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Smartphones are mobile devices that travel with their owners and provide increas-

ingly powerful services. The software implementing these services must conserve bat-

tery power since smartphones may operate for days without being recharged. It is hard,

however, to design smartphone software that minimizes power consumption. For ex-

ample, multiple layers of abstractions and middleware sit between an application and

the hardware, which make it hard to predict the power consumption of a potential ap-

plication design accurately. Application developers must therefore wait until after im-

plementation (when changes are more expensive) to determine the power consumption

characteristics of a design.

This paper provides three contributions to the study of applying model-driven en-

gineering to analyze power consumption early in the lifecycle of smartphone applica-

tions. First, it presents a model-driven methodology for accurately emulating the power

consumption of smartphone application architectures. Second, it describes the System

Power Optimization Tool (SPOT), which is a model-driven tool that automates power

consumption emulation code generation and simplifies analysis. Third, it empirically

demonstrates how SPOT can estimate power consumption to within ∼3-4% of actual

power consumption for representative smartphone applications.

1 INTRODUCTION

Emerging trends and challenges. Smart devices, such as smartphones and tablet com-

puters have been steadily increasing in capabilities and performance. Modern devices

commonly contain multi-core CPUs running at clock speeds well over 1GHz. For ex-

ample, the Galaxy Nexus from Google contains a 1.2 GHz, dual-core processor with

1GB of RAM and other Android smartphones now have quad-core processors.

The increased performance of smart devices comes at a cost, however. Due to their

mobility, smartphones and tablets run exclusively on battery power, so every increase

in performance must be balanced with an increase in battery capacity to maximize the

time between charges. The design of applications running on the device can also impact

battery life, e.g., frequently sampling the GPS or making network requests can consume

a significant amount of power.

To balance functionality with power consumption effectively, developers must un-

derstand various trade-offs. A key trade-off is between performance and battery life, as

well as the implications of the application and infrastructure software architecture on

power consumption. Functional requirements, such as minimum application response

time, can conflict with power consumption optimization needs.



For example, a traffic accident detection application [29] must be able to detect sud-

den accelerations indicative of a car accident. To detect acceleration events that indicate

accidents, the application must sample device sensors and perform numerous calcula-

tions at a high rate. Conflicts occur between the functional requirements (e.g., the min-

imum sensor sampling rate needed to accurately detect accidents) and non-functional

requirements (e.g., sustaining operations on the mobile device without frequent battery

recharging).

Due to complex middleware, operating system (OS), and networking layers, it is

hard to predict the effects of application software architecture decisions on power con-

sumption a priori, i.e., without actually implementing a design, which makes it hard

to analyze the power consumption of design until late in the development cycle, when

changes are more expensive [10]. For example, a developer may elect to use HTTPS

instead of HTTP to satisfy a security requirement by making communication between

the application and server more confidential. It is currently hard, however, to predict

how much additional power is consumed by the added encryption and decryption of

data without actually implementing the system.

It is also hard to quantify the trade-off between power consumption and security,

as well as many other design decisions. Moreover, certain design decisions, such as

data transmission policies (e.g., should an application transmit immediately or wait for

a specific medium like a Wi-Fi or 3G cellular connection) are hard to analyze early in

the design cycle, due to their variability. For example, if an application only sends data

intermittently, it may be beneficial to transmit small amounts of data over cellular con-

nections due to the decreased power consumption of 3G cellular connection compared

to Wi-Fi [1]. If a large amount of data must be sent, however, the total time required to

transmit it over 3G may negate the benefit of using the less power consumptive connec-

tion. The cellular connection will take longer to transmit the data, therefore, which may

in turn consume more total power than the Wi-Fi radio that can transmit the data faster.

Solution approach → Power consumption emulation of mobile software archi-

tectures with model-driven testing and auto-generated code. By using Model-driven

Engineering (MDE) [22], we allow developers to specify a domain-specific modeling

language(DSML) [17] to capture key software architecture elements related to power

consumption. Developers can then use automated code generators to produce emula-

tion code from this model. Developers can also execute the generated emulation code

on target hardware, collect power consumption information, and analyze the applica-

tion’s power consumption prior to actual deployment.

This emulation code allows developers to analyze proposed software architectures

prior to investing significant time and effort in a complete implementation of the de-

sign. The auto-generation of emulation code also enables developers to compare a

range of different designs quantitatively during initial phases of a development pro-

cess [9], which allows developers to select designs that satisfy both functional and non-

functional requirements while minimizing overall power consumption. This analysis

can also occur early in the software lifecycle (e.g., at design time), thereby avoiding

costly changes to optimize power consumption later downstream.

This paper describes the System Power Optimization Tool (SPOT), which uses MDE

techniques to analyze the power consumption of mobile software architectures. SPOT



allows developers to create high-level models of candidate software architectures using

the System Power Optimization Modeling Language (SPOML) that capture key soft-

ware components related to power consumption. SPOT generates emulation code from

the model that can be executed on target devices.

As the SPOT-generated emulation code runs it is instrumented to collect power con-

sumption data. This data can later be downloaded and analyzed offline. Developers can

apply this emulation and analysis cycle to understand power consumption implications

of their designs without expensive and time consuming manual programming using

third-generation languages, such as C#, C/C++, and Java.

SPOT’s generated emulation code mimics key power-consuming aspects of a pro-

posed software architecture. Key power consumptive components of mobile applica-

tion software architectures include GPS, acceleration, orientation, sensor data con-

sumers, and network bandwidth consumers [21]. Focusing SPOT on these components

allows developers to model the most significant power expenditures of their applica-

tions. Moreover, as applications are constructed, the generated emulation code can be

replaced incrementally with actual application components, allowing developers to re-

fine the accuracy of the analysis continuously throughout the software lifecycle.

This chapter extends our prior work on model-driven application power consump-

tion analysis [25] by providing the following new contributions: (1) surveying related

work on optimizing power consumption, domain-specific power optimizations, software-

based power consumption estimation, and mathematical power estimation models (2)

quantitatively analyzing the accuracy of a SPOT model based on only key power-

consuming components and showing how modeling only power consuming components

allows developers to avoid the accidental complexities of non-power consuming archi-

tectural aspects, (3) discussing the implications of the simplified model on application

software architecture and design, (4) empirically evaluting the effects of design deci-

sions, such as sensor sample rate, on overall application power consumption, and (5)

describing how data produced by SPOT can be used to refine and optimize application

power consumption.

Paper organization. The remainder of this paper is organized as follows: Sec-

tion 2 compares SPOT with related work on optimizing power consumption; Section 3

outlines a motivating example we use to showcase and evaluate SPOT’s functionality

throughout the paper; Section 4 summarizes the challenges associated with predicting

power consumption of mobile application software architectures; Section 5 describes

the structure and functionality of SPOT and SPOML; Section 6 empirically evaluates

SPOT’s power prediction capabilities and shows how its modeling primitives and em-

ulation infrastructure can accurately predict power consumption for representative mo-

bile applications on the Android smartphone platform; and Section 7 presents conclud-

ing remarks.

2 Survey of Related Work

This section provides a survey of prior work that compares SPOT with related research

in the following categories:



– System execution modeling tools, which model and evaluate performance related

information early in an application’s development process,
– Domain-specific power optimizations, which are approaches for reducing the

power consumption of specific application functions, such as geo-localization,
– Power instrumentation and mathematical estimation of power consumption,

which attempt to directly measure or predict power consumption of an application,
– Hardware-based power consumption optimization, which involves specialized

firmware or low power physical hardware,
– Network protocol optimizations are made in the network stack to reduce the over-

all amount of data transmitted as well as contention on the physical link,
– Post-implementation power consumption analysis requires developers to com-

pletely implement an application before analyzing its power consumption.
– Model-driven engineering which uses domain-specific modeling languages and

code generation to reduce development time and cost.

As discussed below, these methods of power consumption optimization are effective

at reducing overall power consumption and are complimentary to SPOT. SPOT does

not optimize the power consumption of an application, but rather allows developers to

analyze the power consumption of key power consuming elements of an architecture at

design-time.

System execution modeling tools. The Component Utilization Test Suite (CUTS) [9]

is a system execution modeling tool [23] that allows developers to model key architec-

tural elements of distributed systems that determine performance. CUTS allows devel-

opers to model a distributed software architecture and then generate emulation code to

predict performance. Although CUTS and SPOT share common domain-specific mod-

eling patterns, CUTS’s modeling abstractions focus on performance-related aspects of

distributed systems, whereas SPOT’s modeling abstractions focus on important power

consumers in mobile applications, such as GPS usage. Moreover, it is not possible to

capture power consumption information from CUTS emulation code or to generate mo-

bile emulation applications for Android or iPhone.

Domain-specific power optimizations. Prior work has examined domain-specific

power optimizations that are geared towards a specific type of software feature. For ex-

ample, Kjasrgaard et al. [12] have evaluated specialized approaches for optimizing the

power consumption of location-based services using both client and server modifica-

tions. They propose lowering the accuracy of position information based on application-

specific information, such as the current zoom level of a map. Other optimizations they

propose include caching position and then continuing to report that position as long as

the device is expected to be within a specified threshold of that cached position.

Many optimizations proposed by Kjasrgaard et al. are obtained through power pro-

filing of applications. SPOT is complementary to this work and provides tools for pro-

filing software applications early in their lifecycle. SPOT’s goal is to aid developers in

discovering the types of power optimization strategies described by Kjasrgaard et al.

Another area of mobile power consumption that studied by Thiagarajan et al. [24]

is the energy expended downloading and rendering web pages using a mobile browser.

They have conducted extensive instrumentation of mobile devices and webkit-based

browsers to profile exactly how much energy is consumed during each phase of access-

ing a mobile site. For example, they measure the variabilities of energy consumption



across popular sites, such as Apple and Amazon, as well as exploring how images,

javascript, and overall rendering consume power on the device. Their research high-

lights the importance of known optimizations, such as minimization of javascript files

and scoping of CSS to a particular page, that are not always employed as they should

be by developers.

The work by Thiagarajan et al. is synergistic with SPOT and looks at power con-

sumption within an individual existing application on a device. SPOT also facilitates

the collection of power consumption data from applications, but earlier in the design

cycle when the implementation is may not be complete. Both prior approaches aid de-

velopers in improving design decisions to reduce mobile power consumption but are

focused on different domains (e.g., mobile website design vs. early analysis of mobile

applications).

Context-aware power optimizations have been proposed for sensor networks to en-

sure that sensors are only sampled in contexts where it makes sense. Herrmann et al. [8]

propose using optimizations, such as detecting indoor and outdoor transitions to deter-

mine when an outdoor sensor should be used. They demonstrate through modeling that

these types of context-based optimizations can have significant power savings. SPOT

helps evaluate these types of context-aware power optimizations by allowing develop-

ers to model architectures that exhibit different optimizations and experiment with them

early in the design cycle.

Due to the high power consumption of many mobile sensors, another important area

of research involves optimizing sensor sampling rates and times to minimize power

consumption. For example, Wang et al. [28] use Markov models to determine the best

sampling approaches for sensor networks based on smartphones. These approaches are

orthogonal to SPOT and focus on a different aspect of power optimizations. SPOT fo-

cuses on generating applications that behave like the planned architectures of specific

mobile applications to facilitate early experimentation and reasoning about power con-

sumption.

Power instrumentation. A challenge on mobile devices is accurately collecting de-

tailed and real-time power consumption information without external hardware. Yoon et

al. [32] have proposed a more accurate and real-time framework for monitoring power

consumption on Android devices. Their approach, called AppScope, intercepts key sys-

tem calls to the underlying operating system, such as calls to the Android Binder, and

then use information about the types and frequency of calls being made to infer power

usage.

AppScope could be used to further improve the power consumption predictions

made by SPOT. In particular, SPOT focuses on synthesizing mobile application code

to run experiments that mimic how a particular mobile application architecture will

behave. These synthetic applications can then be used to profile the app and collect

power consumption information. Yoon et al.’s framework could be used in place of the

Android APIs leveraged by SPOT to improve the fidelity of the power consumption

data obtained from running the synthetic applications.

Mathematical estimation of power consumption. Mathematical models of power

consumption have been developed to help estimate the cost of using smartphone sen-

sors, such as GPS, and processing capabilities. Kim et al. [11] have developed a math-



ematical model for estimating the power consumption of smartphones with multicore

CPUs. These types of mathematical analyses share a similar aim to SPOT and attempt

to provide early prediction of power consumption before the implementation of an ap-

plication may be completely ready. SPOT, however, assumes that real-world power

consumption may vary substantially between devices and may depend on application-

specific design details.

Hardware-based power optimizations. Conventional techniques for reducing mo-

bile device power consumption have focused on hardware- or firmware-level modifica-

tions to achieve the target consumption [21]. These techniques are highly effective, but

are limited to environments in which the hardware can be modified by the end user or

developer. Moreover, these modifications tend to result in a tightly coupled architecture

which makes them hard to use outside of the context in which they were developed.

In other words, a solution might reduce power consumption for one application or in

one environment, but may not have the same effect if any of those assumptions change.

Moreover, such modifications are typically beyond the scope of software engineering

projects and require substantial understanding of low-level systems.

In some instances, hardware-level modifications can actually hurt power consump-

tion by increasing overhead. These techniques are also useful for reducing overall power

consumption but do not help in power consumption analysis that is necessary when de-

veloping power-conscious applications. SPOT is complimentary to these approaches in

that developers can use SPOT to identify the most effective method to minimize power

consumption without requiring extensive hardware knowledge or restricting the opti-

mizations a single hardware platform.

Network protocol and interface optimization. Due to the limited battery power

available to mobile and embedded systems, much prior work has focused on optimiz-

ing system power consumption. In particular, network interfaces consume a large por-

tion of overall device power [13], so reducing the power consumption of networking

components has been a research priority. Ultimately, the amount of power consumed

is directly proportional to the amount of data transmitted [6]; in some instances re-

quire 100 times the power consumed by one CPU instruction to transmit one byte of

data [18]. The power consumption of the network interface can thus be reduced by re-

ducing the amount of data transmitted. Moreover, utilizing MAC protocols that reduce

contention can significantly reduce power consumption [4]. While MAC-layer modi-

fication is effective, it is typically beyond the scope of software-engineering projects,

which is common with mobile application development.

Using a custom MAC protocol or specifically selecting a pre-existing one based on

the needs of the network may be possible when designing a custom sensor network,

it is not possible when developing an application for a pre-existing platform, such as

Android. Similarly, other work [19] achieved significant power reductions by using

middleware to optimize the data transmitted. These approaches require both the de-

vice and any access points to which it connects to implement the same MAC protocol,

which is infeasible for mobile application developers. Other work accomplished similar

goals through transport layer modifications [15], but the same limitations apply as with

modifications to the MAC layer.



SPOT seeks to accomplish similar goals by modifying the data transmitted by the

application layer, rather than attempting to modify the underlying network stack. SPOT

helps developers analyze the data they transmit to maximize throughput of relevant data

(e.g. actual data versus markup or framing overhead) thereby reducing power consump-

tion. In addition, SPOT can function in a complimentary role allowing developers to

analyze the power consumption of network protocol optimizations to identify the most

effective configuration.

Post-implementation power consumption analysis. Previous work [5] not only

identified software as a key player in mobile device power consumption (e.g., Symbian

devices), but also sought to allow developers to analyze the power consumption of ap-

plications during execution. Moreover, other work [16] utilized a similar approach to

analyze the power consumption of sensor nodes in a wireless sensor network.

While post-implementation power consumption analysis can provide highly accu-

rate results, it suffers from the pitfalls of post-implementation testing, including in-

creased cost of refactoring if problems are discovered. To prevent costly post-implementation

surprises, SPOT allows developers to analyze designs before any code is written. It also

allows them to perform continuous integration testing through the use of custom code

components to further refine the accuracy of the model as development progresses.

Model-driven engineering. Modeling and code generation have been combined in

a number of model-driven engineering [22] approaches to reduce the number of devel-

opment errors and required manual code creation. Prior work has investigated environ-

ments, such as GME [17] and GEMS [31], for rapidly creating domain-specific model-

ing language tools and code generation infrastructure. Where as GME and GEMS are

generic modeling platforms for creating domain-specific languages and tooling, SPOT

provides a specific domain-specific language targeted to the domain of early analysis of

mobile architecture power consumption. SPOT builds upon the prior work and provides

a specific instantiation of the concepts and new and novel techniques targeted at mobile

power consumption.

3 Motivating Example: the WreckWatch Case Study

This section describes WreckWatch [29], which is an open-source1 mobile application

we built on the Android smartphone platform to detect automobile accidents. We use

WreckWatch as a case study throughout this paper to demonstrate key complexities

of predicting the power consumption of mobile software architectures. As shown in

Figure 1, WreckWatch operates by (1) monitoring smartphone sensors (such as GPS re-

ceivers and accelerometers) for sudden acceleration/deceleration events that are indica-

tive of an accident. Data about the event are then (2) uploaded to a remote server over

HTTP where first-responders and/or other motorists can access the information via a

web browser or Android client. WreckWatch allows bystanders (3) to upload images of

the accident to the same web server, thereby increasing the information first-responders

possess before arriving at the scene.

Information, such as images of the accident and force of impact, provides first-

responders with immediate knowledge of an accident. It also seeks to provide them

1 WreckWatch is available from vuphone.googlecode.com.



Fig. 1: WreckWatch Operation

with richer situational awareness to better prepare for conditions at the accident scene.

Moreover, accident location information helps alleviate potential congestion due to an

accident by providing motorists a means to immediately identify potential areas of con-

gestion and avoid the area altogether (e.g. this accident location information can be

combined with a navigation package, such as the Google Maps API, to alter routing

information dynamically so motorists can avoid the accident location). When an acci-

dent occurs, both first-responders and emergency contacts specified by accident victims

can be notified via integrated VoIP infrastructure, as well as by SMS messages and/or

email.

To detect traffic accidents accurately, WreckWatch runs continuously as a back-

ground service and continuously consumes a great deal of accelerometer and GPS data.

The application must therefore be conservative in its power consumption. If not de-

signed properly, WreckWatch can significantly decrease smartphone battery life.

4 Challenges of Designing Power Conscious Mobile Applications

This section describes the challenges associated with developing power-aware mobile

software, such as the WreckWatch application described in Section 3. High-level mobile

application development SDKs, such as Google Android or Apple iPhone, simplify

mobile application development, but do not simplify power consumption prediction

during application design. In fact, the abstractions present in these SDKs make it hard

for developers to understand the power implications of software architecture decisions

until their designs have been implemented [20], as described in Section 4.1. Interaction

with sensors, such as accelerometers or GPS receivers and network interaction, can also

result in a significant amount of power consumption, as described in Sections 4.2 and

4.3.

4.1 Challenge 1: Accurately Predicting Power Consumption of Framework API

Calls

Each line of code executed results in a specific amount of power consumed by the hard-

ware. In the simplest case, this power consumption results from a small series of CPU

operations, such as reading from memory or adding numbers. In some cases, however,



a single line of code can result in a chain of hardware interactions, such as activation

of the GPS receiver and increasing the rate at which the screen is redrawn. Moreover,

although the higher levels of abstraction provided by modern smartphone SDKs make

it easier for developers to implement mobile application software, they also complicate

predictions of the effects on the hardware.

For example, WreckWatch heavily utilizes the Google Maps API and the “MyLoca-

tion” map overlay, which provides end users with a marker indicating their current GPS

location. The use of the “MyLocation” is typically accomplished with fewer than 10

lines of code, but results in substantial power consumption. This is because the overlay

is redrawn at a high rate to achieve a “flashing” effect, and because the overlay enables

and heavily utilizes the GPS receiver on the device, which further increases power ex-

penditure. It is hard to predict how using arbitrary API calls, such as this overlay, will

affect application power consumption without implementing a particular design and

testing it on a particular target device.

This abstraction in code makes power-consumption analysis on arbitrary segments

of code hard. Predicting power usage from high-level design abstractions, such as a

UML diagram, is even harder. Section 5.3 describes the MDE and emulation approach

we use to address this challenge.

4.2 Challenge 2: Accurately Predicting Power Consumption of Sensor Usage

Architectures

In applications utilizing sensor data, the most accurate sensor data is obtained by sam-

pling as often as possible. Sampling at high rates, however, incurs high power con-

sumption [14] by not allowing sensors to enter low power modes and by increasing

the amount of data processed by applications. Reducing the sample rate can decrease

application power consumption considerably, but also reduces accuracy. The trade-offs

between power consumption and accuracy at a given sampling rate are hard to deter-

mine without empirical tests on a target device due to the high-degree of layering in

modern smartphone APIs and system architectures.

For example, WreckWatch was originally designed to collect GPS data every 500

milliseconds and consume accelerometer data at Android’s predefined NORMAL rate

setting. During the development of WreckWatch, it was clear that reducing Wreck-

Watch’s GPS sampling rate would reduce overall power consumption, but it was un-

clear to what degree. Moreover, it was hard to predict what sample rate would provide

sufficient accuracy and still allow the phone to operate for days between charges. Sec-

tion 5.2 describes how we use automatic code generation to create emulated applica-

tions that accurately analyze the power consumption of a candidate sensor utilization

architecture without incurring the substantial time and effort to manually implement the

architecture.

4.3 Challenge 3: Accurately Assessing the Effects of Different Communication

Protocols on Power Consumption Prior to Implementation

Each application and network communication protocol has a specific overhead asso-

ciated with it and can result in significant power consumption [7]. Certain protocols



require more development overhead to implement, but have low runtime overhead (e.g.

bandwidth consumption, message processing time, etc.). For example, communicating

with UDP packets requires implementing flow control, error detection, etc., whereas

TCP communication requires setup and teardown time for communication channels, as

well as the processing and data associated with these operations, in the form of addi-

tional protocol message overhead and processing logic.

More advanced and robust protocols, such as HTTP, are easier to use as commu-

nication protocols and are more attractive to developers despite the increased over-

head [2]. For example, communicating over HTTP simplifies establishing a commu-

nication channel between client and server. There are also many libraries available to

extract data from an HTTP message. HTTP supports a great deal of functionality that

may not be necessary for a particular application, however, and using this functionality

incurs extra overhead that consumes more power.

For a small number of messages the overhead of HTTP will likely have little im-

pact on application power consumption. With large numbers of operations, however,

the overhead of HTTP can have a significant impact on power consumption. It is hard

to determine early (e.g., at design time) in an applications lifecycle, however, how this

overhead will affect power consumption and whether the number of messages transmit-

ted will be substantial enough to impact power consumption significantly. This chal-

lenge is exacerbated if certain network operations consume more power than others,

e.g., receiving data often consumes more power than transmitting data [27].

For example, to provide the most accurate situational awareness to first responders—

and provide the most accurate congestion information to motorists—the WreckWatch

application must periodically request wreck information from the central web server.

These updates must be done periodically and were originally intended to run over

HTTP. Using HTTP results in a significantly less developer effort but results in a con-

siderable amount of communication overhead from the underlying TCP and HTTP pro-

tocols, which ultimately transmits substantial amounts of data that have no relevance to

the application. It is hard to determine at design time if/how this additional data trans-

mission will significantly impact power consumption. Section 5.2 shows how we used

MDE code generation to implement and analyze potential communication protocols

rapidly.

5 The System Power Optimization Tool (SPOT)

This section describes the structure and functionality of the System Power Optimization

Tool (SPOT), which is an MDE tool that allows developers to model potential mobile

application software architectures to predict their power consumption, generate code to

emulate that architecture, and then systematically analyze its power consumption prop-

erties. SPOT addresses the challenges described in Section 4 by allowing developers to

understand the implications of their software architecture decisions at design time.

SPOT’s development process enables developers to generate visual, high-level mod-

els rapidly, as shown in Figure 2. These models can then be used to analyze the power

consumption of mobile application software architectures (step 1 of Figure 2). SPOT

thus helps overcome key challenges of predicting power consumption by generating
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Fig. 2: SPOT Modeling and Analysis Process

device logic that can be used to gather power consumption information on physical

hardware during early phases of an application’s software lifecycle, which helps mini-

mize expensive redesign/refactoring costs in later phases.

SPOT uses models shown in Figure 2 to generate instrumented emulation code for

the given platform or device (step 2 of Figure 2). When executed on actual hardware

(step 3 of Figure 2), this generated code collects power consumption and system state

information. This power consumption data can then be downloaded and analyzed offline

to provide developers with application power utilization at key points throughout the

lifecycle and execution path (step 4 of Figure 2).

SPOT also supports the use of custom code modules. These models allow devel-

opers to replace automatically generated code with actual application logic while still

providing the same analytical capabilities available when using generated code. SPOT

therefore not only allows developers to perform analysis early in the development cycle,

but also to perform continuous integration testing throughout development.

SPOT is implemented as a plugin for the Eclipse IDE. Its runtime power consump-

tion emulation and capture infrastructure is built using predefined, user-configurable

classes that emulate specific power consuming components, such as GPS data con-

sumers. This infrastructure captures power consumption information during executing

by using the device’s power API. For example, power data collection on the Android

platform is performed by interfacing with the OS application power API, i.e., the An-

droid power consumption API as implemented by the “FuelGauge” application.

The remainder of this section describes how SPOT’s DSML, emulation code gener-

ation, and performance measurement infrastructure help application developers address

the challenges presented in Section 4. Section 5.1 describes SPOT’s modeling language,

SPOML, Section 5.2 describes how SPOT generates emulation code, and Section 5.3

describes how SPOT analyzes and evaluates emulation code during execution.

5.1 Mobile Application Architecture Modeling and Power Consumption

Estimation

SPOT describes key power-consuming aspects of a mobile application via a DSML with

specific language elements. This DSML allows developers to specify their software ar-

chitecture visually with respect to power consuming components, as shown in Figure 2.



Prior work [25, 29, 26] showed how the following components are often significant

power consumers in mobile applications:

• CPU consumers are used to represent CPU-intensive code segments such as cal-

culations on sensor data. Developers can specify the amount of CPU time that should

be consumed by specifying the number of loop iterations of a square root calculation

that should be run. For example, WreckWatch developers can model the mathematical

calculation time to determine the current G-forces on the phone.

• Memory consumers generate dynamically allocated memory. These consumers

allow developers to analyze not only the power consumed by actual operations, but

also their impact (such as the frequency and duration of garbage collector sweeps) on

garbage collection. Developers can specify the amount of memory to consume as bytes.

For example, WreckWatch developers can model the effects of caching accident images

of varying sizes.

• Accelerometer consumers, which interact with system accelerometers and con-

sume accelerometer data. These consumers can be configured to utilize the full range

of system-supported sample rates. For example, WreckWatch developers can model the

sensor interaction needed to accurately detect car accidents.

• GPS consumers interact with the device’s GPS receiver. These consumers can

be configured with custom sample rates as well as a minimum distance between points,

i.e., the sensor will only return a data point if the distance between the current point

and the last point is greater than a specified value. GPS consumers allow developers

to analyze the impact of using a location service configuration on power consumption.

For example, WreckWatch developers use this capability to model how polling for a

vehicle’s location at different rates impacts power consumption.

•Network consumers emulate application network interaction by periodically trans-

mitting and receiving data. Network consumers allow users to supply SPOT with sample

data that is then transmitted at the interval specified. For example, WreckWatch devel-

opers can provide a URI along with server and port information to configure SPOT to

make a specific request. These consumers can also be configured to execute at varying

times to emulate periodic updates.

• Screen drawing agents utilize graphics libraries, such as OpenGL, to emulate a

graphics-intensive application, such as a game or streaming video to a first responder’s

WreckWatch client. Users can configure these consumers by specifying the types and

size of objects to draw on the screen, along with any transformations that should be

performed on the object. For example, WreckWatch developers can use the drawing

agents to show how the use of images and video for situational awareness impacts

battery life.

• Custom code modules allow developers to specify their own code to run against

the profiling package. This capability allows developers to extend SPOT’s functionality

to meet their needs, as well as incrementally replace the emulation code with actual ap-

plication logic as it becomes available. Replacing the emulation logic allows developers

to perform testing as development progresses and increase the accuracy of the evalu-

ation and analysis. For example, WreckWatch developers can use these consumers to

include a service for uploading multimedia content about an accident to a central web

server.



The metamodel for SPOT’s DSML, called the System Power Optimization Model-

ing Language (SPOML), allows application developers to build software architectural

specifications that determine power consumption from key power consuming compo-

nents. SPOML was created using the metamodeling features of the Generic Eclipse

Modeling System (GEMS) [30], which is a tool for rapidly generating visual modeling

tools atop the Eclipse Modeling Framework (EMF). GEMS is built atop Ecore, which

provides metamodeling and modeling facilities for Eclipse [3].

Figure 3 shows SPOML’s metamodel.

Fig. 3: SPOT’s Metamodel

The primary application serves as the root element of the model. Power consump-

tion modules can exist within either activities (which are basic building block com-

ponents for Android applications and represent a “screen” or “view” that provides a

single, focused thing a user can do) or services (which are background processes that

run without user intervention and do not terminate when an application is closed).

Each activity or service can contain one or more power consumer modeling ele-

ments described above. Developers can therefore emulate potential decisions that they

make when designing a mobile device application, which allows them to emulate a wide

range of application software architectures. For example, Figure 4 shows a SPOML

model of the WreckWatch application’s sensor usage design.

Fig. 4: WreckWatch Model

Acceleration and GPS consumers run in independent services, while the network

consumer runs in the application’s activity. This model results in an application that

monitors GPS and accelerometer values at all times regardless of what the user is doing.

It only utilizes the network connection, however, when the user has the WreckWatch

application open and running.



5.2 Generating Software Architecture Emulation Code

Predicting the power consumption of an arbitrary design decision is hard, as described

in Section 4.1. SPOT addresses this challenge by generating application emulation code

automatically to execute on the underlying device hardware. SPOT’s automatic gener-

ation of emulation code allows application developers to reduce the time required to

write enough code to analyze system power consumption accurately. This emulation

code is instrumented so the architecture’s power expenditures can be examined after a

test run.

In addition to instrumenting the code, SPOT has the potential to apply the same

model for multiple target platforms, such as Android and iPhone, as long as config-

urable code is available for the power-consuming elements. This emulation and analy-

sis cycle allows developers to observe the power consumption of their design very early

in the development cycle, as well as evaluate their software designs across multiple

hardware configurations to assess how changes in hardware affect application power

consumption. For example, even though the Motorola Droid and Google Nexus One

both run the Android platform, each possesses key hardware differences, such as the

type and size of the display, that impact power consumption.

The generated emulation code allows developers to address the remaining chal-

lenges of selecting an optimal communication protocol and optimizing sensor polling

rates, as described in Section 4. Generated emulation code allows developers to evaluate

the power consumption of a potential design empirically, rather than simply guessing its

power consumption or waiting until an application implementation is complete before

running tests. Moreover, developers can quantitatively compare the power consumption

effects of choosing different networking protocols and can evaluate the power consump-

tion of different sensor sampling rates.

To accomplish this mobile software architectural emulation, SPOT uses a set of

predefined code blocks that can be configured at runtime to perform power consuming

operations. SPOT uses an XML configuration file to perform any necessary configura-

tion and create an application that emulates the power consumption of the desired soft-

ware architecture. To generate this XML configuration file, SPOT interprets the model

outlined in Section 5.1. Users of SPOT define the model and tweak configuration pa-

rameters, and SPOT can then compile the model and parameters into an intermediate

XML format which is utilized to configure prebuilt implementations of each power

consuming element described in Section 5.1.

Figure 5 shows a sample of the XML configuration file generated for the Wreck-

Watch model shown in Figure 4. The XML shown in Figure 5 represents a configuration

with two background services running an accelerometer consumer and a GPS consumer.

The GPS consumer samples every 500 milliseconds, with a minimum radius between

sample points set to 0. The accelerometer consumer is set to sample at the NORMAL

rate, which is a constant defined by Android. There is also a network consumer trans-

mitting sample data every 30 seconds and repeating infinitely. The network consumer is

configured to connect to a specific host on a specific port and utilize the HTTP protocol.

The predefined power consumers have configurable options (such as the sample rate

of the GPS and data to transmit over the network) provided by the XML configuration

file. These power consumption elements are generic and applicable to a wide range of



Fig. 5: Sample WreckWatch Emulation XML

platforms, such as Android, iPhone, or BlackBerry. The predefined power consumers

are implemented on the Android platform as follows:

• CPU consumers are implemented as a set of nested loops that perform basic

mathematical operations, such as square root calculations, on randomly generated data.

This module utilizes the CPU while minimizing utilization of other system resources,

such as memory that could skew power consumption information. For example, this

consumer uses primitive types to avoid allocating dynamic memory. Users can adjust

the length of the loops via a configurable parameter. Various end device processors

result in same-length loops performing differently on divferent devices, in a manner

similar to CPU-intensive algorithmic performance on end-user devices.

• Memory consumers are implemented by dynamically allocating custom ob-

jects that wrap byte arrays. To analyze the frequency of garbage collection, a Java

WeakReference object is used to inform the garbage collector that they can be re-

claimed, despite having active references within running code. The object’s finalize()
method (which is called immediately before the object is reclaimed by the Android

Dalvik virtual machine) is overridden to record the time of garbage collection, thereby

allowing developers to analyze the frequency of garbage collection runs. The WeakReference
object will thus be reclaimed during every garbage collection run.

Due to the limitations of the Android instrumentation API, garbage collection and

memory usage must be inferred through analysis of the frequency and duration of

garbage collection runs, rather than through direct power consumption measurement.

Although this limitation prevents developers from including memory statistics in the

data along with CPU, sensor, and network utilization, they can still examine how their

design uses memory. Users can also configure the amount of memory and frequency of

allocation, as well as supply custom objects (such as WreckWatch’s image caches) to

use rather than the byte arrays used by default.



• GPS consumers are implemented by code that registers to receive location up-

dates from the GPS receiver at specific intervals. To emulate an application’s interaction

with the GPS receiver properly, SPOT provides developers with all configuration op-

tions, such as polling frequency and minimum distance between points, presented by

the Android GPS API. This configuration information—along with generic sensor setup

and tear-down code—is then inserted into the appropriate location in the emulation ap-

plication.

• Accelerometer consumers are implemented using the configuration specified in

the XML file, along with generic setup code to establish a connection to the appropri-

ate hardware. SPOT provides developers with access to device accelerometers and all

configuration options the underlying framework presents, such as sample rates.

• Network consumers are implemented as emulation code containing a timer that

executes a given networking operation, such as an HTTP operation at a user defined in-

terval. The purpose of the network consumer is to emulate applications that use network

resources to store information that the phone must periodically retrieve. Developers

configure SPOT by providing the data to transmit along with the frequency of transmis-

sion. They can also specify whether the data should always be transmitted or whether

the application should wait for the availability of a specific transmission medium, such

as Wi-Fi or 3G.

• Screen drawing agents allow users to specify 3D and 2D graphics to draw on

the screen. Developers will specify object contents along with any potential motion or

actions.

• Custom code modules allow developers to supply their own code blocks to ex-

tend the functionality of SPOT and enhance emulation accuracy as the development

cycle progresses by substituting the faux emulation code with actual application logic.

SPOT allows developers to supply class files to load into the emulation application dy-

namically, as well as method “hooks” to allow the emulation code to interact with the

custom code properly.

5.3 Power Consumption Instrumentation

SPOT uses an instrumentation system to capture power consumption statistics as the

emulation code is executed, as shown in Figure 6. Components in the instrumenta-

tion system are either Collectors, Recorders, or Event Handlers. Collectors in-

terface directly with the specific power API on the system and pass collected data to

Recorders, which persist the data collected by Collectors by writing it to a file or

other storage medium. Event Handlers respond to the events fired by entering or leav-

ing emulation code blocks.

These components are dynamically loaded via Java reflection to ensure extensibility

and flexibility. For instance, developers can implement a custom Collector to monitor

which components are in memory at any given time. Alternatively, developers could de-

fine Recorders to log power consumption information to another data storage medium,

such as a local or network database rather than a flat file.

To analyze an architecture effectively, SPOT records battery state information over

time to allow developers to pinpoint specific locations in their application’s execution

path that demand the most power. To collect power consumption information accurately,



Fig. 6: SPOT Instrumentation System

SPOT uses an event-driven architecture that precisely identifies the occurrence of each

major application-state change, such as registering or unregistering a GPS listener and

SPOT takes a “snapshot” of the power consumption when the application performs

these operations. This event-driven architecture allows developers to understand the

power consumption of the application before, during, and after key power-intensive

components.

In addition to event-triggered power snapshots, SPOT also periodically collects

power consumption information. This information allows developers to trace overall

power consumption or power consumption within a given block. The power informa-

tion Collector that collects snapshots and periodic samples can be configured to run

in a separate process to prevent contamination of the data.

To accomplish event-driven power profiling, SPOT fires events immediately before

an application enters a component that was defined in the model and immediately after it

leaves a model-defined component. These events work in conjunction with the periodic

power consumption updates to provide developers with a complete description of how

their software architecture elements consume power. SPOT’s event-driven model of

collecting power consumption data also allows developers to identify precisely what

the application was doing when key power consumption spikes occur, further helping

them optimize their designs.

SPOT’s emulation infrastructure currently runs on the Android mobile platform and

uses the power consumption API utilized by the “FuelGauge” application in the core

Android installation. The power consumption API provides application developers with

access to the amount of time the application utilizes the CPU, sensors, wake-locks, and

other system resources, in addition to the overall power consumption.

Android’s power consumption API provides power-consumption information on a

per-package basis. By implementing SPOT in a different package, developers can an-

alyze power consumption without influencing it. Collecting power consumption infor-

mation in this manner increases accuracy. Moreover, SPOT can be implemented simply

as a collector to analyze existing applications without modifying their source code.



5.4 Pros and Cons of SPOT’s MDE-based Approach

SPOT’s focus on MDE provides a number of capabilities and restrictions on the breadth

and accuracy of what can be modeled. A key benefit of SPOT’s MDE-based approach

is that the models are easy to construct and generation of emulating mobile applica-

tion code does not require any manual development effort. This approach enables early

and low-cost analysis of the impact of architectural decisions on power consumption.

Moreover, SPOT’s domain-specific modeling language (SPOML) shields developers

from lower-level details that are not relevant to optimizing power consumption.

The key downside of SPOT’s MDE-based approach, however, is that SPOML can-

not express every possible application behavior and thus may not provide perfect fidelity

to a mobile application that is eventually implemented. For example, an application that

provides alerts based on complex calculations involving the accelerometer and GPS

may not be expressible in SPOML; which would make it hard to reason about how the

algorithm itself affects the power consumption profile of the app. For these types of

scenarios, SPOT allows the integration of hand-coded application components into an

application to provide greater fidelity. The downside of this flexibility, of course, is that

components must be manually implemented if they are not expressible in SPOML.

6 Results

This section analyzes the results of experiments that empirically evaluate SPOT’s MDE-

based capabilities presented in Section 5. These experiments measure SPOT’s ability

to collect power consumption information on a given model, as well as accurately

model the power consumption of a proposed application software architecture. These

results show how SPOT can assess and analyze power consumption information gath-

ered through the Android’s power consumption API and evaluate SPOT’s accuracy in

predicting power consumption information about a software architecture at design time.

6.1 Hardware/Software Testbed

All tests were performed on a Google Nexus One with a 1Ghz CPU, 512MB of RAM,

512MB of ROM and a 4 GB SD card running the default installation of Android 2.1

(Eclair). The SPOT application was the only third-party application running at the time

of experimentation. The same power consumption information gathering logic was used

to collect information on emulation code, as well as the sample applications. The infor-

mation was analyzed in Excel based on power consumption data written to the device’s

SD card in the form of a CSV file.

To assess the consumption characteristics of different designs, the current SPOT ver-

sion generates an Android application package. It then periodically samples the battery

usage statistics from the OS writing these values to a CSV file on the SD card. SPOT

also fires events when the application’s state changes, e.g., when the GPS is started or a

sensor is disconnected. These events allow SPOT users to examine the power consump-

tion of active hardware, in addition to the overall consumption of the application.

SPOT uses an XML-based configuration file that is generated from the SPOML

model described in Section 5.1. This XML file is loaded on to the device’s SD card and



parsed at startup. Due to the way that the power consumption API collects information,

the data gathered reflects only power consumed by the SPOT application and does not

include any power consumed by system processes, such as the GUI display or garbage

collector.

6.2 Experiment 1: Empirical Evaluation of SPOT’s Emulation Code Accuracy

Overview. This experiment quantitatively compares the power consumption of two An-

droid applications and the power consumption of the emulation code derived from their

respective SPOT models. Ensuring SPOT’s accuracy is important since it allows devel-

opers to compare the power consumption of key power consuming components in their

mobile architecture.

The applications used in this experiment are the WreckWatch application presented

in Section 3 and OpenGPSTracker (open-gpstracker.googlecode.com), which is

an open-source Android application that uses GPS to track the coordinates of the phone

and display it on a Google Map on the device. The GPS points, and other information

about the route, are stored on the device to allow the user to replay the route later.

OpenGPSTracker also determines device speed as GPS points are collected.

Hypothesis. SPOT is intended to provide developers with an estimate of how a pro-

posed application software architecture will consume power. We therefore hypothesized

that SPOT could provide power consumption information to within 25% of the actual

power consumption of WreckWatch and OpenGPSTracker. Based on prior work [25,

29, 26], we also hypothesized that the components we chose represented the key factors

in mobile application power consumption and would be adequate to provide this level

of accuracy.

WreckWatch results. Figure 7 shows the graph of the actual power consumption of

the WreckWatch application compared with the power consumption of the WreckWatch

emulation code generated by SPOT. The emulation code’s power consumption follows

the same trend as that of the application and provided a final power consumption value

that was within 3% of the actual power consumed by WreckWatch. The SPOT model

consisted solely of GPS and accelerometer consumers and did not attempt to model any

additional aspects of the WreckWatch application. The model was accurate due to the

substantial amount of power required by the GPS receiver. This result confirms that the

GPS, sensor, and network modules that SPOT provides are key determinants of mo-

bile power consumption. Although WreckWatch performs a number of CPU-intensive

calculations on sensor data to determine if an accident occurred, these calculations are

minor power consumers compared to sensor users.

OpenGPSTracker results. Figure 8 shows the graph of the actual power con-

sumption of the OpenGPSTracker application compared with the power consumption

of the emulation code generated by SPOT. As with the WreckWatch emulation code,

the OpenGPSTracker emulation code consumes power at a rate similar to the actual

application. Over the same time period, the emulation code for the OpenGPSTracker

application was accurate at predicting power consumption to within 4%. The SPOT

model for the OpenGPSTracker application only used a GPS consumer and did not at-

tempt to model any Google Maps functionality (or requisite network functionality) or

any processing required to determine speed or store the location information. In this



Fig. 7: Comparison of WreckWatch Application Logic and Emulation Code

Fig. 8: Comparison of OpenGPSTracker Application Logic and Emulation Code



instance, the GPS power consumption was sufficient to model the power consumption

of the entire application.

With both applications, SPOT modeled and predicted the power consumption of the

actual application to within 4% of the actual power consumption. This result confirms

our hypothesis that SPOT can provide an accurate prediction of power consumption by

modeling key components of a mobile application.

6.3 Experiment 2: Evaluating the Accuracy of Simplified Architectural Models

Overview. This experiment shows that modeling the power consumption of the largest

power consumer can be sufficient to accurately estimate power consumption, even

though there are significant differences in the power consumed by the various sen-

sors, CPU operations, and networking components of an application. SPOT provides

a limited set of key power consumption elements for modeling a mobile software ar-

chitecture. Although there is a finite set of elements for modeling power consumption

in SPOT, a small number of these elements can often accurately determine the power

consumption of a variety of applications, e.g., modeling the power consumption of the

GPS device is nearly as accurate as modeling the power consumption of both the ac-

celerometer, CPU, and GPS of an application because the GPS receiver consumes so

much power.

For experiment 2, we modeled the GPS sensor utilization of an app that used two

sensors: the GPS and the accelerometer. The GPS was configured to sample every 500

milliseconds while the accelerometer was configured to use the FASTEST Android sam-

ple rate constant. We compared the power consumption of the emulation code, which

only used GPS, to the actual app that used both the GPS receiver and the accelerometer.

Modeling the largest power consumers allows users to model their designs even earlier

by allowing them to ignore implementation details during the modeling process.

Hypothesis. We hypothesized that certain hardware components, such as GPS, con-

sume so much power that emulating them with SPOT will consume nearly the same

amount of power as the actual application. For example, an application that uses a GPS

sample frequency of one sample per 500 milliseconds will have roughly the same power

consumption as another application using the sampling the GPS every 500 milliseconds

and receiving accelerometer updates.

Results. Figure 9 shows the results of experiment 2. As shown in the figure, the

callouts represent the times that correspond with the entrance and exit from different

components of the software architecture. This graph shows that the accelerometer had

little effect on the overall power consumption in relation to the GPS. Despite running

for 2.5 minutes after the deactivation of the GPS, the power consumption increases only

a small amount in relation to the total power consumed by the application.

Figure 10 shows the relative power consumption of the several Google Nexus One

components, such as the screen, accelerometer, Bluetooth radio, Wi-Fi module, GPS re-

ceiver and the CPU per time unit. As shown in the figure, certain hardware components

consume a significantly larger amount of power than others. Moreover, the usage char-

acteristics of these hardware components increase the difference in power consumption.

For example, despite consuming almost as much power as the GPS, usually the Wi-Fi

or Bluetooth is only active for short bursts of time whereas the GPS is usually left in



Fig. 9: GPS Power Consumption

Fig. 10: Relative Power of Hardware Components



the active state for much longer periods of time. Due to these usage characteristics, the

slightly greater power consumption per time unit of the GPS allows the GPS to quickly

become the largest consumer of power on the device.

The results shown in Figures 9 and 10 support our hypothesis that mobile appli-

cation power consumption depend largely on a handful of components, so SPOT can

accurately predict mobile application power consumption by modeling these key power-

intensive components.

6.4 Experiment 3: Qualitative Comparison of Sensor Sample Rates

Overview. This experiment evaluates the effects of sensor sample rates on an applica-

tion’s overall power consumption. The rate at which sensor data is consumed can have

a significant impact on application power consumption, as described in Section 4.2. For

example, Android’s accelerometer provides four enumerations for sample rate: NOR-

MAL, UI, GAME, and FASTEST. Although these sample rates provide varying levels of

QoS, the trade-off between a given level of QoS and power consumption is not read-

ily apparent at design time. The enumeration names give developers a clue to potential

uses, as well as rank these sample rates according to rate and consequently power con-

sumption. Alternatively, the GPS receiver allows developers to specify a value as the

delay, in milliseconds, between samples.

SPOT allows developers to evaluate the power consumption of potential sensor sam-

ple rates. For experiment 3, we compared the power consumption of the GPS receiver

while sampling at once every 2 seconds, once every 30 seconds, and once every 500

milliseconds.

Hypothesis. We hypothesized that SPOT could capture the power consumption ef-

fects of sensor sampling rate changes. In particular, we believed sampling rate changes

of a few hundred milliseconds would produce power consumption changes that SPOT

could detect.

Results. Figure 11 show SPOT’s output for three different sample rates for the GPS

sensor. The dashed line represents the power consumption of the application when the
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Fig. 11: GPS Sample Rate Comparison



sensor was sampled every 500 milliseconds, the solid line represents a sample taken

every 2 seconds, and the dotted line represents the power consumption of the application

sampling the sensor twice per minute. The samples in this graph were collected over 5

minutes and support the following observations:

• Power consumption during the first several seconds is uniform regardless of

sample rate. Each graph is approximately equivalent for the first several seconds of

data gathered during the GPS sampling, which implies that if developers need access

to GPS for a short period of time, the greatest benefit would come from using a higher

sample rate.

• The greatest improvement in power consumption due to a lower sample rate

will occur over time. Although the graphs demonstrate a noticeable difference in power

consumption over the 5-minute sample period, the improvement in battery life from a

change in sample rate will only be realized when sampling occurs over an extended

period of time.

Ultimately, the amount of power consumed by the GPS receiver is directly propor-

tional to the sampling rate of the application. Reducing the sampling rate of the GPS

receiver is an effective means to reduce the overall power consumption of an application

if the receiver is active for longer than ∼2 minutes.

6.5 Summary and Analysis of Results

The results of the two experiments presented above show how SPOT can accurately an-

alyze and predict an application’s power consumption based on a model of the applica-

tion software architecture. This capability allows developers to understand the implica-

tions of their design decisions early in the software lifecycle, i.e., without implementing

the complete application. The emulation code SPOT generates is accurate, e.g., for our

WreckWatch application it could predict power consumption within 3% of the actual

application’s power consumption. SPOT’s accuracy stems in part from the significant

power consumption of hardware components, such as the GPS receiver, that consume

significantly more power than other hardware components on the device, such as the

CPU or even accelerometers.

7 Concluding Remarks

The System Power Optimization Tool (SPOT) is an MDE tool that allows developers to

evaluate the power consumption of potential mobile application architectures early in

the software lifecycle, e.g., at design time. Our experiments indicate that SPOT provides

a high degree of accuracy, e.g., it predicted the power consumption of the WreckWatch

and OpenGPSTracker applications to within ∼3-4%. We learned the following lessons

developing and evaluating SPOT:

• Sensor sample rates play an important role in long-term power consumption.

The power consumed by the device sensors is largely uniform over the first several

minutes of activation regardless of sample rate. It is only when these sensors are used

for an extended period that the benefit of lower sample rates is realized. Developers

must therefore consider the amount of time to activate the sensor in addition to the

overall sample rate.



• Certain hardware components draw significantly more power than others.

In the case of utilizing the GPS receiver, the power consumed by the location (GPS)

service is so substantial that it becomes difficult to identify the effects of enabling or

disabling other hardware components. Due to this “masking” effect, developers may

overlook a significant consumer of power in an application. In general, small changes

in GPS sample rate can have significant impacts on overall application power consump-

tion.

• Power consumption of an application can be accurately modeled by a few key

components. The power consumed by certain components, such as the GPS receiver

and accelerometers is so significantly greater than the power consumed by running the

CPU, displaying images on the screen, etc. that SPOT can effectively model the power

consumption of an application simply by modeling those components. The most effec-

tive power consumption optimization can be realized, therefore, with changes to only a

small number of components.

• Certain system-related operations such as garbage collection are not reflected

in data gathered by SPOT. Through the current method of data collection SPOT is

only able to gather power consumption information about operations that it performs

such as CPU, memory or sensor operations that it specifically requests. Our future work

will therefore develop mechanisms for capturing the impact of these services on power

consumption.

• Power consumption of networking hardware is dependent on data transmit-

ted which is often dependent on user interaction. The power consumption of hard-

ware, such as the Bluetooth or Wi-Fi interfaces, is dependent on the data transmitted

and received on the device. This data is often generated at run-time by user interaction

with the program. While it is effective for the developer to generate some sample data

and provide it to SPOT, it would be more effective if developers could simply describe

the data, e.g., via a schema file. Our future work is extending SPOT so it can process a

data schema file and generate data that is random, yet still valid to the application.

•Although GPS is a major consumer of power, not all applications rely on GPS.

Although GPS is a major consumer of power on today’s smartphone devices, it is still

important to understand the power consumption of applications that do not use the GPS,

even if their power consumption is less drastic. Our future work is therefore analyzing

SPOT’s accuracy with mobile applications (such as 3D games with acceleration-based

controls, streaming video players, and audio recording/processing applications) that do

not use GPS, such as 3D games, feed readers, and multimedia applications.

SPOT is available in open-source form at syspower.googlecode.com.
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