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Abstract

The organizational design of a distributed system

defines how entities act and interact to achieve local and

global objectives. We describe how a system employing dif-

ferent types of organizational techniques has been used to

address the challenges posed by a distributed sensor net-

work environment. The high-level, multi-agent architec-

ture of this realworld system is given in detail, and we pro-

vide empirical results demonstrating the effects the organi-

zation has on the system’s performance across several dif-

ferent metrics. As with any design, the particular approach

that is employed makes trade-offs, some of which are obvi-

ous and some more subtle. The presence of such trade-offs

motivates the need for a better understanding of precisely

how the organization influences large and small-scale be-

haviors. To address this need, we first demonstrate how a

collection of analytic models can be developed to predict

such effects. This experience is then used to ground the

presentation of a more comprehensive, domain-indepen-

dent organizational modeling language called ODML. The

structure and capabilities of ODML are explained through

the construction of a unified model of our sensor network

organization. We then show that this model provides an

accurate prediction of the original empirical results.

Keywords: ?????

1. INTRODUCTION

Distributed vehicle monitoring as an example ap-

plication of distributed situation assessment and more

generally distributed resource allocation has been stud-

ied in the multiagent systems community since its in-

fancy [21, 13]. This environment is particularly interest-

ing when investigating issues of scale, because practical

scenarios can be envisioned employing distributed sen-

sor networks that are arbitrarily large both in number and

geographic size, making purely centralized control ineffi-

cient. Each network member would have some type of

data producing or interpretation capabilities, resulting in

a potentially overwhelming amount of information requir-

ing analysis. Shared resources, potentially conflicting

goals and the need to adapt sensing policies in real time

to emerging phenomena add further complications. These

challenges make it an ideal candidate for multi-agent tech-

niques.
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Our solution, which we will describe in detail in Sec-

tion 2, uses organizational structures as a key component

to address these problems. Rather than employing a single

organizational scheme, we have found that exploiting the

strengths of a collection of different organizational styles

can be quite effective. Our choice was based on our experi-

ences working with a large-scale, realistic distributed sen-

sor network over the past four years, both in detailed simu-

lations and on real hardware [14].

The organizational design used in our solution is

intended to address the challenges that arise through scale,

by exploiting locality of reference and organizational con-

straints to impose limits on how far classes of both control

and data messages propagate. The environment’s most lim-

iting resource is the wireless communication medium, and

we will therefore use this resource throughout the paper to

describe the effects of the organization. Our design uses

environmental partitioning to create localized regions of

interaction, called sectors. Within these sectors, agents take

on different responsibilities that dictate their individual be-

haviors. A consequence of this approach is that the number

of sensors in these sectors affects how efficient the system

is, since large regions may create unwelcome disparities in

communicative or processor load, and small regions cause

a more global increase in overhead. Specifically, we will see

how sector size affects the overall communication load, load

disparity between agents, average communication distance,

and the quality of tracking. By varying just this one aspect

of the organization, we will show that the performance of

the system can be greatly influenced by the organization’s

design parameters.

The notion of “organizational design” is used in many

different fields, and generally refers to how members of a

society act and relate with one another. This is also true of

multi-agent systems, where the organizational design of a

system can include a description of what types of agents

exist in the environment, what roles they take on, and how

they interact with one another. The objectives of a particular

design will depend on the desired solution characteristics,

so for different problems one might specify organizations

which aim toward scalability, reliability, speed, or efficiency,

among other things. To date, relatively little work has been

done in the multi-agent community analyzing the character-

istics and tradeoffs of different organizational types.

Complicating the design process is the fact that

many potentially important characteristics can be subtle,

and not readily identified as the system is being developed.

For example, as alluded to above, certain global characteris-

tics improve as  we vary the sensor network organization,

while other local characteristics degrade. The underlying

mechanisms causing this can be complex and interdepen-

dent, making it difficult to create the correct design for a

particular working environment.

It is our belief that understanding the root causes of

these characteristics and developing accurate quantitative

models of their effects are both critical to selecting an appro-

priate design, particularly as the agent population grows in

scale or complexity. Once derived, this same knowledge can

also be put to good use in verifying and changing the organi-

zation at runtime in response to changing conditions, creat-

ing a more robust and adaptive system. We will demonstrate

how analytic models of our organization can be devised to

help obtain this understanding.We will then build upon these

ad hoc models by introducing a new language designed to

capture organizational information in a single unified, predic-

tive structure. Such models can help answer the questions

that we have posed, by using quantitative knowledge to rep-

resent interdependencies, predict performance, and allow

subtle effects to become more transparent.

The remainder of the paper is divided into four main

sections. In Section 2, we will describe the sensor network

domain and our organization-based solution in more detail.

Following this, we will describe a series of tests that were

performed to evaluate the effect the organization has on the

system’s performance across a range of metrics. In Section

4, we will show how these characteristics can be quantita-

tively modeled with a set of equations. Finally, in Section 5,

we will introduce ODML, a domain-independent organiza-

tional modeling language.We will use ODML to create a

unified model of the sensor network organization, and show

how it can be used to predict both large and small-scale

organizational effects.

2. DOMAIN AND ORGANIZATION OVERVIEW

The goal of a distributed sensor network is most

generally to employ a population of sensors to obtain infor-

mation about an environment. In this paper, we will focus

on using such a network to track one or more targets that

move along arbitrary paths in an area. A collection of three-

head, MTI Doppler radars make up this network [14]. They

are each fixed in position and have a wired power source.

Each sensor is equipped with a processor, on which is run a

single process that controls the sensor. We will call this

local process an agent. The sensors are connected with a

FM-based wireless network, which is divided into eight

communication channels. Each channel has limited capac-

ity, and agents may communicate over only one channel at

a time.

Individual sensors can return only simple amplitude

and frequency values, so a sensor is incapable of determin-

ing the absolute position of a target by itself. In addition,

because only one of a sensor’s three heads may be in use at

a time, each sensor’s scanning policy must be adapted based

on current needs. To track under these conditions, the sen-

sors must be organized and coordinated in a manner that

permits their measurements to be used for triangulation,
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and geographically distinct groups of such coordinated

sensors used to produce a continuous track as the target

moves. More measurements, and particularly more measure-

ments taken in groups in the same area at approximately the

same time, will lead to better triangulation and a higher reso-

lution track. To accomplish this, our architecture employs

closed-loop control; the measurements and estimated tar-

get locations are used by the sensor agents to evaluate and

adapt the network’s subsequent scanning strategies. Con-

sequently, any processing, decisions making and commu-

nication that occurs to enact this control has to take place

in real time, or the target may be lost. Additional hurdles

include a lack of reliable communication, the need to scale

to hundreds or thousands of sensor platforms over a wide

area, and an uncertain, noisy operating environment. The

architecture, implemented in roughly 40,000 lines of Java

code, has been demonstrated successfully in both simula-

tion and real-world experiments. A more detailed descrip-

tion of the entire framework and the environment it oper-

ates in can be found in [14].

formation from their originating sector manager, but can

also interact directly with other sector and track managers.

The sensor manager role controls how the local sensor is

used. In response to sector or track manager requests, it

takes measurements at specified times and places, and re-

ports back the resulting data. Each of these three responsi-

bilities corresponds to a role in the organization, which

must be assigned to a particular agent. Agents may work

concurrently on one or more of these roles, so a viable

organizational design must ensure that each agent has suf-

ficient resources to meet the combined demands of the roles

it is assigned.

As we will show, some aspects of this design are

static, such as the partitioning and sector manager assign-

ment, and defined as the sensors are deployed in the envi-

ronment. Other aspects are dynamic, such as the track man-

ager assignment and sensor selection, requiring the agents

to self-organize in response to new events. This blend of

styles takes advantage of characteristics of the environ-

ment that are invariant, without giving up the ability to

react appropriately as conditions change.

To see how the organizationworks in practice, con-

sider the scenario in Figure 1. The environment is first di-

vided by the agents into a series of sectors, each a non-

overlapping, identically sized, rectangular portion of the

available area as shown in Figure 1A. In other work we have

also explored the use of heterogeneously-sized sectors [20].

The intent of these divisions is to limit the interactions

needed between sensors, to reduce and distribute the over-

all communication load. As we will show in Section 3, this

strategy does not always have the desired effect.

Each sensor has a local agent that takes on a sensor

manager role. A single agent in each sector also takes on

the sector manager role, represented by shaded inner circles

in Figure 1A. Sensor managers begin their existence by

finding their local sector manager, and sending it a descrip-

tion of the sensor’s capabilities. These include the sensor’s

position, range, orientation and preferred communication

channel. When completed, the sector manager will possess

a complete picture of the sensing capabilities within its sec-

tor, which it offers to other agents in the form of a directory

service. The sector manager also uses this information to

generate a scanning schedule for detecting new targets,

which it disseminates to the local sensors in Figure 1B.

Once the scan is in progress, individual sensors re-

port positive detection measurements to their sector man-

ager. The sector manager, through interactions with nearby

track managers, maintains a list of targets currently close to

or within its sector. By comparing the measurement with

that target list, the sector manager can determine if a new

target was found, or if it is more likely the measurement was

of an existing target. If it determines a new target was found,

As mentioned above, we have employed an explicit

organizational design in an effort to reduce overhead with-

out negatively impacting performance. There are three types

of responsibilities, or roles, that agents may take on: sector

manager, track manager and sensor manager. Sector man-

agers are created for each sector in the environment, and

serve as intermediaries for much of the local activity. For

example, they generate and distribute plans needed to scan

for new targets, store and provide local sensor information

as part of a directory service, and assign track managers.

Each detected target has such a track manager, which is

responsible for identifying the sensors needed to gather

target information, gathering the resulting data, and fusing

it into a continuous track. Track managers obtain some in-

Figure 1. High-level architecture. A: sectorization

of the environment, B: distribution of the

scan schedule, C: negotiation over tracking

measurements, D: tracking data fusion.
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the manager selects an agent from its sector to be the track

manager for that target. Not all agents are equally qualified

for this role, and an uninformed choice can lead to very

poor tracking behavior if the selected agent is already busy

or shares communication bandwidth with garrulous agents.

For example, if we simply collocated the track manager and

sector manager roles at the same agent, the combined com-

munication load will generally exceed capacity. Conversely,

if an agent who has previously acted as a track manager is

chosen, some of the environmental state that agent had

accumulated may be reused, which reduces its communica-

tion needs. Therefore, in making this selection, the sector

manager considers each of its agents’ estimated load, com-

munication channel assignment, geographic location and

history. Recognizing such ramifications of role assignment

will be an important aspect of the analysis we present in

Section 5.

The track manager role, depicted in Figure 1C with a

blackened inner circle, is responsible for tracking the target

assigned to it. To do this, it first discovers sensors capable

of detecting the target, and then negotiates with members

of that group to gather the necessary data. Discovery is

done using the directory service provided by the sector

managers. As the target approaches a previously unknown

area, the track manager will query the appropriate sector

manager to determine the available local sensing capabili-

ties. The track manager uses this knowledge to determine

from where and when the data should be collected, and

sends measurement requests to the sensor managers it se-

lects (see Figure 1C). Because those sensors may be servic-

ing tasks from other sector or track managers, conflicts can

arise between the new task and previously existing commit-

ments. The sensor agent will address such conflicts as best

it can locally by using priorities to de vise a round-robin

schedule, but will also notify the conflicting managers of

the problem. Because these managers have a more global

view of the situation, they are in a more suitable position to

resolve it. For example, they may negotiate to use other

sensing resources, or offer concessions in the form of re-

duced quality. This process is described in detail in [15].

The data produced by the sensors is collected and

analyzed (see Figure 1D). Although this activity is logically

a separate role, it is a relatively lightweight process, and as

a simplification our organizational design implicitly incor-

porates it into the track manager’s responsibilities. Once

the track manager has received the measurements, the data

are fused in a triangulation process. Amplitude and fre-

quency values can place the target’s location and heading

relative to their source sensor, and several of these relative

values can be combined to derive an absolute position. The

data point is then added to the track, which is used to pre-

dict the target’s future location. It is also used to periodi-

cally notify nearby sector managers of the target’s location.

At this point the track manager must again decide

which sensors are needed and where they should take mea-

surements. Under most situations, the process described

above is simply repeated. However, if the target has moved

far from where the track manager is, the track managing role

may be migrated to a new agent in a different sector. This is

done to avoid penalties associated with long-distance wire-

less communication, which may cause unwanted latency or

unreliability transferring information. This technique is cov-

ered in more detail in Section 3.3.

3. EMPIRICAL EVALUATION

The two primary organizational features used by this

system can be thought of as geographic coalitions and func-

tional differentiation. The first describes the partitioning

process, while the second is a result of the heterogeneous

assignment of roles to agents. An integral part of each is the

notion of locality. Information propagates and is made avail-

able to only the agents which have need of it. In some cases,

such as with the environmental sectorization, artificial bound-

aries are created to encourage locality at the expense of time

or flexibility. In other cases, as with the target tracking role,

locality is exhibited naturally through the domain.

There are many data flows and interactions that are

encouraged and restricted by this design. As we will demon-

strate, these characteristics affect the quantitative performance

of both individuals and the system as a whole in a variety of

ways. We will informally describe these effects below, and

provide more concrete descriptions in Sections 4 and 5.

In the following sections, we will show empirical

evidence exhibiting these characteristics, and explain how

they drive the selection of an organizational design. Our

experimental scenario consisted of a group of 36 sensors

and 4 mobile targets. Different sized sectors were tested in

this scenario, ranging from 36 very small sectors each con-

taining just one sensor, to a single sector encompassing

the entire area. All sectors shared the same size within any

given test. Our initial hypothesis was a reasonable sector in

our environment would contain from 6 to 10 sensors. We

will show later that “reasonable” in this sense depends on

a number of factors, including the density of the sensors,

sensor range, communication medium characteristics and

target speed, among other things. The sensors were ar-

ranged in a grid pattern and the targets’ locations and move-

ment spread evenly through the environment to normalize

results and simplify analysis. Targets moved with constant

speed. The results were then observed over 10 runs per

configuration in a simulation environment called Radsim,

which closely models the performance of the physical MTI

sensors [11]. The same agent code was used for both simu-

lation runs and actual hardware tests. Each run lasted ap-

proximately 140 seconds.
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3.1. GEOGRAPHIC COALITIONS

Our first evaluation metric is the total amount of com-

munication that occurs in the system. Figure 2 shows that

as the number of agents in each sector increases, and there

are correspondingly fewer sectors overall, the amount of

communication traffic decreases. Because each sector re-

quires a certain amount of control messages, the total num-

ber of messages is reduced as the number of sectors de-

creases. A more detailed view of the effects this change has

on messaging will be shown later in Figure 4.

3.2. FUNCTIONAL DIFFERENTIATION

The varied assignment of roles forms a different,

functional organization [5] in the system. Agents specialize

their functionality in order to restrict the type of interac-

tions which must take place between agents. For example,

to obtain information about available sensors, a track man-

ager must only contact the relevant sector managers, in-

stead of blindly broadcasting to all sensors [22]. Concen-

trating the track management functionality into individual

agents serves a similar role, by limiting the number of inter-

actions necessary to resolve conflicts in sensor usage.

Although this type of functional decomposition does

reduce the total number of interactions an agent might need

to make, it can also increase that number for particular indi-

viduals in the environment. For example, we have seen how

the sector manager is responsible for disbursing informa-

tion about the sensors in its sector, which facilitates the

track manager’s discovery process. However, by serving in

this capacity, it also makes itself a center of attention, which

can result in unreasonable load when demand is high.

Consider Figure 3, which shows how much agents

in the population differ from one another in their communi-

cation habits, as the sector size changes. This notion is

captured by measuring the standard deviation in communi-

cation activity (total messages sent) exhibited by individual

agents. If all agents are roughly the same they will have a

low deviation, while a population that has a handful of out-

lier agents with significantly higher message traffic will have

a high deviation. As the number of agents in each sector

increases, this graph shows an increase in disparity, be-

cause a few agents are communicating more than their peers.

Since the environment and target spacing are uniform, the

differences can be attributed to the roles those agents take

on. The rise in deviation when there is a single agent per

sector represents the coexistence of the sector and track

manager roles, because all agents act as sector managers

when there is only one agent in each sector. This trend

demonstrates that as the sector size grows, specialized

agents such as sector and track managers can become

“hotspots” of activity. In a bounded environment with un-

reliable communication this concentration of activity could

Recall that our initial intent behind creating these

sectors was to reduce the communication burden. The re-

sults in Figure 2 are in some sense contradictory of this

goal, because they show that the unpartitioned environ-

ment had the lowest communication overhead. The parti-

tioning process described in Section 2 results in the cre-

ation of loose coalitions of sensors based on geographic

location. Sector directory information, new target scan

schedules, discovery measurements and certain tracking

control messages are all contained within or directed to

these coalitions. Because the manner in which this informa-

tion being communicated is determined by the sectors, the

sectors’ average size and shape has a tangible effect on

some aspects of the system’s performance. If the sector is

too large, and contains many sensors, then the communica-

tion channel used by the sector manager may become satu-

rated. If the sector is too small, then track managers may

expend a great deal of time and bandwidth updating sector

managers as its target moves through the environment. So,

although these result show that large sectors have lower

total overhead, the individual picture is not so straightfor-

ward. This is covered in more detail below.

Although not shown in this figure, partitioning can

also affect reactivity, because time may need to be expended

to discover sector information. A track manager, for example,

must perform queries to obtain sensor information as its

target moves to new sectors. Smaller, more numerous sec-

tors will result in delays caused by the additional queries,

which ultimately affects the number of measurements it re-

ceives. This delay will be revisited in Section 4.

Figure 2 - Affect of sector size on messaging

Figure 3 - Messaging disparity vs. sector size
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lead to reduced performance and data loss if the communi-

cation channel becomes overloaded.

A growing tension between sector sizes is made

apparent by these results: Figure 2 shows that smaller sec-

tors lead to increased message traffic, and while Figure 3

shows that larger sectors imbalance load in the population.

Although not shown, similar trends were observed in agents’

local workload levels, which track the number of non-com-

municative actions being performed. Both characteristics

are bad, so a compromise must be sought between them in

the selected organizational design.

3.3. ORGANIZATIONAL MAINTENANCE

As insinuated above, there are costs associated with

creating and maintaining the organizations employed by

this design. The most frequently updated aspect of the

organization is the relationship formed between track and

sector managers, because the sectors interacted with by

the track manager change as the target moves. This results

in a class of control messages dependent on sector size.

For example, as the target moves into part of the environ-

ment the track manager is not familiar with, the manager

must query the sector manager of that area to discover local

sensors. Once those sensors are known, data collection

commitments can be established.

As the target is tracked, the nearby sector managers

must also be notified of the target’s estimated position.

Figure 4 provides a quantitative view of this over-

head. As sector size increases, fewer directory and tracking

control messages are necessary, because there are a fewer

sectors to interact with as the target moves. In addition, the

number of measurements increases as the sector size in-

creases, because the reduced time spent by the track man-

ager interacting with the additional sector managers allows

more time to be spent requesting data. More measurements

results in a lower root-mean-squared (RMS) error between

the measured and actual track, as seen in Figure 5.

The technique of migrating the tracking responsibil-

ity through the agent population as the target moves is

another example of how locality can be exploited. Signal

attenuation conspires to make communication less reliable

as distance increases. Multi-hop protocols can maintain

reliability, but will increase end-to-end latency at each hop.

Lacking the capacity for movement, the initial manager se-

lected to track a target will therefore become less effective

as the target moves away from it. By migrating this task to

follow the target, the organization is able to retain locality

despite the fact that the sensors themselves are immobile.

This results in a reduction in the average distance that mes-

sages must travel.

Figure 6 shows the effect track manager migration

has on the average distance of communication. Because

migration is triggered by sector boundaries, the tracking

task will migrate less frequently when sectors are large,

simply because they cover more area. Conversely, a lower

average communication distance is observed when sectors

are smaller. The lower migration rates also contribute to the

increased measurement totals from Figure 4. Each migration

interrupts the collection process as the role is moved from

one agent to another, so the more frequently this transfer

takes place, the more the average overall collection rate will

be reduced.

Figure 4 - Message types vs. sector size

Figure 5 - Effects of sector size on RMS error

Figure 6 - Average communication distance
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These metrics contribute to the organizational ten-

sion. Large sectors improve the system’s RMS error rate,

while smaller sectors exhibit better communication locality.

3.4. SCALABILITY RESULTS

To explore the generality of these trends, we per-

formed na additional set of experiments that varied num-

bers of targets. Each test contained between 1 and 24 equally

distributed targets, all of which moved concurrently through

the environment for the duration of the experiment. The

scenario was otherwise identical to those in Section 3. Fig-

ure 7 shows that our original communication disparity pro-

file from Figure 3 is maintained as the target density is var-

ied, and the amount of disparity increases with the number

of targets. Intuitively, this is because the amount of work

particular agents are performing is tied to the number of

targets in the environment. The communication load of the

sector managers, for example, is directly proportional to the

number of track managers it must interact with. This is par-

ticularly true as the sector size increases – in the most ex-

treme case a single sector manager must support all 24 track

managers.

Similarly consistent results are seen for the systems

RMS error, in Figure 8. The RMS error profile is maintained,

although the baseline RMS error increases because the

bounded sensing capabilities result in fewer average mea-

surements per target. Notice how the RMS value for 6 and

fewer targets are clustered together, while those with 8 or

more become progressively worse. This is caused by a phase

transition that occurs between 6 and 8 targets, when the

number available sensors is no longer sufficient to meet

demand. The inevitable reduction in the number of mea-

surements track managers receive leads to an increase in

RMS error.

Additional tests were performed which also varied

the number of sensors in the environment, using six differ-

ent configuration with between 9 and 81 sensors [7]. Re-

sults from those experiments concur with the trends out-

lined above.

The conclusion we draw from these experiments is

that a tradeoff exists between communication volume and

its distribution over the agent population. Message vol-

ume decreases when there are more agents per sector be-

cause fewer interactions are needed to obtain information,

as shown in Figure 2. However, this shift can cause indi-

vidual agents to incur a disproportionate communication

burden, as shown in Figures 3 and 7. Figures 4, 5, and 6

show that organizational maintenance causes a similar

tradeoff - larger sectors have lower overhead and better

RMS error, while more track migration in smaller sectors

increases communication reliability.

4. DISCRETE ANALYTIC MODELS

Our long-term objective is to use results such as

these to make architectural design decisions. A simple strat-

egy might compare the metrics graphically, and select a

point which seems appropriate for the expected conditions.

Normalizing and overlapping the trends from Section 3, pro-

duces the graph in Figure 9. By searching for a common

inflection point in this diagram, we can conclude that a

sector size between 4 and 9 strikes an acceptable balance

Figure 7 - Communication disparity

with varied sector sizes and target densities

Figure 8 - RMS error differences with varied

sector sizes and target densities

Figure 9 - Finding the appropriate

configuration from normalized results
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between the competing positive and negative characteris-

tics. This supports our hypothesis that a sector size be-

tween 6 and 10 was a reasonable choice. However, the no-

tion of “reasonable” is problemspecific, depending on the

characteristics of the agents, the resources they use, and

the environment. For instance, if more robust managers were

available to handle the increased load, this graph also shows

that better RMS performance can be obtained by using

larger sector sizes. In general, the requirements imposed by

goals and the capabilities of the system and environment

guide an appropriate selection, and these experiments only

suggest a course of action for a particular configuration.

The use of a more formal, analytic model that incor-

porates the various characteristics can evaluate a wider

range of candidate designs. Instead deducing metrics from

a graph as above, one can create a function that takes re-

quirements and characteristics as inputs, and produces a

prediction or rating as output. To do this, one must capture

the system’s behaviors in an abstract, quantitative model

that provides a good approximation of the real system. We

will do so by predicting role-specific values over the life-

time t of the role. As before, we assume that the sensors and

targets are uniformly distributed in the environment, and

targets move with constant velocity. One could relax these

assumptions by estimating interaction probabilities; al-

though the calculations would be more complex, the spirit

of the analysis would remain the same. Similarly, one could

determine worst-case peak performance by assuming worst-

case densities. The formulas presented below do not repre-

sent actual message totals, but are meant to reflect relative

growth rates. As we will show in Figure 10, quantitative

results can be obtained through the addition of appropriate

constants. Consider the sensor manager. We will define the

number of measurement messages sent by the sensor man-

ager as its measurement load ( ). Measurements are taken

in response to track manager requests, which are in turn

prompted by targets in range of the sensor.  is therefore

dependent on the likelihood that a target is within its range

r. Assume T targets in an environment of area A, each with

m measurements per time unit.  can then be approxi-

mated with the following equation:

So, as the number of targets increase, or the envi-

ronments area decreases, the number of measurements will

approach tm. This model is an upper bound, however, as it

does not take into account track managers’ specific behav-

iors, such as delays or inefficiencies that could affect the

rate at which measurements are requested. These will be

made more explicit in our model of the tracking process

below.

The sector manager’s load ( ) is dependent on both

the size of the sector and the number of targets. As we have

observed earlier, larger sectors mean more sensors must be

registered, as well as an increased probability that a target

will be in the area.  can be broken down into the one-time

costs associated with sector creation, when the sensors

send descriptions of themselves to their sector manager,

and the continuing costs derived from targets moving

though the sector:

N is the total number of sensors in the environment,

and u is the frequency at which target updates are supplied

to the sector manager by the track manager. S is the actual

size of the sector’s area, while  is the effective size of the

sector’s area. S and  are differentiated by what they repre-

sent. S is the strict bounding area of the sector we have

been discussing thus far; membership in the sector is de-

fined by containment within that area.  is the potentially

larger area over which measurements can be taken by sen-

sors in that sector. If for example each sensor has a range of

r = 20, then  will be the area bounded by S unioned with a

perimeter of width 20 surrounding S. Because it is this ef-

fective area that determines when a track manager provides

the sector manager with target location updates,  grows

in proportion with . The second term in the summation

represents the directory queries it must respond to as tar-

gets enter its sector, which depends on the velocity of the

target v and the average distance the target must cross

before it reaches a new sector. This latter term depends on

the probability of target turns and the shape of the sector

itself; we model it with a very coarse estimate of the average

chord length in the sector .

Ignoring the effects of uncertain measurements or

faulty data fusion, and assuming a reasonable choice of

sensors are requested, the RMS error of the tracking pro-

cess is primarily dependent on the number of measurements

 that are received over the lifetime of the track. In the

absence of hindering factors, the track will receive mea-

surements at a uniform rate m from each of c sensors used

(we assume c is sufficient for triangulation purposes). The

actual rate of measurements will be less than this, affected

by the number of sensors that are used and any delays

incurred by overhead tasks. In particular, the collection of

sector directory information, and task migration when the

target has grown too distant can reduce the total number of

measurements that are obtained. Competition for sensors

by other targets can also reduce the measurement rate.

(1)

(2)
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Equation 3 defines , the number of sensors that will

actually be used to track the target. It is bounded above by

the desired quantity c, and below by the expected propor-

tion of the total number of sensors that are in range of the

target with radius b. This captures the effect that sensor

density has on track quality. s models the proportion of a

potentially contended sensor’s time usable by the target. If

we assume the sensor is shared equally among targets,

then the measurement rate obtained by an target will be

inversely proportional to target density. As sensors come

under contention, an allocation strategy must be employed

to resolve the conflict [15]. An additional reducing factor

models this optimization process; l estimates the amount of

conflict, while λ controls how much the conflict degrades

performance. When the target moves into a new area, there

will be a delay d before the appropriate information is re-

ceived. An additional delay g is incurred during track migra-

tions when the target has moved two sectors away from

that of the track manager. The net effect i of these delays

and the corresponding increase in measurements when sec-

tor sizes grow is supported by Figures 4 and 5.

To evaluate the accuracy of track measurement

model, values were determined for each of the variables 

is dependent on. Most could be determined directly from

the system’s configuration (e.g. the number of sensors N),

through simple measurements (e.g. the directory service

delay d), or by estimation (e.g. the average cross-sector

distance ). The degradation constant λ required a more

detailed performance evaluation to find an appropriate value.

In practice, if a complete prototype is not available to make

a determination, one could approximate such values through

targeted simulation of the appropriate subsystem [8],

through formal analysis of the algorithm or technique in

question, or by using a backof-the-envelope estimate that

is revised as additional data is available. Figure 10 shows a

comparison of the previously observed number of mea-

surements and the predicted  obtained from Equation 7

using these values.

Although the detailed results are not presented here,

similar analytic models were also created for estimating the

load placed on track managers [7].

5. UNIFIED ORGANIZATIONAL MODELING

The analytic models presented in the previous sec-

tion, although individually precise, lack the cohesion nec-

essary to create a complete prediction of system perfor-

mance. There is no strong notion that particular and dis-

tinct entities exist with associated characteristics. There is

no well-defined way of specifying what decisions must be

made, what values must be optimized over, or what con-

straints must be respected. Instead, such individual expres-

sions provide performance characteristics piecemeal, and

comparative analysis of entire systems is performed later in

an ad hoc manner. For example, note the discontinuity be-

tween the measurement requests predicted by Equations 1

and 7. While we could copy the appropriate logic into Equa-

tion 1, this duplication of effort is somehow dissatisfying,

and the resulting equations would still fail to capture the

underlying relationship at the root of the problem. Finally,

while the provided equations are able to model the effects

of a changing sector size, we believe a single, static set of

equations will be unable to represent all the alternative ways

that a structure might be created in a concrete and accurate

manner. For example, consider if there were a choice of the

type of sensor or agent available for use in the environ-

ment, or different tracking techniques that might be em-

ployed, or an optional information aggregation hierarchy of

arbitrary height and width. While one could create indi-

vidual models for each dimension, combining them together

in a coherent and expressive way would be challenging. It

is for this reason that we view tools that operate principally

on such representations, such as nonlinear solvers and

queuing networks, as too limiting for our purposes (although

we believe they may play a role in certain aspects of design

evaluation).

To address this deficiency, we have developed a

more robust set of tools to capture organizational informa-

tion in a single, unified structure. The Organizational De-

sign Modeling Language (ODML) provides domain-inde-

pendent mechanisms to model, evaluate and compare a va-

Figure 10 - Comparison of predicted and actual

results of   for 2,4 and 12 targets.

Solid lines are predicted, dashed are actual
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riety of organizational styles, including the sensor network

we have described in this paper. As we will show, ODML

incorporates quantitative information in the form of math-

ematical expressions similar to those used above. These

expressions are grouped into organizational constructs,

connected via a graph of relationships, and ultimately used

to represent and predict both the localized and global char-

acteristics of an organization.

The immediate benefits of such a language are two-

fold. First, by incorporating quantitative information about

the environment, resources, agents, tasks, goals, or any

other object relevant to the system’s performance, candi-

date organizations may be tailored and evaluated in a con-

text-specific way. For example, we may directly embed infor-

mation about sensor density, target velocity, communica-

tion limitations, and the like. This model can then be used to

determine the organization which is most appropriate for

that context, given a particular definition of utility. Second,

once a suitable model hás been found, it can serve as an

explicit organizational representation, guiding agents’ local

decisions in a manner consistent with global objectives.

The longer-term benefits of the organizational model in-

clude being able to make predictions about runtime perfor-

mance, which can be used to isolate and diagnose system

failures and deficiencies. This same information can also be

used to support adaptation of the system, by incorporating

learned knowledge into the existing model and analyzing

the resulting structure.

5.1. ODML

An organizational model, as we envision it, serves

in several different capacities. At design time, it should be

possible to use the structure to create and evaluate not just

a single organizational instance, but an entire family of or-

ganizational possibilities. At runtime, it should accurately

describe the current organization. In both cases, the model

must be sufficiently descriptive and quantitative that one

can evaluate the organization’s effectiveness, and rank al-

ternatives according to some specified criteria. Below, we

enumerate the desired capabilities and characteristics a

modeling language should possess to satisfy our require-

ments:

1. Represent a particular organizational structure. This

would include roles, interactions and associations

(e.g., coalitions or teams). Different flows in the or-

ganization, such as communication and resources,

should be representable.

2. Represent the range of organizational possibilities,

by identifying general classes of organizations and

the parameters that influence their behavior. Differ-

ent elements should be modelable at different levels

of abstraction. Identify which characteristics are

under deliberate control, and which are derived from

external factors.

3. Enable concrete performance predictions and allow

deductive analysis by quantitatively describing the

relevant characteristics exhibited by the structure,

the manner in which those characteristics interact,

and the constraints they are affected by. For example,

both communication overhead and the effect that

overhead has on work load should be represent-

able.

Many different organizational representation

schemes have been developed by researchers [1, 2, 3, 4, 9,

12, 16, 17, 18, 19, 24]. Most, if not all these representations

can satisfy the first two points to varying degrees, but none

are able to incorporate quantitative knowledge in such a

way that concrete, organization-centric predictions can be

made directly from the model itself. In this section we de-

scribe a new formalism called ODML that explores how such

information can be modeled and used.

Most existing representations fall into one of two

categories: either they represent a wide range of organiza-

tional characteristics abstractly, or they can capture a smaller

set of characteristics concretely. The former are usually good

at representing what entities or relationships exist or could

exist, but cannot compare alternatives in a quantitative way.

The latter may contain quantitative knowledge, but have

difficulty relating that knowledge to specific organizational

concepts, mitigating their usefulness if one is hoping to

understand the effects a particular organizational design

will have.

For example, OMNI [3] and  [9] can each

capture a greater variety of organizational concepts than

ODML, but do so in a largely qualitative way. Conversely,

both SADDE [18] and MIT’s Process Handbook [16] can

incorporate arbitrary quantitative information, but neither

couples this information with the organizational structure

in a way that enables one to deduce how the characteristics

of one aspect of the design affect another. Decker’s TAEMS

representation [1] does directly embed a certain amount of

quantitative information, but this data is abstract and can

only be used to make detailed performance predictions of a

limited set of characteristics. The representation created by

Sims [19] is perhaps closest in purpose to ODML. It incor-

porates detailed quantitative information into a structured

organizational model, but does not have the innate ability

to evaluate and rank organizations based on this informa-

tion. We also believe ODML’s more flexible design can model

more situations at different levels of abstraction.

The benefits offered by ODML do not come without

their price. For example, the flexibility alluded to above can

result in a vast number of alternative designs. This, coupled

with a general paucity of strong organizational landmarks
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on which heuristics could be founded conspire to make the

search for designs a potentially difficult task. In the end,

each representation has its strengths, and ODML’s goal is

not to supplant these works – but to demonstrate another

approach that makes different tradeoffs. As shown below,

ODML does so by incorporating a concrete but flexible set

of primitives that can model a range of organizational con-

structs along with the quantitative characteristics that dif-

ferentiate them.

We continue by formally defining an ODML tem-

plate specification  as follows:

The foundation of the ODML template specification

is the set  of node templates, each of which corresponds

to a particular physical or logical entity which might exist in

the organization. For example, in our sensor network sce-

nario there would be nodes corresponding to sectors, man-

agers, relationships, agents and the environment, among

other things. Each node N contains a number of elements,

defined below:

t The node’s type. This label must be unique within

the set of template nodes that make up the organiza-

tion.

 The node’s instance limit. This specifies the maxi-

mum number of instances of the node type permit-

ted in a valid organizational instance.

 An ordered list of parameters that must be passed

to the node’s template when an instance of the node

is created. These are analogous to the parameters

one might pass to an object constructor. Each pa-

rameter is specified with a type and local name.

I The set of node types that this node has an is-a

relation with using conventional object-oriented in-

heritance semantics. If we assume that a node’s I =

{a, b}, an instance of the node will also be an in-

stance of a and b, possessing the characteristics of

all three node types. Isa relationships cannot be

cyclic, i.e., N cannot have itself as a decedent.

H The set of node types that this node has a has-a

relation with. If we assume that H = {a, b}, an in-

stance of the node will possess some number of

instances of both a and b. It is through this type of

relationship that the primary organizational decom-

position is formed. Each hasa has a magnitude that

specifies the number of instances connected by the

relationship.

C A set of constants that represent quantified charac-

teristics associated with the node. Constants may

be defined with numeric constants (e.g., 42), or math-

ematical expressions (e.g., x + y).

K A set of constraints. Also defined with expressions,

na organization can be considered valid only if all of

its constraints are satisfied.

M A set of modifiers that can affect (e.g., mathemati-

cally change) a value contained by a node. Multiple

modifiers may affect the same value. Modifiers model

flows and interactions by allowing the characteris-

tics and decisions made in one node to affect those

of another.

V A set of variables, representing decisions that must

be made when the node is instantiated. Each vari-

able is associated with a range of values it can take

on. For example, a node might have a variable x that

could take any one value in the set .
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symbol refers to a user-defined string, similar to a

variable name in a conventional programming language.

These typically describe or refer to a particular characteris-

tic. Type is the type name of some defined node, so 

such that N.t = type. expression is an arbitrary algebraic

expression, possibly referencing constants, symbols and

function calls. ODML supports the use of floating point

values, lists of floating point values, and discrete probabi-

listic distributions in these expressions.

The top-level organization node  also contains the

elements H, C, K, M, V, providing a location to embed addi-

tional global information and constraints.

Collectively, we refer to C, K, M, V as a node’s fields,

and the quantitative state of a field as its value. For ex-

ample, a constant field total load might be defined with the

expression total_load = work_load + communication_load

and have a value of 0.9 for a particular agent. Note that the

use of the term “constant” may initially be misleading. While

the expression defining total_load is fixed, the value for

total_load produced by that expression may change

through the application of modifiers, or due to changes in

fields or values that the expression is dependent on.

At first glance, the ODML language may appear to

be devoid of almost all the organizational concepts that are

provided by typical organizational representations. This is

partially true, and by design. Instead of directly incorporat-

ing the usual high-level organizational components, such

as hierarchies, roles, agents, etc., ODML provides a set of

relatively low-level primitives by which such structures can

be defined. For example, a node with the user-defined type

manager, having a has-a relationship with another node of

type agent could embody a role-agent relationship. A se-

quence of has-a relationships between nodes could indi-

cate a hierarchy.

Although the high-level semantics for these nodes

may only be implicit, the concrete characteristics and de-

sign ramifications are still directly and quantitatively cap-

tured by the nodes’ fields. We feel that this approach can

lead to an increased diversity of representable structures,

by avoiding the assumptions and inevitable restrictions

that typically accompany high-level structures.

ODML instances are quite similar to ODML tem-

plates. The difference is that where a template is a descrip-

tion of what could be, an instance is a description of what

is. Where a template might specify that a manager role can

be assigned to a single agent or distributed across multiple

agent nodes, na instance would indicate that manager_1 is

distributed across agent_5 and agent_7, and so on.

Instances are created by making choices for the de-

cision points embodied in the template. Such decision points

are captured in two different ways: in the choice of value to

assigned to a variable field, and in the choice of node type

to satisfy has-a relationships. Although employing just these

two choice types may seem limiting, we have been able to

use these simple concepts to capture many types of organi-

zational possibilities. For example, a variable could be used

to express the range of possible sensors_per_sector in the

DSN domain, to controls the shape of part of the organiza-

tion. Other uses of variables might be to decide the relative

priority of an agent’s tasks, the amount of time it is willing

to wait for a response, or the number of agents that will be

used to form a coalition. Decisions made for the agent has-

a relationships in the three roles will determine the specific

role-agent bindings that will be used. Sequences of similar

decisions could also decide if the manager role will be distrib-

uted, or how tall a data processing hierarchy should be. Decid-

ing upon the correct decisions can be viewed as a search

process, which is a subject of ongoing work. Once an instance

has been created from these decisions, the expressions de-

fined by the fields, the data passed in through parameters, and

the interactions caused by relationships can all be used to

predict values for an individual node’s characteristics.

The formal definition of an instance is nearly identi-

cal to that given in Equation 8, so we will not repeat it here.

The differences principally relate to the replacement of node

types in the template with instances of those nodes in the

organizational instance. Thus, the set  is the set of node

instances, whose individual types no longer need be unique.

So, where there might be just a single manager type in the

template, there can be an arbitrary number of manager in-

stances in the instance. Both is-a (N.I) and has-a (N.H)

relationships no longer reference node types, but particular

node instances in . Finally, the set  is filled with appro-

priate values from each node’s parent, and the variable set

V for each node is replaced by a single item from that

variable’s range. Because a common syntax is shared be-

tween the two forms, for the remainder of this document I

will indicate where necessary which is being considered.

As mentioned above, it is the ability to use an ODML

model to deduce quantitative values for specific character-

istics that sets it apart from other representations. The man-

ner in which these values are determined for an instance

node’s characteristics is defined by the pseudocode in Fig-

ure 11. Note that some aspects of get value’s behavior,

such as the manipulation of list-based data, have been omit-

ted for clarity. This function shows how various sources of

information, non-local data and node interrelationships all

interact to describe the features of a particular node. It is

through the execution of this function on a particular sym-

bol that predictions are made of the design’s performance.

For example, agent.get_value(total_load) would return a

prediction of agent’s total_load.

This function is used in a similar fashion to deter-

mine the validity of a particular organizational instance. The

validity of an instance  is defined as:
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Intuitively, an ODML instance is valid if all nodes’

constraints are satisfied, and the number of each type of

node respects the limit (if any) specified by the template.

5.2. SENSOR NETWORK MODEL

The capabilities of ODML are best explained through

na example.We will proceed with an overviewof how an

ODML model was produced for the distributed sensor net-

work domain described in Section 2. For clarity, we will rep-

resent particular nodes, or fields that reside in the nodes, in

italics. Space precludes showing the complete textual model

constructed for the sensor network, however, a portion of

the model can be seen in Figure 12. The complete model is

roughly 280 lines long, including whitespace and comments.

A corresponding graph showing some aspects of the

model’s template can be seen in Figure 13a. Vertices in that

graph, such as sector and sensor, represent nodes. Nodes

can represent both tangible (e.g. agent) and intangible (e.g.

sector) entities. Directed edges with a solid arrow represent

has-a relations, and the corresponding label indicates the

magnitude of that relation. For example, each track_manager

node has a number of agents defined by the field

num_agents. The corresponding definition is shown in line

4 of Figure 12.

A hollow-arrow edge represents an is-a relation, so

normal_agent is an instance of agent. Shaded nodes, such

as agent are abstract, and cannot be directly instantiated.

Thus, any node with a has-a relation with agent can instead

substitute normal_agent. This level of indirection allows

this model to represent and easily use agents with different

capabilities. For example, the robust_agent mentioned in

Section 4 is represented with a node that also has an is-a

relation with agent, and can be substituted for agent in the

same way.

Figure 13b shows a particular instance of the tem-

plate from Figures 12 and 13a. Vertices in the instance graph

represent nodes, and a gray directed edge indicates the

existence of a non-local modifier from the source node to a

field in the target node. Black directed edges represent has-

a relationships, but unlike the template they have no labels.

Because this is a particular instance of the sensor network

organization, the decision points present in the template

have all been decided. Therefore, where sector might have

the num_sensors label on its sensor relationship in the tem-

plate, a discrete value of two has been chosen for that field

in this particular instance. Because of this, each sector in

the instance has two sensors (S). Normal agents (a), sector

managers (SM), track managers (TM), and two kinds of

track manager relations (SM-TM and S-TM), are also

present.

We can relate this model directly to the organiza-

tional structures discussed in Sections 3.1 and 3.2. Geo-

graphic coalitions are embodied in the sector node. The

size of the has-a relation sector has with the sensor node

reflects the chosen sector size, and the sector manager is

specified with the sector_manager node. The functional

differentiation aspect is modeled directly by the

sector_manager, track_manager and sensor nodes. Each

represents a role that can be assigned. This assignment is

represented with the agent has-a relationship each node

possesses. The particular instance of agent node associ-

ated with a role node corresponds to the particular agent

assigned to that role.

Figure 11 - Pseudocode for the get_value function

of a node N . This function is used to quantify

the característics of instance nodes
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The heart of any ODML model exists in the expres-

sions encoded within nodes’ fields. A selection of these

fields, contained by the track_manager and s tm_relation

nodes, are shown in Figure 12. The former defines the track

manager role, while the latter represents the relationship

that role hás with sensors in the environment. Each node’s

field may contain an arbitrary mathematical equation, com-

bining local and nonlocal information to calculate new local

values as depicted in Figure 11. These expressions provide

a way for the designer to represent how different character-

istics of the node may be computed. For example, suppose

we wish to define how to calculate the track manager’s logi-

cal footprint (area) of a target as it moves through the envi-

ronment. This área will depend on the amount of uncer-

tainty the manager hás in the target’s location, along with a

factor modeling the target’s “area of influence”, that relates

to the effective sector size discussed in Section 4. In our

model, this area will be a circle; line 11 shows how the

target_area of a track manager is derived from the target’s

influence_radius. The number of sensors presumed capable

of sensing the target is the average number of sensor which

lie within the target area. Therefore, although the number of

Figure 12 - A portion of the raw ODML specification for the track_manager and s_tm_relation nodes

Figure 13 - Example ODML (a) template and (b) instance structures for the sensor network organization
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desired_sensors is independent of the environment, the

actual_sensors_available to the manager will depend indi-

rectly on the target_area and sensor_density, as shown in

line 16. The requested_sensors will be the minimum of the

desired and available.

We may model the number of measurements pro-

vided to the track manager in a similar way. The actual

measurement rate in the sensor-track manager relationship

is derived from the locally calculated requested measure-

ment rate and actual measurement ratio computed by the

sensor node. This value is then used in a pair of modifiers

defined in lines 31 and 32 that specify for the track manager

and sensor the actual number of measurements that will be

taken.

In this way, the characteristics of one node may af-

fect or be affected by those of another. Oscillations and

infinite recursion are avoided by allowing only acyclic equa-

tion relations. The resulting web of equations allows one to

model important concepts such as information flow, control

flow, and the effects of interactions. By propagating data

through these expressions, the model can predict the char-

acteristics of both individual nodes and the organization as

a whole. Perhaps more importantly, it also allows the model

to predict characteristics not necessarily envisioned or con-

sidered by the designer, as the results of expressions can

flow through the graph in unanticipated ways. It is this

automatic propagation which differentiates an ODML model

from a simple set of equations, by creating a unified view of

the complete working organization.

The mechanisms provided by the ODML primitives

allows one to model a range of common,

organizationallyinfluenced system characteristics. To con-

tinue our example, we will describe several such character-

istics relevant to the sensor network organization, and dem-

onstrate how the interplay between such elements results

in a more coherent, unified model.

5.2.1. Environmental and System Constants Incor-

porating numeric constants within an ODML structure, a

crucial element of any realistic model, can be at once simple

to accomplish and difficult to complete successfully. The

definition itself, comprised of a straightforward constant

field, is trivial to create. Determining what value to place

within this field can be an entirely different matter, just as

with the values used in the discrete analytic models. For

example, the desired_sensors constant at Figure 12 line 14

is a known quantity that can be extracted directly from agent

code or a software engineering specification. On the other

hand, the uncertainty_radius on line 9, which represents

the expected radius of the target’s uncertainty bound, can

be more difficult to determine directly. Assuming for the

moment that this value does not depend on other charac-

teristics (such as the target’s velocity), one could first

specify a rough estimate, and later revise that estimate if

contradictory empirical evidence is observed in practice or

a more accurate value is devised. In practice, most of the

numeric constants in the sensor network model were de-

rived through a combination of known system parameters,

estimation based on domain expert knowledge, and in some

cases, instrumentation of a running system or prototype.

The specification of expression-based constants can

be accomplished in a similar fashion, although these are

more frequently determined based on knowledge of the

system in question. An example of this is the track manager’s

requested_sensors in line 17 of Figure 12. This represents

the number of sensors that manager will actually ask for,

which may be less than desired_sensors in the case where

there is insufficient sensor density in the environment. It is

sometimes the case, however, that a simple closed-form

solution is either difficult to derive or not possible. In the

former case, we have used curve-fitting techniques to ob-

tain approximate expressions from empirical data. This

techniquewas used to find a predictive expression for RMS

error, based on the number of received measurements. It is

worth noting that this particular expression attempts to ab-

stractly and indirectly capture a number of complex effects,

including the effects of target ambiguity, incorrect data fu-

sion and the average quality of the measurements them-

selves.

For the latter case, when a closed-form solution does

not exist or cannot be found, ODML supports a general

“mapping” function, which allows one to define a function

correlating a discrete input value with an arbitrary expres-

sion. With this, one may define some f such that, for ex-

ample, , etc. The average

effective_area of the sector nodes uses such a function.

This characteristic, originally defined as  in Equation 2,

represents the average area covered by the sensors in each

sector, which is typically larger than the area of the sector

itself. A mapping function was used to effectively create a

look-up table, which associates an appropriate expression

calculating the effective área for each sector size.

5.2.2. Agent Interactions The manner in which enti-

ties interact is perhaps the most visible and defining char-

acteristic of multi-agent systems. It generally plays a cru-

cial role in determining how information flows through the

system, how load is distributed, how efficient operations

are, and ultimately the effectiveness of individual agents

and the system as a whole. In our sensor network model,

these interactions are defined in two different ways. In the

first, entities simply model the effectsof interactions inter-

nally. For example, the sensor node represents the directory

service messages it sends to its sector manager, and uses a
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modifier to add a corresponding number of messages to its

sector manager. We have used both modifiers and param-

eters to disseminate such agent characteristics so that they

may be incorporated in remote nodes.

The second technique employs a more explicit rep-

resentation, by creating an independent node to model the

interaction itself. An example is s_tm_relation, the sensor-

to-track manager relation, shown in Figures 12 and 13. This

node models the interactions that take place between a track

manager and a sensor, which include determining the rate at

which task requests are generated by the track manager, the

rate at which measurements are taken in response to those

requests, and the rate at which corresponding results are

sent back to the track manager. Each of these values is

calculated using a combination of information from each

entity, and the results applied back to the appropriate node.

For example, the actual_measurement_rate is used to in-

crement the sensor’s messages_rr constant, which tracks

the number of result messages that are sent.

Choosing how to model an interaction depends on a

number of factors. Simple interactions are typically embed-

ded, thus avoiding the additional overhead associated with

node creation.We have found that there are several ways

that more complex interactions benefit from an explicit, sepa-

rate model. By separating and encapsulating the interac-

tion, its effects can be made more transparent and the model

more understandable. In the case where there is a one-to-

many type of relation, as with a track manager and the sen-

sors it uses, this type of separation also facilitates the ex-

pression writing process by limiting the scope that indi-

vidual equations must cover. Finally, in the case where sev-

eral alternative interaction styles are available, the explicit

representation allows the designer to use variables or in-

heritance to model and reason about such choices. For ex-

ample, if our track managers had two different ways of re-

questing measurements from a sensor, those alternative in-

teractions could be modeled as s_tm_relation1 and s_tm_

relation2, each defined as an instance of s_tm_relation

with an is-a relationship. When an instance of

track_manager is created, one of those two alternatives

would be selected for each sensor, and the corresponding

effects incorporated appropriately. In this way, in addition

to representing the quantitative effects of interactions, the

selection of agent interaction or coordination mechanisms

may be cast as an organizational decision in ODML.

5.2.3. Multiple Role Assignments In human organi-

zations, individuals frequently act in many different capaci-

ties, serving different needs and exhibiting different behav-

iors depending on the working context. In some complex

multi-agent systems, similar phenomena may be observed,

where individual agents take on multiple roles that dictate

the various responsibilities, capabilities and activities it is

associated with. Because the assignment of these roles to

individual agents is na organizational decision, it is impor-

tant represent both the assignment itself and the cumula-

tive effects of that decision.

As mentioned earlier, there are three roles in our dis-

tributed sensor network organization: the sector manager,

the track manager and the sensor. These are represented by

the sector_manager, track_manager, and sensor nodes,

respectively. Role assignment is modeled through the use

of a hasa relationship. Specifically, each of these role nodes

has na agent, as shown in Figure 13a, that represents the

particular agent that role is assigned to. During instantiation,

has-a relations may be fulfilled in two different ways. Either

a new instance of the target node is created to satisfy the

relationship, or an existing instance of the node is used in

the same way. Na example of the latter can be seen in Figure

13b, where the leftmost node a  is owned by both SM  and

S, indicating that particular agent has been assigned to two

roles.

Most of the detailed characteristics in this model are

computed within the role nodes. Therefore, important as-

pects such as load and resource usage are inherently sepa-

rate and rolespecific. To capture the effects of multiple role

assignments, these individual characteristics are first propa-

gated into their relevant agent using modifiers. Each agent

can then predict the cumulative effects of its roles. A natu-

ral example of this in this is the propagation of communica-

tion effects, which we have mentioned earlier. In this case

the communication load of the agent is computed to be the

sum of the communication loads of the roles it takes on. If

we wish to capture more complex situations, such as super-

or sub-additive effects, the the agent load can be defined as

some function of the various role loads that correctly ac-

counts for those effects. This combined load can then be

accessed and utilized by the individual roles in whatever

manner in appropriate.

This confluence also provides a useful place to in-

corporate constraints that might be affected by multiple

roles. For example, a design assumption in the original sys-

tem said that each agent would be associated with a single

sensor. In the ODML model, each sensor role uses a modi-

fier to increment the sensors_controlled field of its agent.

We may embody the design assumption by placing a con-

straint in the agent, specifying that sensors_controlled must

be equal to 1, which guarantees that all agents in a valid

organization will control exactly one sensor. This also dem-

onstrates one way to control how many roles an agent is

assigned. A similar approach could constrain communica-

tion or processing load, which tie role assignment to a more

concrete metric. Conversely, by adding a constraint defin-

ing a lower bound on load, we can make the selection pro-

cess more conservative by ensuring all created agents see

a certain minimum level of work.
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5.2.4. Dynamic Role Assignment In reactive or adap-

tive systems, roles are frequently created dynamically in

response to emerging phenomena. Such is the case with

the track manager role, which is assigned only when a new

target has been detected in the environment. Although we

can and do model rates of change and expected value, there

is no explicit representation of a varying timeline or change

points in the model. Therefore, ODML instances generally

represent a snapshot of a running system, or an averaging

of effects as they would occur over some span of time. If

dynamic elements exist in the source environment or sys-

tem, they may be represented in that same manner. For ex-

ample, although at any given point in time there may be

many or few targets in the environment, there is some ex-

pected number of targets that represents a statistically av-

erage value. This number would then be used to estimate

the “normal” situation, and be reflected in the model ac-

cordingly. ODML also natively supports the use of discrete

probabilistic distributions, allowing one to explicitly repre-

sent a finite set of possible conditions. Furthermore, be-

cause ODML is based on sets of arbitrary equations, one

could also use continuous distributions (e.g., Poisson), pro-

vided the means to analyze them can be expressed using

closed-form expressions. For example, by encoding the ap-

propriate parameters as constants (e.g., x,λ) and then ma-

nipulating those values using traditional queuing theory

techniques [10], one can integrate and estimate behaviors

based on these more complex assumptions.

Additional dynamism is present in the sensor net-

work example, due to the migration of the track manager role

as described in Section 2. When this role moves to maintain

locality with its target, the effects of that role are effectively

spread over multiple different agents. To represent this ef-

fect, the model uses the target’s velocity and the sectors’

sizes to first estimate how frequently that role will migrate.

Because this is a rate, it must be combined with the duration

of the scenario to determine the number of agents that role

will be assigned to. This number is then used to calculate

num_agents, which as mentioned earlier is used to specify

the size of the track manager’s agent has-a relationship. So,

if the model predicts that the track manager role will be

created and then migrate twice, the num_agents field in

track_manager will be set to three. The role’s relevant char-

acteristics are divided and distributed evenly among those

three agents using modifiers as described previously.

5.2.5. Heterogeneity Another important advantage

that ODML offers over the simple analytic models from

Section 4 is that heterogeneity is more readily represent-

able. When calculating the total number of measurements

for a track in Equation 7, for example, we assumed that all

sensors would produce measurements at equal rates. Simi-

larly, the sector manager’s load in Equation 2 assumed that

all targets moved with equal velocity. Neither of these sim-

plifying assumptions are likely to be true in practice, so to

the degree the unified model can represent such additional

information, it will have a decisive advantage in accuracy.

ODML’s ability to model heterogeneity is derived

from the the node-based representation of entities. Because

each role, agent or other structure is defined as a separate

node in the organizational instance, entities that share a

common type may still contain different values or be af-

fected by different organizational pressures and flows.We

have seen examples of this in the previous two sections.

Because agents may be assigned single or multiple roles,

the resulting agent population has the potential to be het-

erogeneous in the final organization. These variations may

then propagate through the organizational instance to cre-

ate differences elsewhere in the model. For example, com-

munication load can be tied to the agent’s capacity to per-

form work, which could affect the number of measurements

its sensor role could take, which would affect the RMS error

of the track manager using that sensor.

Inheritance provides an additional mechanism to

represent heterogeneity. For example, to model the “robust

managers” scenario from Section 4, we defined a robust_

agent node that has an is-a relationship with agent. This

effectively creates two different classes of agents that can

be employed, each with potentially different capabilities

and costs.

5.2.6. Conflicts, Constraints and Resolution Many

of the more interesting aspects of organizational models

revolve around the limits or constraints that are imposed on

the system, and what happens when those limits are ap-

proached or exceeded. ODML models can represent both

hard and soft constraints. The former include conditions

which the designer has deemed untenable, while the latter

are usually characteristics that degrade more gradually, and

may be tolerated by the system.

Hard constraints may be modeled using constraint

fields, as described in Section 5.1. A constraint is defined

with a target, a relational operator, and an expression. To

verify the constraint, both the target and the expression are

evaluated to produce numeric values, which are then com-

pared with the provided operator. The constraint is consid-

ered satisfied if the resulting relation is true, and unsatis-

fied if otherwise. Because a valid organization must contain

only satisfied constraints, they are considered hard, or strict

conditions that must be met.We mentioned earlier how a

constraint on the sensors_controlled field in the agent en-

sured a one-toone mapping between sensors and agents.

Similar constraints could be added to set an upper bound

on average expected RMS, a limit on local work load, or a

maximum number of agents in the organization. Although
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our sensors were hardwired, a battery-driven sensor net-

work could also be modeled by adding a suitable constraint

to the agent. In this case, communication rates, action rates

or the passage of time could decrement a battery constant.

A constraint placing a lower bound on the battery would

ensure that the unit met an expected minimum performance.

Soft constraints have a more subtle effect on the

system. They are not explicitly modeled using the constraint

field. Instead, we represent them using equations that af-

fect performance in response to other attributes. For ex-

ample, in the sector manager, excessive communication load

can delay directory service responses. This is modeled with

a directory_delay field, which is then used to determine the

values for fields in the track manager analogous to the d

and g delay values of Equation 7. Increases in those values

will eventually increase the RMS error by slowing the rate

at which the track manager acquires new sensor informa-

tion. This is represented in the model by using a modifier to

reduce the track manager’s requested_measu-rements_rate

in response to increased directory delays. Therefore, al-

though there is no fixed, arbitrary limit on sector manager

load, excessive load will still degrade the system’s

performance.A breaking point, at which the performance

level has become untenable, can still be modeled using a

hard constraint governing the value in question.

Soft constraints are also used to model the competi-

tion for sensors by track managers. The s_tm_relation in

Figure 12 notifies each sensor of the requested measurement

rate that will be asked of it. If the requested rate exceeds the

sensor’s capa bilities, the actual_measurement_ rate will be

lower, reduced to some fraction of the possible rate propor-

tional to what was asked for. This will negatively affect the

expected RMS error. So, although there is no set limit on the

number of track managers, a “tragedy of the commons”- style

degradation in quality can be predicted from overusage [25].

5.3. MODELING RESULTS

To gauge the efficacy of the ODML representation,

we have constructed the model described in the previous

section, used it to create organizational instances that match

the prior test runs, and compared the predicted characteris-

tics against the empirical results from Section 3. Because

timebased characteristics in the ODML model (such as com-

munication load) are computed as rates rather than totals,

the values are not directly comparable. However, cumula-

tive totals may easily computed by multiplying the relevant

rate by the length of the prior simulation run.

A relatively coarse set of comparative results are

shown in Figure 14, which contrast the predicted results

Figure 14. Performance predicted by the ODML sensor network model versus empirical observations

for a) Total messaging, b) Messaging disparity, c) Message type totals and d) RMS error. Predicted

lines are solid, empirical are dashed.
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against some of the actual, empirical results shown earlier

in the paper. Solid lines represent the values predicted by

the ODML model, while dashed are those obtained through

empirical testing. Although there are a few significant points

of difference, in most cases, the model does a good job

predicting performance. One difference can be seen in Fig-

ure 14b, where the predicted standard deviation underesti-

mates the actual performance in most cases. This is a

byproduct of our assumption that all sensors were equally

used. In the running system, sensors in the center of the

environment are used more than those at the edges, and

will have different communication profiles because of it.

Our model does not capture these geographic differences,

and will therefore generally have a lower estimated devia-

tion. The analytic models in Section 4 suffer from this draw-

back as well.

A more obvious difference can been seen between

the overall message totals, in Figure 14a. This difference

can be attributed to the fact that the empirical values in-

cluded all 24 message types that occurred in the system,

while the model only tracks the five most significant mes-

sage types. Combined,those five types constituted roughly

80% of the communication volume on average. The remain-

ing 19 were uncommon; no individual type accounted for

more more than 3% of the total. As can be seen in Figure

14a, the difference between predicted and empirical remains

relatively constant with sector size, and could be accounted

for by adding a suitable constant to the model. The exclu-

sion of these message types was a conscious choice on our

part. It is an example of trading off the complexity of the

model with its fidelity.

Recall that one of our initial goals was to predict

organization-level characteristics of the system. The met

rics we have shown so far accomplish this, but primarily on

a global, aggregate level. To evaluate how our model pre-

dicts finer-grained details, we produced a separate set of

graphs that show communication profiles by role, rather

than the system-wide totals seen in Figure 14c. The actual

and predicted role-specific graphs can be seen side-by-

side in Figure 15. In addition to the communication totals

we have discussed, these graphs also include role counts,

indicating how many agents did or would take on that role

in the environment. ’A’ represents the sensor role, ’M’ is

the sector_manager, while ’T’ is the track_manager. The

role ’AT’ describes agents acting as both sensors and track

managers. These results are also encouraging. By and large,

Figure 15 - A comparison of the average actual and model-predicted characteristics

by role, for agents operating in the distributed sensor network
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our predictions are similar to observations. Some of the

differences, such as the result totals for some sector and

track managers, can be attributed to geographic variances

in a small sample size. For example, the 36- and 18-size sec-

tor scenarios had only one and two sector managers, re-

spectively. Their individual geographic locations would

certainly affect the averages in Figure 15c, and these varia-

tions are not reflected in the corresponding values in Fig-

ure 15d.

Our last set of ODML predictions are shown in Fig-

ure 16, which examines messaging disparity and RMS error

as both the sector size and the number of targets are varied.

Figure 16a corresponds to the empirical results shown in

Figure 7, while 16b corresponds to Figure 8. The trends

shown in those earlier Figures are similar to those predicted

by ODML, including the same general profiles and the RMS

phase transition. A notable exception is the 24 target case in

Figure 7a, which has a different profile than those previ-

ously observed. We believe this is the case because the

volume of measurement messages generated by such a large

target population dominated the contribution of the sector

manager role when the sector sizes were relatively small.

6. CONCLUSIONS

In this article we have pursued two separate but

related purposes. The first, discussed in Sections 2 and 3

demonstrated the role that organizations can play in when

designing both sensor networks and multi-agent or distrib-

uted systems in general.We have also shown how the orga-

nizational design parameters can affect the system’s perfor-

mance in a variety of ways, both good and bad. It is our

belief that any multi-agent system of even moderate com-

plexity will have some form of organization embedded within

it, even if it is only implicit.

This leads to our second purpose, covered in Sec-

tions 4 and 5.1, which is to motivate the creation and use of

explicit models of organizations. We demonstrated that it is

possible to create quantitative organizational models in

ODML that accurately predict large and small scale perfor-

mance. Such models can be used at design time to find and

evaluate candidate organizations or identify design weak-

nesses.

An aspect of our future work is to demonstrate that

ODML models may also be used at runtime to verify base

assumptions and adapt the organization when necessary.

For example, as new conditions become apparent at runtime

(e.g. resource availability changes, environmental constants

vary, etc.), these updated values can be inserted into the

organizational instance. The instance can then be used to

determine if constraints have been violated, and if so, the

corresponding template can be searched for an appropriate

reconfiguration. This is conceptually similar to the limited

reconfiguration behavior of Tambe’s STEAM framework

based on structural properties [23], in which failure of an

agent leads to a search for agents to take over the roles no

longer served by the failed agent. Ultimately, we feel that

the creation of more formal models of agent systems will

foster an increased understanding of such systems, allow-

ing them to be more contextsensitive and robust in the face

of change.

The quantitative results we have presented are quite

domain specific. They depend on the communication char-

acteristics of the environment, the actions needed to achieve

the scenario goals, and the behaviors exhibited by the

agents. However, we feel that the types of issues raised by

these particular experiments, such as information locality,

specialization bottlenecks and organizational control over-

head, are applicable to many different domains, particularly

those which are communication intensive. For instance, our

sector size results can be directly related to the estimated

load incurred by a distributed collection of middle agents

[22]. We have also shown in other work how ODML models

can be applied to information retrieval in a peer-to-peer net-

Figure 16 - Performance predicted by the ODML model as the number of target is

varied for a) Messaging disparity, and b) RMS error
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work domain [6], as well as more abstract, theoretical prob-

lems such as SUBSETSUM and TILINGS.

More generally, we feel that exploiting multi-agent

organizations can have significant positive effects on per-

formance, while avoiding some of the common pitfalls as-

sociated with scale. By specifying roles, authority relation-

ships and working groups, the system can both reduce

runtime combinatorics by restricting search as well as im-

prove global coherence without requiring a global view.

However, we have seen that these benefits come with costs

and side effects, which must be understood for the organi-

zation to be used successfully. Formal models such as those

provided by ODML can help make these tradeoffs con-

crete, and the quantitative comparisons they facilitate can

guide the development process toward an appropriate se-

lection of design and parameters. In this paper, we varied

just one organizational parameter, and observed the ramifi-

cations of this change across several distinct dimensions.

With continued research in this area, the complete space of

organizational types and their corresponding characteris-

tics can be more fully understood and exploited.
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