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REVIEW

As pharmacogenetics researchers gather more detailed and complex data on gene
polymorphisms that effect drug metabolizing enzymes, drug target receptors and drug
transporters, they will need access to advanced statistical tools to mine that data. These
tools include approaches from classical biostatistics, such as logistic regression or linear
discriminant analysis, and supervised learning methods from computer science, such as
support vector machines and artificial neural networks. In this review, we present an
overview of another class of models, cluster analysis, which will likely be less familiar to
pharmacogenetics researchers. Cluster analysis is used to analyze data that is not a priori
known to contain any specific subgroups. The goal is to use the data itself to identify
meaningful or informative subgroups. Specifically, we will focus on demonstrating the use
of distance-based methods of hierarchical clustering to analyze gene expression data.

Introduction

As gene chips become more routine in basic
research, it is important for biologists to under-
stand the biostatistical methods used to analyze
these data so that they can better interpret the
biological meaning of the results. Strategies for
analyzing gene chip data can be broadly
grouped into two categories: discrimination (or
supervised learning) and clustering (or unsuper-
vised learning).

Discrimination requires that the data consist of
two components. The first is the gene expression
measurements from the chips run on a set of sam-
ples. The second component is the data charac-
terizing the samples (e.g., tumor or normal tissue,
time cells were harvested from a culture) or the
genes (e.g., regulatory factor, oncogene). For this
method, the goal is to use a mathematical model
to predict a sample characteristic, say tumor sub-
type, from the expression values. Once this model
is fit, the gene expression values of a new tumor
sample can be used to make a ‘prediction’ of its
subtype class. There are a large number of statisti-
cal and computational approaches for discrimina-
tion (i.e., supervised learning) ranging from
classical statistical linear discriminant analysis (1]
to modern machine learning approaches such as
support vector machines [2,3] and artificial neural
networks [4,5]. Microarray analysis using super-
vised learning methods was recently reviewed in
this journal [6) and will not be discussed further in
this review.

In this review, we will discuss the second group
of analytical approaches for analyzing microarray
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data: cluster analysis or unsupervised learning. In
clustering, the data consist only of the gene
expression values. The analytical goal is to find
clusters of samples or clusters of genes such that
observations within a cluster are more similar to
each other than they are to observations in differ-
ent clusters. Cluster analysis can be viewed as a
data reduction method in that the observations in
a cluster can be represented by an ‘average’ of the
observations in that cluster.

There are a large number of statistical and
computational approaches available for clus-
tering. These include hierarchical clustering
(7.8] and k-means clustering [9) from the statisti-
cal literature and self-organizing maps [10] and
artificial neural networks [4] from the machine
learning literature. While these algorithms are
relatively equivalent in terms of performance
(i.e., one method does not dominate all oth-
ers), the focus of this paper will be on hierar-
chical clustering. For a broad overview of the
multivariate statistics used in cluster analysis
the reader is referred to Timm [11]. For a broad
overview of both unsupervised and supervised
learning methods from both the statistics and
machine learning literature, the reader is
referred to Hastie et al. [12). For a broad over-
view of the application of these methods to
biological data the reader is referred to Legen-
dre and Legendre [13]. Each of these references
cover hierarchical and other clustering meth-
ods in more mathematical detail than pre-
sented here and show their application to data
for illustration.
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Raw data

Gene expression data measured by gene chips
(microarrays) are preprocessed using image anal-
ysis techniques to extract expression values from
images and scaling algorithms to make expres-
sion values comparable across chips. These pre-
processing steps are generally done with a
microarray-platform  vendor’s  software  or
through software developed by researchers inter-
ested in improving the estimates of the expres-
sion data [14,15]. While these steps can have a
significant impact on the quality of the data and
are an area of active research, our review will start
with the assumption that these preprocessing
steps have already been performed and the esti-
mates of the expression level are as good as can
be obtained.

Expression data are typically analyzed in
matrix form with each row representing a gene
and each column representing a chip or sample.
For a study with 20 samples run on Affymetrix
GeneChips™, the dimensions of the data
matrix would be (approximately) 12,000 rows
(one for each gene) by 20 columns. Newer chips
have even more genes on them. Often there will
be one additional column giving the gene label
for identification. However, this column is
excluded from analysis and only the chip col-
umns containing expression values are used.

We represent the data matrix by the symbol X
and denote the data as follows:

Gene | Chip1  Chipz ... Chip20

! X1 X1, e X120
X= 2 X241 X2.2 e X500

3 X3 X3 e X320

12,000 X120001  X120002  +++ %1200020

The matrix entries correspond to the expres-
sion value of a gene (row) and chip (column).
For example, X, is the expression value of gene
1 insample 1, X3018 the expression value of gene
3 in sample 20, etc. In general the notation x;
corresponds to the expression level of gene 7 in
sample j. While this notation may seem clumsy
at first, it is important to understand the ‘struc-
ture’ of the data to learn how the analysis is done
and how the results should be interpreted.

Most software programs use the data matrix X
in this form to cluster genes. There is no reason

that clustering cannot also be done directly on
columns. However, to simplify discussion in this
paper and to be consistent with many statistical
packages, to cluster samples we will use the zans-
position of X. This is obtained by flipping the
matrix across the diagonal so that the columns
become the rows and the rows become the col-
umns. This changes the dimensions from the
original 12,000 rows by 20 columns to a matrix
of dimension 20 rows by 12,000 columns. In
this format the samples are the rows and the
genes are the columns. We denote the transposi-
tion of X by X”:

Chip | Gene Gene Gene . Gene
1 2 3 12000
! Jia Ji2 i3 woo o J112000
XT= 2 Vi Y22 Y23 s )2,12000
20
D1 Y2 Y203 wo J20,12000

The matrix entries of X%, coded as Jij» corre-
spond to the expression value in a chip (row) for
a given gene (column). For example, y; ,, is the
expression value in sample 3 for gene 20. In gen-
eral, the notation Vij corresponds to the expres-
sion level in sample 7 for gene /, s0 y;; = x; .

Filtering
The first step in analyzing microarray data is to
filter out genes that are not expressed or do not
show variation across sample types. In our expe-
rience, this usually reduces the data set by 3000—
5000 genes. The Affymetrix GeneChips contains
a variable for each gene that declares whether the
gene was expressed, not expressed or indetermi-
nate. We always remove from the analyses the
rows corresponding to genes that were not
expressed on any of the chips. Other strategies
for gene filtering include filtering at a threshold
of the variance of the gene across chips or if two
or more tissue types are represented in the exper-
iments, filtering at a threshold of a test statistic.
For example, if gene chips are used to analyze
tumor and normal tissues, the two groups can be
compared using t-statistics calculated for each
gene. An arbitrary threshold based on a value for
the t-statistic or to filter out a certain percentage
of the genes can be used.

These methods of filtering genes are arbitrary
(except, perhaps, for filtering out genes based on
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the expression/no expression call by Affymetrix
software). However, if used conservatively to fil-
ter out only the least differendally expressed
genes, the analyst should be protected from elim-
inating any important genes.

Standardized data

Although clustering methods can be applied to
the raw data, it is often more useful to precede
the analysis by standardizing the expression val-
ues. Standardization in statistics is a commonly
used tool to transform data into a format needed
for meaningful statistical analysis [16]. For exam-
ple, variance stabilization is needed to fit a regres-
sion model to data where the variance for some
values of the outcome Y may be large, say for
those values of Y corresponding to large values of
the predictor variable X, while the variance of ¥
is small for those values corresponding to small
values of X. Another use of standardization is to
normalize the data so a simple statistical test
(e.g., t-test) can be used. Transformations specif-
ically designed to allow standard statistical tests
to be applied to microarray data are currently
being proposed [17,18].

Transformation of microarray data for cluster
analysis has a different purpose than transforma-
tions used to meet assumptions of statistical tests
as described above. Cluster analysis depends on a
distance measure (discussed in the next section).
Since distance measures are sensitive to differ-
ences in the absolute values of the expression val-
ues (scale), microarray data for clustering often
needs to be transformed to adjust for different
scales. To illustrate this, consider three hypothet-
ical genes A, B and C, whose expression levels
have been measured in four normal tissue sam-
ples and four diseased tissue samples. The results
of these measurements are displayed in Figure 1A.
Genes A and B are tightly coregulated and differ-
entially expressed across tissue types (i.e., higher
in diseased tissue relative to normal tissue) but
gene A is expressed at a much higher level than
gene B. Gene C is not differentially expressed
across tissue types but happens to have average
expression levels similar to that of gene A. We
typically want to find clusters that place genes A
and B together because they appear to be coregu-
lated (low in normal tissue, high in diseased tis-
sue) but would not cluster them with gene C
which is constant across all tissue samples. Clus-
tering using the raw expression profiles would
separate genes A and B and cluster genes A and
C. Figure 1B shows the expression profiles for the
same three genes after normalization (see below)

REVIEW

across samples. In this transformed data, we see
the expression values for genes A and B are
closely aligned. In contrast, the values for gene C
fluctuate randomly. This transformation results
in the representations for genes A and B being
near each other and thus increases the likelihood
that they are clustered together.

Normalizing a gene across samples is accom-
plished by subtracting from each expression level
the mean of the expression levels for that gene
and then dividing by the standard deviation of
that gene. Our matrix notation in the last section
can now be used to clarify how the normaliza-
tion is done. The data matrix X consists of rows
of genes we want to normalize. Consider the first
gene at row 1 consisting of the expression levels
X1 1> X195 - » X g corresponding to gene 1 in
sample 1, gene 1 in sample 2 etc. We calculate
the mean of gene 1 by

Xpat X+ ..o +X1 50
20

, =

and the standard deviation of gene 1 by

s = J(Xl,l_xl)2+(xl,2_xl)2+ ---"'()(1,20_7(1)2
' 20-1

+ indicates to add all the
terms between x; , and x; 5. With these terms,
the normalized expression values are:

The notation ‘+ ...

X1 =X X=X X120~ %1
) s e

S1 S1 ’ S

Most statistical programs can apply this nor-
malization to each row of the matrix X. While
conceptually this normalization might also be
applied to each row of the transposed matrix
X7, we have found this not useful for uncover-
ing structure in cluster analysis. We recom-
mend that normalization be applied to genes
across samples only.

Distance measures

Many cluster analysis methods, including hierar-
chical clustering, distances
between rows of the data matrices X or X7 Meas-
uring distances can be thought of as placing a
ruler between two points and recording how far
apart they are. To make this idea more clear
before we present formulae for calculating dis-
tances, consider a simple example where the data
matrix X consists of gene expression values

use measured

(rows) measured on only two samples (columns).
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Figure 1. Gene expression profiles before and after normalization.
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With just two samples (chips) we can plot each
gene as a point on a two-dimensional scatter plot
where the X-axis corresponds to the first chip
and the Y-axis corresponds to the second chip.
Consider three genes (A, B and C) whose expres-
sion levels are measured in the two samples:

Gene ‘ Chip1 Chip2
A 2.0 1.0

B 15 -0.5
C 1.0 0.25

These three genes can be plotted on a standard
scatter plot as shown in Figure 2.

In addition to the gene labels A, B and C, this
graph shows the calculated distances between
each of these genes where the distances are calcu-
lated using the Euclidean distance formula. Spe-
cifically the distance between genes A and B is
calculated by the formula

d(AB) = (20— (~15))’+ (LO—(-0.5))° = 1.58

between genes A and C by

d(AC) = (~20-10)>+(10-0.25) = 3.09

and between genes B and C by

d(B,C) = J(=15-1.0)° +(-0.5-0.25)° = 261

For convenience we record distances in a dis-
tance matrix

A B C

A |0.00 1.58 3.09
B [1.58 0.00 2.61
C |3.09 2.61 0.00

D =

Pharmacogenomics (2003) 4(1)
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Figure 2. Scatterplot of three genes from two samples.
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The entries correspond to the distances
between the genes denoted on the row and col-
umn (e.g., d(A,B) = 1.58). Note that the dis-
tances on the diagonal are all 0, the distances are
all non-negative and the matrix is symmetric
(e.g., d(A,B) = d(B,A)).

We now want to generalize the idea of the
Euclidean distance matrix for any microarray
data. Specifically, recall the data matrix is

Gene | Chip1 Chip2 Chip20

! X1 X2 X120
X= 2 X1 X2,2 X220

3 X3 X3 X320

12,000 X12000,1 X12000,2 X12000,20

where each row represents a gene and each col-
umn represents a chip. We will assume the data
has been normalized. Distances are calculated
between each pair of rows in X: d(1,2) is the
distance from row 1 to 2, d(1,3) is the distance
from row 1 to 3, d(1,12000) the distance from
1 to 12000, d(2,3) the distance from row 2 to
3, etc. The Euclidean distance for any two
rows, say rows 7 and j, is calculated using the
expression values for all the chips in those two
rows as follows:

d@ij) = «/(Xi,l—xj,l)z"' (Xi,2— j,z)2 + oo+ (Xi 20— X, zo)2

Notice that the subscripts on thex’s change for
the column (chip) number. In words, this calcu-
lation is performed by subtracting the expression
level of gene j from gene 7 and squaring it in each
chip from 1 to 20, adding these values together
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and then taking the square root of the sum. No
matter how many chips there are, for 12,000
genes this produces a 12,000 by 12,000 distance
matrix containing 144,000,000 numbers indi-
cating the computational complexity involved in
cluster analysis.

There are many other distance measures that
could be used (i.e., Manhattan distance) though
we believe the Euclidean distance is generally
appropriate for normalized microarray data.

Hierarchical clustering

Several different algorithms will produce a hier-
archical clustering from a pair-wise distance
matrix. Each of these algorithms follows the
same general strategy. Suppose we are clustering
genes. The algorithms begin with each gene by
itself in a separate cluster. These clusters corre-
spond to the tips of the clustering tree (dendro-
gram). The algorithms search the distance matrix
for the pair of genes that have the smallest dis-
tance between them and merge these two genes
into a cluster. The distance matrix is recalculated
to now include the distance between genes not
clustered and the new cluster formed by the two
genes. For simplicity, we will assume that only
two genes are merged at each step, though more
could be merged at any step.

Many algorithms follow this series of steps to
produce hierarchical clustering of data. Varia-
tions between the algorithms can lead to differ-
ent dendrograms and hence different clusters.
We will consider an average linkage algorithm
called unweighted centroid clustering for illustra-
tion and then compare it to other hierarchical
clustering algorithms. It should be noted that
different authors define average clustering in dif-
ferent ways. For example, others refer to the def-
inition of average clustering used by Hastie ez /.
(121 as unweighted arithmetic average clustering.
Readers interested in more technical descriptions
of four average clustering algorithms should refer
to Legendre and Legendre [13].

To illustrate our average linkage algorithm,
recall the distance matrix calculated above for
three genes A, B and C. Suppose we have added
a fourth gene D and recalculated the distance
matrix D,

A B C D

0.00 1.58 3.09 4.74
1.58 0.00 2.61 5.00,
3.09 2.61 0.00 2.70
4.74 5.00 2.70 0.00

OO0 w>»

Figure 3A-D shows the steps of the average link-
age clustering and the dendrogram obtained. In
Figure 3A the four genes are plotted and the dis-
tance between each pair is indicated on the line
connecting them. Initially, the algorithm finds
the pair of genes closest to each other and merges
them into a cluster. For this example, the first
step merges genes A and B whose distance is
1.58. The distances are updated as follows:
Replace the two genes A and B by the midpoint
(AB) between them and recalculate the distance
of gene C to this midpoint (d(AB, C) = 2.85)
and gene D to this midpoint (d(AB, D) = 4.81).
Note that d(C, D) = 2.7 is unchanged. The
updated distances are shown in Figure 3B. The
algorithm then repeats by finding the genes (or
clusters) that have the smallest distance between
them. In this iteration, genes C and D are clus-
tered and replaced by their midpoint. The dis-
tance to all other gene clusters (such as AB) from
this midpoint is calculated and the algorithm is
repeated. Figure 3C shows the final distance d(AB,
CD) = 3.83. Gene clusters AB and CD are
merged in the last step of the algorithm.

Figure 3D summarizes the results of applying
the average linkage algorithm to this data in a sin-
gle graph known as a dendrogram. Initially, the
four genes A, B, C and D are represented as single
clusters along the bottom of the plot. Genes A
and B are merged first at the level 1.58, followed
by genes C and D being merged at the level 2.7,
followed by AB and CD being merged at level
3.83. The dendrogram was fit and displayed
using S-Plus (Seattle, Washington) software.

We presented the average linkage algorithm in
Figure 3 in two ways to emphasize the relationship
between a dendrogram and the pair-wise spatial
distances of the genes. In this example, there
were two chips so that the genes could be plotted
in a scatter plot but the concept is the same for
experiments with more than two chips. In gen-
eral, the genes are points in a space whose
number of dimensions equals the number of
chips in the experiment. Regardless of the
dimension of the problem, the Euclidean dis-
tance between genes or gene clusters can be cal-
culated and each iteration of the algorithm
merges the genes or gene clusters that have the
smallest distance.

The final clustering of the genes is determined
by where the dendrogram is cut. For example,
cutting the dendrogram at level 3 (on the y-axis)
results in the two clusters AB and CD, while cut-
ting the dendrogram at the level 2 produces the
three clusters AB, C and D. This dendrogram

Pharmacogenomics (2003) 4(1)
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Iterations of a hierarchical clustering and the resulting dendrogram.
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can produce four distinct cluster results: ABCD
when the dendrogram is not split; AB and CD
when split into two groups; AB, C and D when
split into three groups; and A, B, C and D when
split into four groups.

Average linkage is one of many hierarchical
clustering algorithms that operate by iteratively
merging the genes or gene clusters with the small-
est distance between them followed by an updat-
ing of the distance matrix. Many of these differ
only in how the distance matrix is updated. In
average linkage, as shown above, when two genes
are clustered, the distances of the other genes and
gene clusters to this new cluster is based on the
midpoint of the new cluster. In contrast, single
linkage calculates the distances between each
gene in the new cluster to each of the genes in
another cluster and takes the smallest distance.
Complete linkage uses the largest distance of
all these distances as the distance between the

clusters. For example, in Figure 3A the first merg-
ing clustered genes A and B and the distance of
this new cluster to gene D was d(AB, D) = 4.81.
For single linkage, the distance would be d(AB,
D) = 4.74 and for complete linkage the distance
would be d(AB, D) = 5.

In practice, we have found the average linkage
algorithm generally works well with standardized
microarray data and single linkage generally per-
forms poorly.

Difficulties and pitfalls of cluster analysis

Unlike standard statistical methods, such as the
t-test and analysis-of-variance, hierarchical clus-
tering does not have a probabilistic foundation.
Because of this, hierarchical clustering has no
statistical test to guide the decision of where to
cut the dendrogram. While it is possible to
compute a formal test statistic, such as an F-test
statistic, the assumptions of the statistical test are
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not met. Thus, the p-value listed in a statistics
table would not represent the probability of the
test-statistic value arising under the null hypoth-
esis. In other words, the p-value has no meaning
and is not a measure of the statistical significance
of the clusters being different.

In the absence of formal statistical tests,
external criteria are typically used to choose the
number of clusters. One such criterion is that if
splitting a tree at a particular point produces
clusters of genes or samples that are nearly
homogeneous with regard to an important
property, the split would be deemed appropri-
ate. For example, if splitting a tree at a particu-
lar height resulted in mostly tumor samples in
one cluster and mostly normal samples in the
other, the split would likely be considered inter-
esting. Such a split is considered to be evidence
that some of the genes used to generate the tree
may be involved with the biology of the tumor
and hence the genes warrant further scrutiny.
The obvious problem with this approach is the
subjective nature of deciding which external
criteria to use.

A second difficulty with cluster analysis is that
the algorithms are guaranteed to produce clus-
ters from any data and there is currently no gen-
erally accepted way to test a null hypothesis of no
clusters (e.g., data are distributed uniformly).
For this reason, caution is required in interpret-
ing the results of a cluster analysis method. The
results always need to be examined to see if it is
plausible that they are indeed natural clusters
and not just artifacts of the algorithm.

In spite of these two problems, cluster analysis
is a powerful tool for data reduction. One must
remember that data reduction is the chief pur-
pose of a cluster analysis. Since microarrays
present the researcher with thousands of gene
expression values, the data must be reduced
before a human can tell an explanatory story
about the relationship between genes and the
phenotypes. Putative relationships between clus-
ters of genes and phenotypes need to be recog-
nized as nothing more than hypotheses
generated by clustering methods. The clustering
process has not statistically validated the rela-
tionships and they must be formally validated
through additional experiments.

Methods are currently being developed to
address the weaknesses of cluster analysis. We
believe that the current interest in applying clus-
ter analysis to genomics will generate enough
research effort to successfully meet this chal-
lenge. For example, one method to determine

the number of clusters without resorting to
external criteria is to use the number that opti-
mizes the Gap statistic, a statistic comparing
within-cluster dispersion (spread of data points)
to dispersion under the null hypothesis [12,19].
Another approach uses a perturbation method
(sensitivity analysis). It introduces a small
amount of random noise to the expression data,
reclusters the data and then compares the results
to the original clustering [20]. Our lab has begun
investigating a formal statistical approach based
on graph theory and a probability distribution
on graphical objects [21] and another approach
based on Mantel statistics which are briefly dis-
cussed below [221. In spite of these efforts, the
problem of selecting the correct number of clus-
ters remains open after fifty years of study.

In summary, in spite of the danger of misusing
or misinterpreting the results of cluster analysis,
as long as one keeps in mind that cluster analysis
is only appropriate for data reduction and
hypothesis generation, the pitfalls can be
reduced or avoided.

Heat maps
Hierarchical clustering is used to produce what
have been called ‘heat maps™ in papers reporting
on microarray data analyses. The heat map
presents a grid of colored points where each color
represents a gene expression value in the sample.
Figure 4 is an example taken from a recent paper
using expression levels for cancer classification
(23]. The grid coordinates correspond to the sam-
ple by gene combinations. In this case, the col-
umns (samples) are tumors, some from patients
who have relapsed and some from patients who
have not relapsed. The rows represent 348 genes
found to distinguish the patients according to
their relapse status. In the heat map colors at a
particular point (i.e., row by column coordinate)
are assigned to represent the level of expression
for that gene (row) in the sample (column) with
red corresponding to high expression, green cor-
responding to low expression and black corre-
sponding to an intermediate level of expression.
The ordering of the rows and columns was
determined using hierarchical clustering and the
associated dendrogram for the samples shown at
the top of the figure. In this example, six relaps-
ing patients were clustered together to the left
and the non-relapsed patients clustered to the
right. The heat map gives an overall view that
the 348 genes have low expression in the relapse
patients as indicated by the green color in the
left-hand columns under the relapse patients. In

Pharmacogenomics (2003) 4(1)
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Figure 4. An example of a heat map. Reproduced from [23].
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contrast, the non-relapse patients have higher
expression levels for these genes as indicated by
the red and black colors in their columns.

Other methods

Our group has developed and used several other
methods based on clustering. We will provide a
brief description of three of these methods and
provide references for detailed descriptions. We
have found these methods useful with data from
various studies including psoriasis [24], oncology
25] and pharmacogenetics [26].

K-means clustering and self-organizing maps
Hierarchical clustering assumes a hierarchical
structure in the data wherein all the genes start
separately in their own cluster at the bottom of
the dendrogram and iteratively merge into larger
clusters as one goes up the tree. K-means and self-
organizing maps (SOMs) cluster genes without
assuming a hierarchical structure. Instead K-
means starts with k genes sampled randomly from
the data. Each of these genes is used as the starting
center of one of the k clusters. Distances are calcu-
lated from each gene in the data to each of these £
centers. Genes are then assigned to the closest

center. Each center is then replaced by the average
of the genes assigned to it. The algorithm repeats
by recalculating the distance from each gene in the
data to these new centers and reassigning genes to
the closest center. This repeats until no genes are
reassigned. For example, consider two gene clus-
ters involved in the regulation of non-overlapping
metabolic pathways. It may not be reasonable ever
to merge these two groups of genes, as would be
required by the hierarchical structure of a dendro-
gram. SOMs are similar to k-means but with
slightly different iteration and update steps. The
details of this technical distinction are not perti-
nent to this overview article [11,12,24,27,28].

Mantel statistic

Mantel statistics provide a method to assess the
correlation between two distance measures on
the same data [29,30. We applied this method to
microarray data measured on brain tumors to
statistically correlate the expression patterns with
clinical covariates [22,25]. Since we wanted the
clustering done on the samples, we used the
transposed data, X7, Two distance matrices, one
based on the microarray expression values and
the other using the clinical information,
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represent the pair-wise distances between the
same samples in terms of two different factors. If
samples that are far apart in the distance based
on the microarray data are also far apart in the
distance based on the clinical data and samples
that are close in the microarray data are close in
their clinical data, the pair-wise distances are
positively correlated. This can indicate that clin-
ical differences are related to gene expression dif-
ferences. The Mantel statistic provides a formal
statistical framework for quantifying these rela-
tionships and permutation tests can provide
accurate p-values for testing significance.

Consensus methods

This is a mathematical framework to combine
the results of multiple cluster analyses into a final
cluster result [22,31,32]. Conceptually, if two genes
are very similar, they will be clustered together
by most hierarchical clustering algorithms, dis-
tance measures and reasonable stopping rules. A
consensus method will put those two genes into
the same cluster in the final analysis. Similarly, if
two genes seldom appear together, the consensus
method will not put them in the same cluster.
We are currently investigating how consensus
methods might automate the choice of where to
cut a dendrogram using bootstrapping to gener-
ate multiple cluster results and have applied it
with encouraging results.

Conclusion
We have focused on presenting an overview of
hierarchical clustering of microarray data as a
tutorial, emphasizing the relationship between a
dendrogram and spatial representations of genes.
We believe this relationship provides an intuitive
understanding of how to analyze microarray data
and can make it easier to interpret the results of a
cluster analysis in a biological framework. The
fact that the ‘heat maps’ found in the majority of
microarray publications are based on hierarchical
clustering indicates that an understanding of this
general method is valuable to those who are just
beginning to read the microarray literature and
even to those who are using supervised methods.
We have avoided a discussion of implemen-
tation since most major statistical packages pro-
vide methods for cluster analysis and
visualization and the choice of the package will
depend on the level of computational and sta-
tistical expertise available in the particular lab.
In our case, as professional statisticians, mathe-
maticians and computer scientists, we use two

advanced statistics packages: SAS (Cary, North

Carolina) and S-Plus (Seattle, Washington).
These packages contain many standard-cluster-
ing approaches used with microarray data and
can be programmed to perform novel methods
such as Mantel statistics or consensus methods.
However, these packages require a high level of
programming skill and most research groups
will want to look for a statistical package that is
easier to use.

We presented a brief description of hierar-
chical and some non-hierarchical clustering
methods based on distance measures that our
lab has used with success. There are many non-
distance-based methods available, including
principal component analysis, gene shaving,
Bayesian  methods and  mixed-models
approaches. We cannot present all of them in
this review article and have not yet had the
need to use them in our own work. Our view is
that microarray data should be analyzed using
distance-based methods instead of parametric
model approaches because the assumptions for
parametric models are currently hard to justify.
We realize, of course, that as researchers gain
more experience analyzing microarray data
using parametric models and develop a solid
probabilistic foundation for these approaches,
some of these non-clustering methods may
later become the de facro analytical framework
of choice.

We emphasize the complexity and technical
difficulty of performing cluster analysis. We do
not see these methods as trivial to implement
and would encourage researchers to begin
building long-term collaborations with statisti-
cians. However, cluster analysis and microarray
data present novel problems with which many
statisticians will have had no experience.
Therefore, the collaboration will require a sig-
nificant investment to introduce the statisti-
cian to these fields. One attraction to this field
for a statistician is the opportunity for novel
statistical methods research. This should be
emphasized and supported as these collabora-
tions develop.

Finally, we mention the Classification Society
of North America [101] as an excellent cluster
analysis resource. This organization supports the
development of clustering and classification
methods and the application of these methods to
many academic fields. The society also publishes
the prestigious Journal of Classification [102],
which publishes fundamental papers on cluster
analysis. In addition, the society maintains the
class-1 list server, an excellent forum for raising
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Highlights

e Supervised learning methods can predict membership in predetermined
groups and identify genes important for classification. They require
training data with known group assignment for each data point.

e Cluster analyses attempt to detect natural groups in data and identify genes
important for classification. No a priori group assignments are required.

e Cluster analysis consists of a collection of distance-based unsupervised
learning methods including hierarchical clustering, k-means clustering,
self-organizing maps, principal components analysis, and Mantel statistics.

* Gene expression microarray data is typically filtered and normalized before
using cluster analysis.

e Cluster analysis results should be used for data reduction and hypothesis
generation.

* The heat map, a useful data visualization and summary tool, is a product
of hierarchical clustering.

¢ Drawbacks of cluster analysis include lack of statistical tests for

REVIEW

questions about cluster analysis. It is accessible
through their web page [102].

Outlook

Current methods of analyzing microarray data
based on hierarchical clustering use 'off-the-
shelf algorithms developed over the last
50 years. Little work to date has been done to
modify these methods for microarray data taking
into account biological knowledge such as
expected clusterings based on genes involved in
metabolic pathways or genes sharing regulatory
sites. Incorporating this type of knowledge will
require a significant investment of time and sup-
port for statistical methodologists, but the added
value of this research investment to pharmacoge-

determining the number of clusters or the strength of cluster membership.

nomic studies should be huge.
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