approximate equilibria. Moreover,

approximate equilibria are valuable: If the mar-

ket is approximately cleared, then the economy is

doing a good job of distributing goods.

Walras in [37] suggested a process called

tâtonnement (“groping”) by which real-world

markets come to equilibrium. With tâtonnement,

each individual price is raised or lowered accord-

ing to whether that commodity’s excess demand is

positive or negative. Then, new excess demands

are measured, and the process is iterated. While

it was suggested only as a “behavioral” explana-

tion as to how real-world markets reach equilib-

rium, tâtonnement formed the basis for early at-

tempts to prove the existence of equilibrium. It is

now known that tâtonnement does not in general

lead to a convergent process; Scarf in [30] pro-

duced a very simple example for which there is a

unique equilibrium but for which, from almost ev-

ery starting point, the tâtonnement process oscil-

lates for all time. In fact, tâtonnement does bring

about convergence to an equilibrium price vector

under the very strong hypothesis of gross substi-

tutes, which states that increasing the ➇❜➈➊➉ price

while holding the others constant will bring about

an increase in excess demand in all commodities

other than the ➇✾➈➊➉ . Unfortunately, for typical Grid

applications, the hypothesis of gross substitutes

does not hold, because different commodities are

often complementary. (For example, an applica-

tion may need both CPU and disk in order to ex-

ecute. If the price for CPUs is too high, then the

application’s demand for disks will be lower in-

7



stead of higher.)

There are several different approaches to the

problem of finding an algorithm for adjusting

prices which will lead to equilibrium. Scarf’s

algorithm (see [31]) works roughly as follows:

Suppose that there are ✯➌➋❹➍ commodities, and

normalize the prices so that their sum is always

equal to ➍ . The set of possible price vectors

thus forms an ✯ -dimensional simplex in ➎ s✎➏❴♥ (the

price simplex). Scarf then divides this simplex

into a large number of subsimplices and shows

that there exists a subsimplex any of whose points

provides an approximate equilibrium price. He

also provides an explicit formula for how fine

to make the subdivision in order to produce an

excess demand within a pre-specified tolerance.

Merrill [23] gives an important improvement to

Scarf’s algorithm which makes it far more attrac-

tive from a computational standpoint. A different

sort of refinement of this idea is to be found in

Eaves’ algorithm with “continuous refinement of

grid size” [14].

A second approach, advocated by Smale

in [32], is more in the spirit of multivariable cal-

culus and is more dynamic in the sense that it

aims to produce a trajectory for the prices to fol-

low. In Smale’s method, the prices are normal-

ized by fixing one of the commodities (the nu-

meraire) to have price ➍ ; in our case, this com-

modity will be the currency. Further, suppose that

there are ✯ other commodities, so that the set of

possible prices forms the positive orthant in ➎ s .
Form the ✯➑➐❿✯ matrix➒➔➓ ③✑t⑤④→❥ ➣▲↔ ✇❊↕↔ t✤➙✡➛ ♣
Now define the global Newton ordinary differen-

tial equation ➒➔➓ ③✑t⑤④ ❽➜t❽➜➝ ❥➞❢⑥⑨✙✇✲③✑t⑤④ (5)

where ⑨ is a constant which has sign equal to③●❢➟➍✺④ s times the sign of the determinant of
➒➆➓ ③✸t➠④ .

(For contrast, note that the tâtonnement process is

encapsulated in the differential equation
❛✾t❛❜✹ ❥➡✇ .

Thus the global Newton may be regarded as a

more sophisticated version of tâtonnement which

takes into account the interdependencies of the

way demands for the various commodities inter-

act with the various prices.) Smale proves that,

under boundary conditions which are justifiable

on the basis of the desirability of the commodi-

ties, almost every maximal solution of the global

Newton equation starting sufficiently near to the

boundary of the positive orthant of ➎ s (or to ➢ )

will converge to the set of equilibrium prices.

Note that except under strong hypotheses, most

commonly gross substitutes, the theory does not

guarantee that there is a unique equilibrium price

vector. However, there is a useful result along

these lines as follows: Define a regular equilib-

rium to be one for which the matrix
➒➔➓ ③✑t⑤④ defined

above is nonsingular. Then according to [22],

Theorem 5.4.2, a regular equilibrium price is lo-

cally unique in the sense that it is the only one in

some open subset of the space of price vectors.

2.2.2 Price Adjustment Schemes

Herein we examine the results of using several

price adjustment schemes in simulated computa-

tional market economies. Smale’s method is not

possible to use directly for a number of reasons.

First, any actual economy is inherently discrete,

so the partial derivatives in equation 5 do not ex-

ist, strictly speaking. Second, given the behavior

of the producers and consumers described above,

there are threshold prices for each agent that bring

about sudden radical changes in behavior, so that

a reasonable model for excess demand functions

would involve sizeable jump discontinuities. Fi-

nally, the assumptions in Smale’s model are that

supply and demand are functions of price only

and independent of time, whereas in practice there

are a number of ways for supply and demand to

change over time for a given price vector.

Observe that taking ⑨❹❥ ➍ and applying the

Euler discretization at positive integer values of
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✹ reduces this process to the Newton-Raphson

method for solving ✇✲③✑t⑤④➌❥ ⑦ ; this observation

explains the term “global Newton.”

Implementing Smale’s method: As observed

above, obtaining the partial derivatives necessary

to carry out Smale’s process in an actual economy

is impossible; however, within the framework of

our simulated economy, we are able to get good

approximations for the partials at a given price

vector by polling the producers and consumers.

Starting with a price vector, we find their pref-

erences at price vectors obtained by fixing all but

one price and varying the remaining price slightly,

thus achieving a “secant-line” approximation for

each commodity separately; we then substitute

these approximations for the values of the partial

derivatives in the matrix
➒➔➓ ③✸t➠④ , discretize with

respect to time, solve Equation 5 for the incre-

ment ❛❊t to get our new price vector, and iterate.

We will refer, conveniently but somewhat inaccu-

rately, to this price adjustment scheme as Smale’s

method.

The First Bank of ➤ : The drawback to the

above scheme is that it relies on polling the en-

tire market for aggregate supply and demand re-

peatedly to obtain the partial derivatives of the

excess demand functions. If we were to try and

implement Smale’s method directly, each individ-

ual producer and consumer would have to be able

to respond to the question “how much of com-

modity ❧ would you buy (sell) at price vector p?”

In practice, producers and consumers may not be

able to make such a determination accurately for

all possible values of p. Furthermore, even if

explicit supply and demand functions are made

into an obligation that all agents must meet in or-

der to participate in an actual Grid economy, the

methodology clearly will not scale. For these rea-

sons, in practice, we do not wish to assume that

such polling information will be available.

A theoretically attractive way to circumvent

this difficulty is to approximate each excess de-

mand function ➥ ❏ by a polynomial in ✿✱♥✟♦❄✿✙➦✎♦✜♣q♣r♣q♦❉✿❀s
which fits recent price and excess demand vectors

and to use the partial derivatives of these polyno-

mials in Equation 5. In simulations, this method

does not, in general, produce prices which ap-

proach equilibrium. The First Bank of G is a

price adjustment scheme which both is practica-

ble and gives good results; this scheme involves

using tâtonnement (see above) until prices get

“close” to equilibrium, in the sense that excess

demands have sufficiently small absolute value,

and then using the polynomial method for “fine

tuning.” Thus, the First Bank of G approxi-

mates Smale’s method but is implementable in

real-world Grid settings since it hypothesizes ex-

cess demand functions and need not poll the mar-

ket for them. Our experience is that fairly high-

degree polynomials are required to capture excess

demand behavior with the sharp discontinuities

described above. For all simulations described in

Section 3, we use a degree 17 polynomial.

2.3 Auctions

Auctions have been extensively studied as re-

source allocation strategies for distributed com-

puting systems. In a typical auction system

(e.g. [11, 35, 25, 6]), resource producers (typi-

cally CPU producers) auction themselves using

a centralized auctioneer and sealed-bid, second-

price auctions. That is, consumers place one bid

with the auctioneer, and in each auction, the con-

sumer with the highest bid receives the resource

at the price of the second-highest bidder. This is

equivalent to “just” outbidding the second-highest

bidder in an open, multi-round auction, and en-

courages consumers to bid what the resource is

worth to them (see [6] for further description of

auction variants).

When consumers simply desire one commod-

ity, for example CPUs in Popcorn [25], auctions

provide a convenient, straightforward mechanism

for clearing the marketplace. However, the as-

sumptions of a Grid Computing infrastructure
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pose a few difficulties to this model. First, when

an application (the consumer in a Grid Computing

scenario) desires multiple commodities, it must

place simultaneous bids in multiple auctions, and

may only be successful in a few of these. To do

so, it must expend currency on the resources that

it has obtained while it waits to obtain the oth-

ers. This expenditure is wasteful, and the uncer-

tain nature of auctions may lead to inefficiency for

both producers and consumers.

Second, while a commodities market presents

an application with a resource’s worth in terms of

its price, thus allowing the application to make

meaningful scheduling decisions, an auction is

more unreliable in terms of both pricing and the

ability to obtain a resource, and may therefore re-

sult in poor scheduling decisions and more ineffi-

ciency for consumers.

To gain a better understanding of how auc-

tions fare in comparison to commodities mar-

kets, we implement the following simulation of an

auction-based resource allocation mechanism for

computational grids. At each time step, CPU and

disk producers submit their unused CPU and file

slots to a CPU and a disk auctioneer. These are

accompanied by a minimum selling price, which

is the average profit per slot, as detailed in Sec-

tion 2.1.1 above. Consumers use the demand

function as described in Section 2.1.3 to define

their bid prices, and as long as they have money

to bid on a job, and a job for which to bid, they

bid on each commodity needed by their oldest un-

commenced job.

Once the auctioneers have received all bids for

a time step, they cycle through all the commodi-

ties in a random order, performing one auction per

commodity. In each auction, the highest-bidding

consumer gets the commodity if the bid price

is greater than the commodity’s minimum price.

If there is a second-highest bidder whose price

is greater than the commodity’s minimum price,

then the price for the transaction is the second-

highest bidder’s price. If there is no such second-

highest bidder, then the price of the commodity

is the average of the commodity’s minimum sell-

ing price and the consumer’s bid price. When a

consumer and commodity have been matched, the

commodity is removed from the auctioneer’s list

of commodities, as is the consumer’s bid. At that

point, the consumer can submit another bid to that

or any other auction, if desired. This situation oc-

curs when a consumer has obtained all commodi-

ties for its oldest uncommenced job, and has an-

other job to run. Auctions are transacted in this

manner for every commodity, and the entire auc-

tion process is repeated at every time step.

Note that this structuring of the auctions means

that each consumer may have at most one job for

which it is currently bidding. When it obtains all

the resources for that job, it immediately starts

bidding on its next job. When a time step expires

and all auctions for that time step have been com-

pleted, there may be several consumers whose

jobs have some resources allocated and some un-

allocated, as a result of failed bidding. These con-

sumers have to pay for their allocated resources

while they wait to start bidding in the next time

step.

While the auctions determine transaction prices

based on individual bids, the supply and demand

functions used by the producers and consumers

to set ask and bid price are the same functions

we use in the commodities market formulations.

Thus, we can compare the market behavior and

individual producer and consumer behavior in

both auction and commodity market settings.

3 Simulations and Results

We compare commodities markets and auc-

tions using the producers and consumers de-

scribed in Section 2.1 using two overall mar-

ket settings. In the first, which we term under-

demand, producers are capable of supplying

enough resource to service all of the jobs con-

sumers can afford. Recall that our markets do

not include resale components. Consumers do not

make money. Instead, $G are given to them pe-
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CPUs 100

disks 100

CPU slots per CPU [2 .. 10]

disk files per disk [1 .. 15]

CPU job length [1 .. 60] time units

disk job length [1 .. 60] time units

simulated day 1440 time units

allowance period [1 .. 10] days

jobs submitted at day-break [1 .. 100]

new job probability 10%

allowance ➍✺❺✖➧ $G

Bank of G Polynomial Degree 17⑨ factor .01

Table 1. Invariant simulation parameters for

this study

riodically much the in the same way that PACIs

dole out machine-time allocations. Similarly,

producers do not spend money. Once gathered,

it is hoarded or, for the purposes of the econ-

omy, “consumed.” The under-demand case cor-

responds to a Grid economy in which the alloca-

tions exceed what is necessary (in terms of user

demand) to allocate all available resources. Such

a situation occurs when the rate that $G are al-

located to consumers is greater than the rate at

which they introduce work to the Grid. In the

over-demand case, consumers wish to buy more

resource than is available. New jobs are generated

fast enough to keep all producers almost com-

pletely busy, thereby creating a work back-log.

Table 1 completely describes the invariant sim-

ulation parameters we use for both under- and

over-demand cases. For all ranges (e.g. slots

per CPU), uniform pseudo-random numbers are

drawn from between the given extrema. For the

under-demand simulation, we define ➍✺❺❜❺ con-

sumers to use the ➍✺❺✖❺ CPUs and disks. Each con-

sumer submits a random number of jobs (between➍ and ➍✺❺✖❺ ) at every day-break, and has a 10%

chance of submitting a new job every time unit.

The over-demand simulation specifies ➨✖❺❜❺ of the

same consumers, with all other parameters held

constant.

Using our simulated markets, we wish to inves-

tigate three questions with respect to commodities

markets and auctions.

1. Do the theoretical results from Smale’s

work [33] apply to plausible Grid simula-

tions?

2. Can we approximate Smale’s method with

one that is practically implementable?

3. Are auctions or commodities markets

a better choice for Grid computational

economies?

Question (1) is important because if Smale’s re-

sults apply, they dictate that an equilibrium price-

point must exist (in a commodity market formu-

lation), and they provide a methodology for find-

ing those prices that make up the price-point.

Assuming the answer to question (1) is affirma-

tive, we also wish to explore methodologies that

achieve or approximate Smale’s results, but which

are implementable in real Grid settings. Lastly,

recent work in Grid economies [1, 18, 28] and

much previous work in computational economic

settings [12, 26, 5, 36] has centered on auctions

as the appropriate market formulation. We wish

to investigate question (3) to determine whether

commodities markets are a viable alternative and

how they compare to auctions as a market-making

strategy.

3.1 Market Conditions, under­demand case

Figure 1 shows the CPU and disk prices for

Smale’s method in our simulated Grid economy

over ➍✺❺✚♦✒❺❜❺✖❺ time units. The diurnal nature of con-

sumer job submission is evident from the price

fluctuations. Every 1440 “minutes” each con-

sumer generates between 1 and 100 new jobs

causing demand and prices to spike. However,

Smale’s method is able to find an equilibrium
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Figure 1. Smale’s prices for the under­

demand case. Solid line is CPU price, and

dotted line is disk price in $G

price for both commodities quickly, as is evi-

denced in Figure 2. Notice that the excess de-

mand spikes in conjunction with the diurnal load,

but is quickly brought near zero by the pricing

shown in Figure 1 where it hovers until the next

cycle. Figure 3 shows excess demand for disk

during the simulation period. Again, approximate

market equilibrium is quickly achieved despite

the cyclic and non-smooth aggregate supply and

demand functions implemented by the producers

and consumers.

In Figure 4 we show the pricing determined

by our engineering approximation to Smale’s

method — the First Bank of G. The First Bank of

G pricing closely approximates the theoretically

achievable results generated by Smale’s method

in our simulated environment. The Bank, though,

does not require polling to determine the partial

derivatives for the aggregate supply and demand

functions. Instead, it uses an iterative polynomial

approximation that it derives from simple obser-

vations of purchasing and consumption. Thus it

is possible to implement the First Bank of G for

use in a real Grid setting without polling Grid pro-
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Figure 2. Smale’s CPU excess demand for the

under­demand case. The units are CPU slots.

ducers or consumers for their supply and demand

functions explicitly. Figures 5 and 6 show ex-

cess demand measures generated by First Bank

of G pricing over the simulated period. While

the excess demands for both commodities are not

as tightly controlled as with Smale’s method, the

First Bank of G keeps prices very near equilib-

rium.

The pricing determined by auctions is quite dif-

ferent, however, as depicted in Figures 7 and 8

(we show CPU and disk price separately as they

are almost identical and obscure the graph when

overlayed). In the figure, we show the average

price paid by all consumers for CPU during each

auction round. We use the average price for all

auctions as being representative of the “global”

market price. Even though this price is smoothed

as an average (some consumers pay more and

some pay less during each time step), it shows

considerably more variance than prices set by the

commodities market. The spikes in workload are

not reflected in the price, and the variance seems

to increase (i.e. the price becomes less stable)

over time.

Excess demand for an auction is more difficult
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Figure 3. Smale’s disk excess demand for the

under­demand case. The units are simulated

file units.

to measure since prices are negotiated between in-

dividual buyers and sellers. As an approximation,

we consider the sum of unsatisfied bids and the

number of auctions that did not make a sale as

a measure of market disequilibrium. Under this

assumption, the market is in equilibrium when

all bids are satisfied (demand is satisfied) and all

auctioned goods are sold (supply is exhausted).

Any surplus goods or unsatisfied bids are “ex-

cess.” While is does not make sense to assign a

sign to these surpluses (surplus supply, for exam-

ple, may not be undemanded supply) in the way

that we can with aggregate supply and demand in

a commodity market, in absolute value this mea-

sure captures distance from equilibrium. Hence

we term it absolute excess demand.

In Figure 9 we show this measure of excess de-

mand for CPUs in the under-demanded auction.

Figure 10 shows the same data as in Figure 5

from the First Bank of G, but in absolute value.

While the First Bank of G shows more variance

in absolute excess demand, it achieves approxi-

mate equilibrium and sustains it over relatively

long periods. By contrast, the auction sets prices
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Figure 4. First Bank of G prices for the under­

demand case. Solid line is CPU price, and

dotted line is disk price in $G

that never satisfy the market. Strangely, the auc-

tion comes closest to equilibrium when demand

spikes at each day-break. We are working to un-

derstand this behavior and will report on it as part

of our future work.

From these simulation data we conclude that

Smale’s method is appropriate for modeling a hy-

pothetical Grid market and that the First Bank of

G is a reasonable (and implementable) approxi-

mation of this method. These results are some-

what surprising given the discrete and sharply

changing supply and demand functions used by

our producers and consumers. Smale’s proofs

assume continuous functions and readily avail-

able partial derivatives. We also note that auc-

tioneering, while attractive from an implementa-

tion standpoint, does not produce stable pricing

or market equilibrium. If Grid resource allocation

decisions are based on auctions, they will share

this instability and lack of fairness. A commodi-

ties market formulation, at least in simulation,

performs better from the standpoint of the Grid as

a whole. These results agree with those reported

in [36] which indicate that auctions are locally
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Figure 5. First Bank of G CPU excess demand

for the under­demand case. The units are

CPU slots.

advantageous, but may exhibit volatile emergent

behavior system wide.

3.2 Market Conditions, over­demand case

For the over-demand market case, we increase

the number of consumers to 500 leaving all other

parameters fixed. As in the under-demand case,

Smale’s method produces a stable price series

which the Bank of G is able to approximate but

which auctions are unable to match. We omit the

bulk of the results in favor of examining the be-

havior of both Smale’s method and the Bank of

G as they converge to an approximate economic

equilibrium.

Figure 11 shows the pricing information us-

ing Smale’s method for the over-demand market,

and Figure 12 shows the prices determined by the

First Bank of G. Note that Smale’s method deter-

mines a higher price for disk than CPU and that

the First Bank of G chooses a significantly higher

price for CPU, but a lower price for disk. Intu-

itively one expects a higher price for CPU than

disk since CPU is the “rarer” commodity in our
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Figure 6. First Bank of G disk excess demand

for the under­demand case. The units are

simulated file units.

simulation. The Bank of G would seem to cor-

rectly identify CPU as the scarcer commodity by

setting a higher price for it. Nonetheless, excess

demand graphs (Figures 13 and 14) for CPU in-

dicate that both solution methods are centered on

market equilibrium. While it is difficult to read

from the graphs (we use a uniform scale so that

all graphs of a certain type in this study may be

compared), the mean excess demand for the data

shown in Figure 13 is ➨❜➲✌♣➵➳ , and the the First Bank

of G data in Figure 14, the mean excess demand

is ➲❜➨❇♣➵➸ . Both of these values are near enough to

zero to constitute approximate equilibria for our

purposes.

3.3 Multiple Equilibria

We wish to examine more closely the phe-

nomenon of apparent multiple economic equilib-

ria within our simulated market. In particular, we

claim that both the solutions arrived at by Smale’s

method and by the Bank of G are valid approxi-

mations of economic equilibria and may in fact

be approximations of actual equilibria. To facili-
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Figure 7. Auction prices for the under­

demand case, average CPU price only, in $G

tate our examination, we will examine the aggre-

gate supply and demand functions over all pro-

ducers and consumers at particular points in the

simulation. To do so, we freeze the simulation

after it has reached approximate equilibrium and

then query the producers and consumers for sup-

ply and demand values over a range of prices.

This technique produces a profile of the macroe-

conomic supply and demand curves which should

reveal equilibria at their intersection points.

Recall that, in our simulated economy, CPU

and disk are highly complementary. Since de-

mand for one commodity is not independent of

demand for the other, we must generate families

of aggregate demand curves, in which the price

of one commodity is held constant while the price

of the other commodity is varied over the spec-

ified range. Each generated demand curve in a

family is associated with a single fixed price for

the other commodity. Then, the fixed price is in-

cremented and another aggregate supply curve is

generated. This process continues until the fixed

price also reaches the upper limit of the speci-

fied price range. If generating aggregate demand

curves for the CPU commodity, for example, the
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Figure 8. Auction prices for the under­

demand case, average disk price only, in $G

simulator produces one curve per price of the disk

commodity.

Note that, together, these families of curves

form a three-dimensional surface for each com-

modity in which the axes are CPU price, disk

price, and demand. That is, for each ordered pair

of CPU and disk prices there is a corresponding

CPU demand value. Similarly, a second surface is

formed from the CPU price, disk price, and disk

demand coordinates.

In contrast, the supply of a commodity in our

economy is never correlated with the supply of

another commodity and varies only with price, so

it is not necessary to produce families of aggre-

gate supply curves. Instead, we produce a sin-

gle supply curve by freezing the simulation and

varying the price of a commodity over some range

while querying for aggregate supply at each new

price value.

Figures 15, 16, 17 and 18 show aggre-

gate supply and demand curves for CPU and disk

in the over-demand case. Both Smale’s method

and the Bank of G are shown. The simulation

freezes at time slice 2000 and produces aggre-

gate curves. Rather than representing the three-
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Figure 9. Auction absolute excess demand for

CPU in the under­demand case. The units are

CPU slots.

dimensional surface of prices and demand (which

is difficult to represent without the use of color),

we depict the relationships in terms of a labeled

two-dimensional projection.

In Figure 15, the ❧ axis represents CPU price

and the ❋ axis corresponds to CPU units (either

of supply or demand). Each nearly vertical curve

is a CPU demand function relating CPU price to

CPU demand for a given disk price (shown as a

label on each curve at the top of the graph). We

only show CPU demand curves at 10 $G incre-

ments, although one exists for each possible price.

As a thick gray line, we show the CPU demand

curve that corresponds to the disk price ($G 211.4

in the figure) that Smale’s method determined at

the time we froze the simulation. The thick dot-

ted line near the bottom of the graph shows the

CPU supply curve as a function of price. The ❧
coordinate of the price point where the CPU de-

mand curve (shown in thick gray) intersects the

CPU supply curve (dotted black) corresponds to

the approximate equilibrium price for CPU within

simulated economy at the given time step. The

solid circle on the graph shows the price-point
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Figure 10. First Bank of G absolute excess

demand for CPU in the under­demand case.

The units are CPU slots.

that Smale’s method determined for the same time

step. If the circle covers the intersection (as it

does in Figure 15) the price adjustment strategy

has correctly determined an approximate equilib-

rium price for the economy.

Similarly, in Figures 16, 17, and 18 the de-

mand curves are labeled with the fixed price of

the other commodity used to produce the curve:

for example, one CPU demand curve shown cor-

responds to holding the price of disk to $G 200

while varying the price of CPU. Since demand

for one type of commodity is tied to demand for

the other, the demand curve families for both disk

and CPU tend to be similar. Only a few demand

curves in the family are shown, but it is impor-

tant to note that an infinity of such curves exist,

forming a demand curve surface. Also shown

in Figures 16, 17 and 18 are the aggregate sup-

ply curves for each commodity, shown in a thick

dotted line. Supply of both commodities remains

constant across the price range shown, because all

simulated suppliers are “producing” at maximum

capacity. No matter how high the price may be

set, no more CPU or disk is available within the
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Figure 11. Smale’s CPU and disk prices for the

over­demand case. Solid line is CPU price,

dotted line is disk price, and the units are $G.

economy.

Figures 15 and 16 have been obtained by run-

ning Smale’s method until it reaches an approx-

imate equilibrium at a CPU price of about $G

161.8 and a disk price of about $G 211.4, which

are marked as heavy dots on the respective graphs.

For Figure 15, the disk prices were then artifi-

cially fixed at various values and the CPU demand

curves, labelled by disk price across the top of the

graph, were generated by polling the consumers.

Again, in principle there exist demand curves for

all possible disk prices; we have shown only mul-

tiples of $G 10. For Figure 16, the roles of the

commodities are reversed. Note that supply of

each commodity is a function of that commodity’s

price alone, so that only one supply curve exists

on each of the graphs.

Figure 15 shows that the CPU market is

cleared for a CPU price of about $G 161 (read

from the horizontal axis) and a disk price of about

$G 211 (read from the family of curves). Sim-

ilarly, one finds from the heavy dot in Figure

16 that the disk market is cleared for about the

same respective prices for disk and CPU. How-
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Figure 12. First Bank of G CPU and disk prices

for the over­demand case. Solid line is CPU

price, dotted line is disk price, and the units

are $G.

ever, from the graphs it is possible to find other

price combinations which clear each market sep-

arately. For example, it is evident from Figure

15 that a CPU price of about $G 175 and a disk

price of $G 200 will also clear the market, since

the CPU demand curve corresponding to a disk

price of $G 200 intersects the supply curve at a

point where the CPU price is about $G 175. Now

look at Figure 16. It seems that a disk price of

about $G 200 and a CPU price of $G 175 will

clear the disk market as well! Moreover, within

the range of prices shown on the two graphs, it

looks as though any price vector which clears one

market also clears the other market as well, or at

least very nearly so. Thus it would appear that

there is a whole connected curve of market equi-

libria for our economy.

From a “behavioral” standpoint, this set of rela-

tionships between supply, demand, and price may

be explained as follows: The two commodities

are extremely complementary, meaning that they

are used together rather than in competition with

one another. As long as the consumers have some
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Figure 13. Smale’s CPU excess demand for

the over­demand case. The units are CPU

slots.

choice as to which jobs to perform (as they do

in the overdemand case, since job queues never

clear), and as long as the price of one commodity

is lowered in conjunction with a rise in the price of

the other, it is always possible for the consumers

to make purchasing decisions which allow them

to spend their allotment, choosing, if the prices

are different, to complete jobs which are more in-

tensive in the commodity which is less expensive.

It is interesting to note that in this case one can

find the point in the theory where the hypothe-

ses which rule out non-locally-unique equilibria

break down. It is apparent that in our experi-

ments the two commodities are so complemen-

tary that the demand functions shift in the same

way in response to increases in either price. Thus

the columns of the Jacobian matrix
➒➆➓ ③✸t➠④ of par-

tial derivatives of the excess demand with respect

to price are (approximately) linearly dependent at

equilibrium. By definition, then, the equilibrium

is not regular, and therefore it need not be lo-

cally unique according to the theory (Cf. Section

2.2.1).

In any event, it would seem that these appar-
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Figure 14. First Bank of G CPU excess de­

mand for the over­demand case. The units

are CPU slots.

ent multiple equilibria arise not because of any

anomalies in our method per se, but rather be-

cause our experimental economy is so very sim-

ple as to consist of only two commodities (plus

currency) which are essentially in perfect comple-

mentarity. One would expect that, as the model

becomes more complex, this particular sort of dif-

ficulty will vanish. Further, even in the presence

of multiple equilibria, each of our price adjust-

ment schemes continued to behave in such a way

as to produce long-term stability and approximate

market-clearing. This is all that one can practi-

cally hope for, since even in well-behaved (“regu-

lar”) economies, there may be multiple (isolated)

equilibria with no rational basis for choice among

them.

Our implementation of Smale’s technique,

then, finds a valid equilibrium price from among

a space of possible equilibria. The Bank of G

also finds a valid price solution, albeit a different

one from Smale’s technique. In Figures 17 and

18, we show the supply and demand curve fam-

ilies as well as their price solutions for the Bank

of G. Note again that the prices correspond to a
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Figure 15. CPU aggregate supply and demand

curves for Smale’s method, over­demand

case, iteration 2000.

global equilibrium; the CPU price point lies at

the intersection of the CPU supply curve and the

CPU demand curve corresponding to disk price

of $G 166. Since the market is in an over-demand

situation, resource consumers have no choice in

the mix of jobs they run. Rather, they can run

only jobs for which some supply is available.

Consumers’ jobs queue waiting to be serviced,

and this queue contains a mixture of CPU- and

disk-intensive jobs. Thus, from the standpoint of

global equilibrium, additional disk supply and ad-

ditional CPU supply are interchangeable; there

is ample demand to utilize either. The market

is free to choose any balance between CPU and

disk price so long as the aggregate supply of ei-

ther commodity remains fully utilized.

From this basis the price inversion of CPU and

disk between the Smale and Bank of G over-

demand simulations is easy to understand. Both

methods clear the market and control excess de-

mand. Valid price solutions are necessary to ac-

complish such control, and both techniques find
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Figure 16. Disk aggregate supply and demand

curves for Smale’s method, over­demand

case, iteration 2000.

such solutions. It is intuitively uncomfortable for

Smale’s technique to arrive at higher prices for

more plentiful commodities, but such behavior is

sound from an economic standpoint.

Note that in every case (Figures 15, 16, 17,

and 18) the respective method (either Smale or

Bank of G) determines a price that is at or very

close an approximate equilibrium price for the

economy.

As noted above, the price vector solution space

for two commodities can effectively be viewed as

a 3 dimensional plot of total absolute excess de-

mand versus the price of both commodities. Total

absolute excess demand is in this case defined as

the sum of the absolute value of the excess de-

mand for both commodities, and can be used as a

measure of closeness to economic equilibrium. In

Figures 19 and 20 we show this space of price so-

lutions for the over-demand case. For clarity, only

the point of minimum excess demand for each de-

mand curve is shown. These points form a line in

price/excess demand space along which approxi-
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Figure 17. CPU aggregate supply and demand

curves for the Bank of G, over­demand case,

iteration 2000.

mate market-clearing solutions may fall. We also

show the projection of this line of equilibria onto

the price plane, and note that the price solutions

indeed fall very near or upon this line of min-

ima. Also important to note is that the projection

is near linear with slope ❥ ❢Ù➍ . This serves as

further confirmation that the two commodities are

almost perfectly complementary. We conclude,

based on this further evidence, that both our im-

plementation of Smale’s method and the First

Bank of G are functioning correctly and achiev-

ing the results expected by the general theoretical

formulation advanced by Smale as applied to our

simple Grid economy. The results are particularly

encouraging since they do not depend upon gross

substitutability restrictions and because they can

be achieved via an implementable system which

does not require market-wide polling.

3.4 Revisiting under­demand

Having seen that our simulated economy con-

verges to real equilibria in the overdemand case,
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Figure 18. Disk aggregate supply and demand

curves for the Bank of G, over­demand case,

iteration 2000.

we can re-examine the under-demand case again

using our characterizations of its macroeconomic

behavior. Figures 21 and 22 show the economic

state of the simulation using Smale’s method, it-

eration 3119. This timeslice occurs just after the

beginning of a simulated “day”, when jobs are in-

jected into the system. The state of the system

at this point is similar to the over-demand case,

and this is reflected by the similarity of Figures 21

and 22 to Figures 15 and 16.

However, once the consumers’ jobs for the day

become serviced, the system enters an under-

demanded state. Consumers get new jobs at an

average rate of one every ten time steps, and they

typically have plenty of $G with which to service

jobs. Producers on the other hand, are mostly idle.

However, since they base their supply functions

on average profit, they still refuse to sell until a

certain threshold price is met. The state of the sys-

tem during iteration 4000 is plotted in Figures 23

and 24, using the same linear scale for the y-axes

as in the other graphs, and in Figures 25 and 26,
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Figure 19. Total absolute excess demand min­

ima, Smale’s Method, overdemand case. The

projection upon the price plane is also shown.

Filed circles represent equilibrium price solu­

tions at this iteration.

using a more readable log scale.

Although it is difficult to discern from the fig-

ures, there is no equilibrium point for both com-

modities in this graph. This is because the system

at this point is not a well-behaved economy, since

the lowering of prices does not necessarily bring

about an increase in demand. Put another way, the

demand is so low that the assumption that individ-

ual agents do not make a significant difference is

violated. Regardless, both Smale’s method and

the Bank of G default to a “normal” price. The

market is not cleared – there is a supply glut –

but prices do not become abnormally depressed.

These results indicate that both Smale’s method

and the First Bank of G will be reasonably ro-

bust with respect to degeneration in the underly-

ing economic behavior of the systems to which

they are applied.

Probing further, the behavior of the banks in

this case can be accounted for by looking at the

supply and demand curves; note that the price that

each bank finds is one where the supply curve is

almost vertical and the demand curve horizontal,

indicating a large jump in producer behavior at or
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Figure 20. Total absolute excess demand min­

ima, Bank of G, overdemand case.

near this price. This means that the excess de-

mand function for each commodity will locally

depend only on that commodity’s price and will

be extremely sensitive to small changes in price.

Thus the Jacobian matrix
➒➔➓ ③✑t⑤④ will have the

formÚÛÛÛÜ very large ❺
negative number

very large❺ negative number

Ý❙ÞÞÞß
The large diagonal entries will produce extremely

small values of à➆t for either price-adjustment

scheme. Note in this case that Smale’s method

reduces to tâtonnement (Cf. Section 2.2.1) due to

the off-diagonal zeros.

It is reasonable to expect that in more realis-

tic simulations where true market behavior holds,

and in any meaningful implementation of either

of these price adjustment schemes, the behavior

of the agents will be sufficiently heterogeneous as

to preclude the existence of such large jumps in

cumulative supply.

3.5 Efficiency

While commodities markets using Smale’s

method of price determination appear to offer bet-
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Figure 21. CPU aggregate supply and demand

curves for Smale’s method, under­demand

case, iteration 3119.

ter theoretical and simulated economic properties

(equilibrium and price stability) than auctions do,

we also wish to consider the effect of the two

pricing schemes on producer and consumer effi-

ciency. To do so, we report the average percent-

age of time each resource is occupied as a utiliza-

tion metric for suppliers, and the average number

of jobs/minute each consumer was able to com-

plete as a consumer metric. Table 2 summarizes

these values for both the over- and under-demand

cases.

In terms of efficiency, Smale’s method is best

and the First Bank of G achieves almost the same

results. Both are significantly better than the auc-

tion in all metrics except disk utilization in the

over-demanded case. Since CPUs are the scarce

resource, disk price may fluctuate through a small

range without consequence when lack of CPU

supply throttles the system. The auction seems to

achieve slightly better disk utilization under these

conditions. In general, however, Smale’s method

and the First Bank of G approximation both out-
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Figure 22. Disk aggregate supply and demand

curves for Smale’s method, under­demand

case, iteration 3119.

perform the auction in the simulated Grid setting.

4 Conclusions and Future Work

In this paper, we investigate G-commerce —

computational economies for controlling resource

allocation Computational Grid settings. We de-

fine hypothetical resource consumers (represent-

ing users and Grid-aware applications) and re-

source producers (representing resource owners

who “sell” their resources to the Grid). While

there are an infinite number of ways to represent

individual resource supply and demand in simu-

lated setting, and none are completely accurate,

we have identified a set of traits that we believe

are realistic.❡ All entities except the market-maker act in-

dividually in their respective self-interests.❡ Producers consider long-term profit and past

performance when deciding to sell.
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efficiency metric under-demand over-demand

Smale consumer jobs/min 0.14 j/m 0.05 j/m

B of G consumer jobs/min 0.13 j/m 0.04 j/m

auction consumer jobs/min 0.07 j/m 0.03 j/m

Smale CPU utilization % 60.7% 98.2%

B of G CPU utilization % 60.4% 93.9%

auction CPU utilization % 35.2% 85.5%

Smale disk utilization % 54.7% 88.3%

B of G disk utilization % 54.3% 84.6%

auction disk utilization % 37.6% 85.1%

Table 2. Consumer and Producer efficiencies
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Figure 23. CPU aggregate supply and demand

curves for Smale’s method, under­demand

case, iteration 4000.ç Consumers are given periodic budget replen-

ishments and spend opportunistically.ç Consumers introduce work loads in bulk at

the beginning of each simulated day, and ran-

domly throughout the day.

Using simulated consumers and producers

obeying these constraints, we investigate two

market strategies for setting prices: commodi-

ties markets and auctions. Commodities mar-
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Figure 24. Disk aggregate supply and demand

curves for Smale’s method, under­demand

case, iteration 4000.

kets are a natural choice given the fundamen-

tal tenets of the Grid [17]. Auctions, however,

are simple to implement and widely studied. We

are interested in which methodology is most ap-

propriate for Grid settings. To investigate this

question, we examine the overall price stability,

market equilibrium, producer efficiency, and con-

sumer efficiency achieved by three methods in

simulation. The first implements the theoretical

work of Smale [33] which describes how to ad-
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Figure 25. CPU aggregate supply and demand

curves for Smale’s method, under­demand

case, iteration 4000, log y axis scale.

just prices in a commodities market to achieve

equilibrium. It is viable in simulation, but im-

practical in the “real-world” as it relies on being

able to poll reliably producers and consumers for

supply and demand information. Often they do

not know, or will not say what their response to a

given price will be. The second method (The First

Bank of G) is an implementable approximation

to Smale’s method. It uses a large-degree poly-

nomial to approximate excess demand functions

instead of polling making it parameterizable by

observed market behavior only. Lastly, we simu-

late auctions in the style that has been investigated

previously.

Our results show that Smale’s results hold for

our simulated Grid environment, despite badly

behaved excess demand functions, and that the

First Bank of G achieves results only slightly less

desirable. In all cases, auctions are an inferior

choice.

As part of our future work, we plan two par-

allel thrusts. First, we are exploring the space of

plausible G-commerce formulations. Our goal is

to identify and test, in simulation, different possi-
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Figure 26. Disk aggregate supply and demand

curves for Smale’s method, under­demand

case, iteration 4000, log y axis scale.

ble economies for the Grid. Secondly, we plan to

construct a working version of the First Bank of

G. Our previous work with the Network Weather

Service [38, 39] and IBP [27] leaves us with the

infrastructure necessary to build a large scale sup-

ply and demand information repository. Using the

First Bank of G, we can generate prices based on

“live” supply and demand information.
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