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Abstract

Background: Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent
epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of
mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological
differences between many species are subtle, leading to misidentifications.

Methodology/Principal Findings: Sequence variation in the barcode region of the mitochondrial COI gene was used to
identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan.
Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010–2013 revealed 32 species with
the assemblage dominated by Culex quinquefasciatus (61% of the collection). The genus Aedes (Stegomyia) comprised 15%
of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti,
dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode
sequence divergence in conspecific specimens ranged from 0–2.4%, while congeneric species showed from 2.3–17.8%
divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single
haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae.
albopictus showed the later species was dominant and found in both rural and urban environments.

Conclusions: As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode
reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity
to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector
populations.
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Introduction

Mosquitoes are important vectors of animal diseases [1].

Although Pakistan is one of the hotspots for mosquito-vectored

diseases [2,3], mosquito biodiversity in the country is under-

explored [4]. However, the recent outbreaks of dengue in Pakistan

[5] have generated interest in mosquito distributions in this region

[6–8]. Among the 3500 mosquito species recorded worldwide

(www.mosquito-taxonomic-inventory.info) 104 have been docu-

mented from Pakistan and Bangladesh [4], but their morpholog-

ical identification remains difficult.

Correct vector identification is very important to design

strategies for managing vector-borne diseases [9]. Because detailed

taxonomic studies have focused on mosquitoes that are vectors of

human disease [10], other species have received little attention

[11,12]. Moreover, many closely related species of mosquitoes

with differing ecological and host preferences are nearly indistin-

guishable morphologically [13]. These factors mean that the

identification of mosquitoes to a species or sometimes even a genus

is often difficult [14–16]. As a consequence, DNA-based

approaches to mosquito identification [17–19], genetic diversity

[20,21], and molecular phylogeny [22,23] have gained increasing

adoption. Although use of nuclear genes is not uncommon [24–

27], mitochondrial genes have gained primary adoption for

analyzing genetic diversity in mosquitoes [28,29]. DNA barcoding

[30] has already seen frequent use for mosquitoes in varied

contexts [31–37]. As a result, the overall DNA barcode library

now includes records for 894 mosquito species among the 320K

animal species which have been analyzed (www.boldsystems.org).

Prior studies have monitored mosquito populations using both

morphological [38] and molecular approaches [39]. For example,

Reisen et al. (1982) [40] used morphological identifications to

assess the diversity of mosquitoes in Pakistan, especially those

important in the transmission of viral diseases. Mousson et al.

(2005) [41] subsequently used mitochondrial DNA variation to

study the phylogeography and relationships of Aedes aegypti and

Aedes albopictus, while Chen et al. (2002) [25] used 28S rDNA and

COII to examine the distribution and vector status of Anopheles
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minimus in southern China. Correlation between vector genotypes

and their capacity to transmit disease pathogens [42] has triggered

interest in the genetic diversities of vector species [43]. In a study

of three vector species (Ae. aegypti, Ae. albopictus, Aedes vittatus) in

India, Angel & Joshi (2008) [44] found that infectivity of dengue

virus varied both among species and regionally for a particular

species. Studies by Pollitt et al. (2013) [45] and Anderson et al.

(2004) [46], correlated mosquito strains/genotypes with their

competence to transmit malaria parasites and La Crosse virus.

Studies on species composition and density of local mosquito

populations have helped to develop better management strategies

for mosquito-borne diseases [47,48]. Such studies can establish a

baseline of mosquito-borne virus activity allowing monitoring of

change over time [49]. Ae. aegypti and Ae. albopictus have differing

ecological preferences with the former species most prevalent in

urbanized areas, while the latter is often common in rural settings

[50,51]. Although native to Southeast Asia, Ae. albopictus has

extended its range [52] provoking concerns among disease

management strategists [53]. The 2011 dengue epidemic in

Pakistan showed considerable regional variation in severity, raising

questions about the possible role of shifting distributions of its

vector species as the cause.

Since the species checklist by Khan (1971) [4] which included

mosquitoes from Pakistan and Bangladesh, only sporadic reports

with limited scope have been completed [7,40,54–56]. Further,

information on genetic diversity of regional mosquitoes usable for

species assignments or to establish connections between local and

the global mosquito fauna is either not available or is insufficient

[8]. Although both Ae. aegypti and Ae. albopictus occur in Pakistan

[4], there is little information on their relative abundance or

distribution [57]. The current study employs DNA barcoding to

identify, and analyze genetic diversity in mosquito species making

it possible to map the distributions of dengue-vectors in the

dengue-affected areas of Pakistan. The study also develops

haplotype networks for the important disease vectors at a global

scale connecting them in different regions.

Materials and Methods

Ethics statement
No specific permissions were required for this study. Mosquitoes

from private residences were collected only after the consent of the

respective owners. The study did not involve endangered or

protected species.

Collection of mosquitoes
Mosquitoes were collected at 450 urban and rural sites within

Punjab, and from 41 locations in Khyber Pakhtunkhwa (KPK)

during 2010–2013. These sites ranged in altitude from 92 m -

1004 m in Punjab and from 297 m–2376 m in KPK. Sampling

sites included private residences, construction sites, junkyards,

water catchments, marshes, ponds, and forests. Adults were

collected with nets, aspirators, and light-traps coupled with a CO2

source, while larvae were sampled with pipettes and sieves. GPS

coordinates were recorded (Table S1), and collection sites were

mapped (Fig. 1) using (http://www.simplemappr.net). A total of

1942 specimens including 190 larvae were randomly chosen for

DNA barcode analysis. Each mosquito was assigned a specimen

number and photographed, and adults were identified using

standard taxonomic keys [4,40,55,58]. Species names follow those

employed by the on-line resource (www.mosquito-taxonomic-

inventory.info). Specimen data along with the collection informa-

tion are accessible in the dataset DS-MAMOS (Barcoding

Mosquitoes of Pakistan) on BOLD (www.boldsystems.org), the

Barcode of Life Data System [59].

DNA isolation, PCR amplification and sequencing
A single leg was removed from each adult specimen and

transferred to a well pre-loaded with 30ml of 95% ethanol in a 96-

well microplate, while larvae were processed using the protocol in

Porco et al. (2010) [60]. DNA extraction, PCR amplification, and

sequencing were performed at the Canadian Centre for DNA

Barcoding (CCDB) following standard protocols [61]. Amplifica-

tion of the COI-59 barcode region was performed with primer pair

Figure 1. Map of collection localities (solid black dots) for mosquitoes in the dengue-affected areas of Punjab and the adjoining
Khyber Pakhtunkhwa province.
doi:10.1371/journal.pone.0097268.g001
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C_LepFo1F (a cocktail of LepF1+LCO1490)/C_LepFo1R (a

cocktail of LepR1+HCO2198) (http://www.dnabarcoding.ca/

CCDB_DOCS/CCDB_PrimerSets.pdf) using the following PCR

conditions: 94uC (1 min); 5 cycles of 94uC (30 s), 45uC (40 s), 72uC

(1 min); 35 cycles of 94uC (30 s), 51uC (40 s), 72uC (1 min); and

final extension of 72uC (10 min). PCRs were carried out in

12.5 mL reactions with a standard reaction cocktail and 2 mL of

DNA template. PCR products were visualized on a 2% agarose E-

gel 96 system (Invitrogen Inc.) and successful amplicons were

bidirectionally sequenced using BigDye Terminator Cycle Se-

quencing Kit (v3.1) on an ABI 3730XL DNA Analyzer. The

forward and the reverse sequences were assembled and aligned

using CodonCode Aligner (CodonCode Corporation, USA).

Sequences were subsequently translated in MEGA V5 [62] to

verify that they were free of stop codons and gaps and uploaded

onto BOLD. All sequences with their GenBank accession numbers

(KF406349 to KF407931) are accessible in the dataset DS-

MAMOS (Process IDs: MADIP255-10 to MADIP380-10; MA-

DIP458-11 to MADIP473-11; MAMOS001-12 to MAMOS1425-

12; MAMOS1521-13 to MAMOS2019-13).

Data analysis
Species discrimination using DNA barcodes. The se-

quence from each specimen was compared to barcode sequences

on GenBank using "Blast", and to sequences for 894 mosquito

species on BOLD using the "Identification Request" function.

Prior studies have revealed that most different species of Diptera

show .2% sequence divergence at COI [63], and researchers

have used a 2% distance threshold for species delimitation [64].

Based on reference barcode data, Ratnasingham & Hebert (2013)

[65] have established the Barcode Index Number (BIN) system

which assigns a unique global identifier to each sequence cluster.

In most cases, specimens assigned to different BINs belong to

different species, but the BIN system aids the organization of data

for records lacking a formal taxonomic assignment. All mosquito

sequences obtained in this study were assigned to a BIN.

Genetic diversity and phylogenetic analysis. Nucleotide

sequences were aligned using ClustalW [66] in MEGA V5. The

FASTA file was submitted to the online version of Automatic

Barcode Gap Discovery (ABGD) [67] to generate distance

histograms and distance ranks. The presence or absence of a

‘‘barcode gap’’ [68] was also determined for each species as a test

of the reliability of its discrimination. Using the barcode gap

criterion, a species is distinct from its nearest neighbor (NN) if its

maximum intraspecific distance is less than the distance to its NN

sequence. The "Barcode Gap Analysis" (BGA) was performed

using BOLD. Genetic diversity indices and neutrality tests (Fu’s Fs

[69] and Tajima’s D [70]) were performed in DnaSP v5.10.01

[71]. Calculations of Kimura 2-parameter (K2P) [72] genetic

distances and NJ analysis were carried out using MEGA V5.

Because most mosquito species were represented by multiple

sequences, TAXONDNA was used to generate a consensus

barcode for each species, enabling the generation of a compact

tree [73]. A tree of all sequences is provided as (Fig. S1). The K2P

distance model was used, along with pairwise deletion of missing

sites to generate NJ trees, while support for tree nodes was

estimated using 500 bootstrap replicates. Consensus sequences

were used in Bayesian inference (BI) analysis and BI trees were

obtained using MrBayes v3.2.0 [74] and the Markov Chain Monte

Carlo (MCMC) technique. The data was partitioned in two ways:

a single partition with parameters estimated across all codon

positions, and a codon-partition in which each codon position was

allowed different parameter estimates. All partitions were allowed

a GTR + gamma model and analyses were run for 10 million

generations by using four chains with sampling every 1,000

generations. Bayesian posterior probabilities were calculated from

the sample points once the MCMC algorithm began to converge.

The trees generated through this process were visualized using

FigTree v1.4.0.

Haplotype and distribution analysis. Barcode sequences

for important disease vectors (Ae. aegypti, Ae. albopictus,

Anopheles subpictus, Anopheles stephensi, Anopheles peditaenia-

tus, Culex tritaeniorhynchus, Cx. quinquefasciatus) from Pakistan,

were combined with published records from other countries and

aligned in MEGA5 before being exported as MEGA files. Barcode

haplotypes were determined using Arlequin v.3.5 [75]. For each

species, a minimum spanning tree (MST) based on the number of

nucleotide differences between haplotypes was constructed using a

distance matrix from Arlequin in Hapstar v. 0.6 [76] to visualize

the network of interrelationships between the haplotypes. The

distributions of Ae. aegypti and Ae. albopictus were mapped using

an online tool (www.simplemappr.net).

Results

Identification of mosquito species and DNA barcode
analysis
Morphological study indicated the presence of 21 mosquito

species including four species of Aedes (Stegomyia) (Ae. aegypti, Ae.

albopictus, Ae. w-albus, Ae. unilineatus), six species of Culex (Cx.

quinquefasciatus, Cx. theileri, Cx. tritaeniorhynchus, Cx. bitaeniorhynchus,

Cx. mimeticus, Cx. fuscocephala) and seven species of Anopheles (An.

subpictus, An. peditaeniatus, An. stephensi, An. splendidus, An. pulcherrimus,

An. annularis, An. culicifacies). Barcode sequences were recovered

from 1684 of the 1942 specimens (87%). Fig. 2 shows the number

of specimens of each species with a barcode sequence. Comparison

with records in BOLD and GenBank revealed close sequence

matches (,2% divergence) to 11 species which were not

recognized morphologically. Anopheles annularis was partitioned

into two taxa, An. annularis A and An. annularis B, while An. culicifacies

was also found to include two sibling species, An. culicifacies A and a

second unidentified taxon, raising the total to 23. Five more

species (Culex perexiguus, Phagomyia cogilli, Anopheles sp. nr. dravidicus,

Ochlerotatus pulcritarsis, Ochlerotatus caspius) were initially overlooked,

but were identified through barcodes, raising the count to 28.

Finally, two more species were only identifiable to a generic level

(Aedes MA01, Aedes MA02), and two more to a tribe (Aedini 1,

Aedini 2). The BIN system assigned these 32 taxa to 31 BINs; the

sole case of a shared BIN involved An. annularis A and An. annularis

B.

The results of ABGD and BGA analyses revealed a clear gap

between intraspecific and interspecific distances (Fig. 3). As well,

the minimum distance to the nearest-neighbor (NN) was higher

than the maximum intraspecific distance for every species (Fig. 3).

In fact, NN distances exceeded 2.3% for all species (Fig. 3 B-1),

and most ranged from 4.3–11% (Fig. 3 B-2). An. culicifacies was

initially identified as a single species, but the barcode data revealed

4.3% divergence between two taxa; one was An. culicifacies A, but

the other could not be identified because of the lack of reference

barcode sequences for the other four known taxa in this complex.

The barcode data also revealed that An. annularis included

representatives of both An. annularis A and An. annularis B, species

that were first recognized through polytene chromosome analysis

[77]. Intraspecific distances could not be determined for the six

species with just a single representative, but all of their NN

distances were greater than 2.3%. Sequence divergence increased

with taxonomic rank (Table 1) with little overlap between

conspecific and congeneric distances. Intraspecific divergences
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ranged from 0.0–2.4% with a mean of 0.04%, while divergences

for the species in a genus ranged from 2.3–17.8% with a mean of

8.2% (Table 1). Genetic diversity indices and results of neutrality

tests for the barcodes are shown in Table 2. Average number of

pairwise nucleotide differences (k), nucleotide diversity (p) and

haplotype diversity (Hd) varied for the species. Fu’s Fs and

Tajima’s D were significant for a majority of the species (Table 2).

NJ analysis showed that the representatives of each species

formed a monophyletic cluster (Fig. 4). The maximum intraspe-

cific distance for Cx. quinquefasciatus (n=1025) was 1.1%, while the

distances for the two dengue vectors, Ae. aegypti (n=48) and Ae.

albopictus (n=182) were 0.5% and 1.3%, respectively (Fig. 5).

Among Anophelini, An. subpictus (n=39) showed the highest

intraspecific distance (1.4%). The only species with .2%

intraspecific distance was Collessius pseudotaeniatus (2.4%). Species

from the three mosquito tribes (Aedini, Anophelini, Culicini)

mostly clustered with other members of their tribe. The cryptic

species pair, An. annularis A and An. annularis B shared the same

BIN, but their nodes were separated by a 99% bootstrap value in

the NJ tree (Fig. 4). A phylogenetic tree of mosquito species

estimated using Bayesian inference is presented in Fig. 5. The

overall node pattern of the phylogenetic tree was similar to that of

NJ tree, other than a close relationship between Aedini and

Culicini was more evident and all the species branched with their

respective subfamilies and tribes. The posterior probability values

for all the nodes were greater than 50%.

Global haplotype diversity and distributions of dengue
vector species in Pakistan
The sequence data for seven disease vector mosquitoes from

Pakistan were placed in a broader perspective by including

barcode results from other regions. When data (n=182) from 29

nations was considered for Ae. aegypti, maximum sequence

divergence reached 2.2% (mean= 0.5%),while the maximum

distance for Ae. albopictus (n=365) from 21 countries was 1.9%

(mean = 0.3%). Twenty three haplotypes were detected in Ae.

aegypti although one was dominant (62%), occuring in 20 countries

including Pakistan (Fig. 6A). Eighteen of these 23 haplotypes were

not detected in Pakistan, while two were only detected there

(Fig. 6A). Ae. albopictus showed the presence of 14 haplotypes, one

being in abundance (86%) and present in 16 countries (Fig. 6B).

Eight of these 14 haplotypes were not detected in Pakistan, while

five were only reported from there (Fig. 6B). The malaria vectors,

An. subpictus (n=41; max dist 2.2%) and An. stephensi (n=28; max

dist 0.4%) showed the presence of 21 and 4 haplotypes,

respectively (Fig. 6C,D). The most common haplotype of An.

stephensi was detected in Pakistan and South Africa (GU908046).

There were 16 haplotypes for An. peditaeniatus (n=72; max dist

1.8%); ten were detected exclusively in Thailand, four in Pakistan

and the remaining two were shared between India and Pakistan

(Fig. 6E). Barcodes of Cx. quinquefasciatus (n=1125; max dist 1.2%)

from 11 countries revealed 21 haplotypes, 17 of them were found

solely in Pakistan, three were not detected in Pakistan, and one

most frequent haplotype in Pakistan was also found in 10 other

countries (Fig. 6F). Cx. tritaeniorhynchus from four countries (n=113;

max dist 2.3%) showed the presence of 52 barcode haplotypes and

34 were exclusively from Pakistan (Fig. 6G).

Both Ae. aegypti and Ae. albopictus were present in almost all the

dengue affected districts of Punjab (Fig. 7A,B). Although Ae.

albopictus was detected from more locations, both species were

detected in the urban areas of central Punjab most impacted by

dengue. Ae. aegypti was collected at sites ranging in elevation from

112 m–1004 m, while Ae. albopictus had a slightly narrower

elevational range (110 m2672 m). Anopheles and Culex species

were present in all the areas included in the study with Cx.

Figure 2. Mosquito species identified from the dengue-affected areas of Pakistan. The number of specimens of each species in the
collection are indicated on the bars.
doi:10.1371/journal.pone.0097268.g002
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quinquefasciatus and An. subpictus the most frequent members of their

respective genera (distributional data not shown).

Discussion

The mosquito fauna of South Asia is known to be diverse; 104

species have been reported from Pakistan and Bangladesh [4].

Local surveys have reported fewer taxa, including 43 species from

Punjab [54], 30 species from the Changa Manga National Forest

in central Punjab [40], and 21 species from the Swat valley in an

adjoining province [7]. Cx. quinquefasciatus was the most abundant

species in our study, mirroring results from earlier work in Swat

[7], but prior studies in Punjab indicated the dominance of Cx.

tritaeniorhynchus [40,54]. Although Ae. albopictus was the dominant

species of Aedes in Punjab, it was not detected at higher elevation

sites (1100 m) in Swat [7]. Interestingly, Reisen et al. (1982) [40]

found that Aedes lineatopennis was the most abundant species of

Aedes, suggesting a shift in species composition through time.

Although Ae. albopictus occurred at sites as high as 1200 m on La

Reunion [78], it was limited to sites with an elevation less than

700 m in Pakistan. However, other species, such as Oc. pulcritarsis

showed a much broader elevational range (111 m22376 m).

Because of the difficulty of morphology-based identifications in

mosquitoes, DNA-based approaches have gained increasing usage.

The analysis of sequence variation in the internal transcribed

Figure 3. Pairwise distance divergence (%) (A) and barcode gap analysis (B) for mosquitoes from Punjab and Khyber Pakhtunkhwa
as generated by ABGD [67] and by BOLD [59], respectively. NN = nearest neighbor.
doi:10.1371/journal.pone.0097268.g003

Table 1. K2P sequence divergence at the COI barcode region among the mosquito species with .2 specimens, among the four
genera with two or more species, and in the family Culicidae.

Distance class n Taxa Comparisons Min (%) Mean (%) Max (%)

Intraspecific 1638 24 543530 0 0.04 2.4

Congeners 1529 4 121341 2.3 8.1 17.8

Confamilial 1644 1 685675 6.4 14.5 22.5

doi:10.1371/journal.pone.0097268.t001
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spacer 2 (ITS2) revealed sibling species in both the Anopheles

maculipennis [24] and Anopheles crucians [79] complexes. Atrie et al.

(1999) [77] detected two sibling species (A and B) in the An.

annularis complex through cytogenetic analysis, and subsequent

work revealed their discrimination by ribosomal DNA [26], results

extended by our analyses which revealed their 2.3% divergence at

COI. Kumar et al. (2007) [31] found that DNA barcodes reliably

identified 62 of 63 mosquito species from India; Ochlerotatus

portonovoensis and Ochlerotatus wardi were the only two species which

could not be discriminated. However, Kumar et al. (2013) [35]

also concluded that Indian populations of Anopheles fluviatilis

previously assigned to a complex of three species (S, T, U) were

actually conspecific. Although there are rare cases of failure, the

overall success in discrimination of species underscores the

importance of constructing a DNA barcode reference library for

all Culicidae.

The presence of endemics in South Asia [80,81] reinforces the

importance of developing regional barcode libraries to reveal

overlooked species. The mosquito species reported in two major

studies from India [31] and China [34] show just 50% overlap

Figure 4. NJ analysis of mosquitoes collected from Punjab and Khyber Pakhtunkhwa. Bootstrap values (500 replicates) are shown above
the branches. The scale bar shows K2P distances. Barcode Index Numbers (BINs) follow the species name in square brackets and the number of
sequences analyzed and the intraspecific K2P distances (in bold) are included in parenthesis. Analyses were conducted in MEGA5.
doi:10.1371/journal.pone.0097268.g004
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with the species assemblage in this study, making it clear that

many more species await analysis. The completion of this task is

complicated by the difficulty in identifying some taxa, especially

those in the tribe Aedini. Species of Aedes are a particular challenge

[15], with recurrent taxonomic revisions indicating the ongoing

controversy [14216]. This uncertainty in the application of names

provides an incentive to consider alternate approaches for species

discrimination based on the recognition of DNA sequence clusters.

The possible effectiveness of this approach is signaled by the fact

that the species examined in this study showed average intraspe-

cific distances ranging from 022.4%, while distances between

congeneric species varied from 2.3217.8%. Wang et al. (2012)

[34] reported similar levels of conspecific (021.67%) and

congeneric (2.3221.8%) divergences in their study of 122

mosquito species in China. The recently established BIN system

has created a permanent registry for DNA barcode clusters [65],

and the present study provides an opportunity to test the

correspondence between the clusters recognized by it and the

mosquito species recognized in our study through morphological

analysis and examination of the NJ and phylogenetic trees and NN

distances. This check indicated near perfect congruence as the 32

species were assigned to 31 BINs; the sole merger involved the

sibling species, An. annularis A and An. annularis B. Similarly, all 43

mosquito species analyzed by Kumar et al. (2007) [31] with

adequate sequence data for a BIN assignment were placed in a

unique BIN.

The importance of sequence analysis is clear in situations where

one member of sibling species complex is a vector and the other is

not. For example, An. annularis A transmits malaria in some parts of

India, but An. annularis B does not [77]. Aside from enabling the

discrimination of sibling taxa, DNA barcoding can reveal variation

in single species which may have implications for disease

transmission [82]. Genetic diversity indices showed a higher

genetic divergence in some species and not in others. For example,

k and p values were higher in Cx. tritaeniorhynchus and lower in Cx.

quinquefasciatus. Intraspecific diversity also varied in the species of

Aedes and Anopheles. A recent study on Cx. quinquefasciatus from

Malaysia [20] has reported a low COI diversity for this species,

and our results are in agreement with that study. But for the same

species from India, Sharma et al. (2010) [83] have reported a high

diversity in 16S rRNA. This incongruence may support the

ongoing debate on mitochondrial and nuclear discordance in

animals [84]. Prior work has revealed substantial genetic diversities

in both Ae. aegypti and Ae. albopictus, providing important clues on

population relationships and origins [85,86] and insights into their

role in the transmission of dengue [41]. Both species showed

considerable barcode variation within Pakistan, but Ae. albopictus

was less variable than Ae. aegypti when analysis considered the

Figure 5. Phylogenetic tree of mosquito species estimated using Bayesian inference and the codon partitioned analysis. Posterior
probability shown at nodes.
doi:10.1371/journal.pone.0097268.g005
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entire range of each species, a result congruent with Mousson et al.

(2005) [43]. However, we did not find any evidence of genetic

differentiation between specimens from rural and urban habitats

or between larval and adult stages although the latter test was

weak because larvae comprised just 7% of the specimens (122/

1684). Our study revealed a single globally dominant COI

haplotype in Ae. aegypti, while Moore et al. (2013) [36] found two

major ND4 haplotypes in its African populations. Using exon

primed intron crossing and microsatellite markers, Olanratmanee

et al. (2013) [87] reported two genetic clusters in one region of

Thailand and considered the implications of this diversity for a

dengue suppression strategy. Mousson et al. (2005) [41] found little

sequence variation in three mitochondrial genes for Ae. albopictus

from 15 countries on five continents. Our analysis also revealed

one major COI lineage in Ae. albopictus, widely distributed in 16

countries.

The results of our survey indicated that Ae. albopictus was more

widely distributed and commoner than Ae. aegypti in Punjab.

Akhtar et al. (2012) [57] found that larvae of Ae. aegypti

predominated (65%) in collections from water-pots inside houses

in Lahore during 2011. Although, the current dominance of Ae.

albopictus in Pakistan supports a trend towards expansion of Ae.

albopictus and a decline of Ae. aegypti in many areas of the world

[88,89], effect of sampling method on the variation in results

cannot be ruled out.

In conclusion, this study has provided baseline data on

composition and genetic diversity in the mosquito fauna of

Pakistan, information that should be useful in tracking mosquito-

borne diseases. The prevalence of Ae. albopictus in urban areas may

suggest its importance in the spread of dengue. Because DNA

barcoding can resolve cryptic mosquito species and identify their

immature stages [90], it provides a valuable tool for large-scale

vector identification and disease surveillance programs.

Supporting Information

Figure S1 NJ analysis of mosquitoes collected from

dengue-affected areas of Punjab and adjoining Khyber

Pakhtunkhwa. Bootstrap values (500 replicates) are shown

above the branches. Species names are preceded by the specimen

Process IDs (Barcode of Life Data Systems). The scale bar shows

K2P distances. Chironomus kiiensis (Diptera: Chironomidae) was

included as an outgroup. Analyses were conducted in MEGA5.

(PS)

Table S1 GPS coordinates of mosquito collection sites

in Pakistan.

(XLS)

Acknowledgments

We thank colleagues at the CCDB for aid with sequence analysis, and staff

employed with the DNA barcoding project at NIBGE, Faisalabad for their

diligence in collecting specimens.

Author Contributions

Conceived and designed the experiments: MA PDNH YZ. Performed the

experiments: MA JHM AMK SM. Analyzed the data: MA JHM AMK.

Contributed reagents/materials/analysis tools: MA PDNH YZ SM. Wrote

the paper: MA PDNH JHM.

Figure 6. Barcode haplotype networks of vector mosquitoes from Pakistan. Haplotype number and frequency is indicated inside and
besides the corresponding circle, respectively. Haplotypes shared between Pakistan and other countries, found solely in Pakistan, and not found in
Pakistan are indicated by dark grey, light grey, and blank circles, respectively. Haplotypes (in brackets) and their origin countries follow the species
below (except for haplotypes exclusively from Pakistan indicated in light grey). A) Aedes aegypti: (1) Argentina, Australia, Bolivia, Brazil, Cambodia,
Canada, Chile, France, French Polynesia, Gabon, Guinea, India, Laos, Pakistan, Russia, Thailand, Uganda, USA, Venezuela, Vietnam; (2) Brazil, Cambodia,
Canada, Laos, Martinique, Thailand, USA; (3) South Africa; (4) Canada, USA; (5) (21) Cote d’Ivoire; (6) Australia, Bolivia, Martinique; (7) Martinique,
Mexico; (8) Australia, Cambodia, Pakistan, Thailand; (9) Mexico; (10) UK, USA; (11) Bolivia, Pakistan; (12) India, Vietnam; (13) (18) (20) Bolivia; (14)
Vietnam; (15) Cameroon, Cote d’Ivoire, Guinea; (16) Tanzania; (17) Australia; (19) Europa Island. B) Aedes albopictus: (1) Thailand; (2) Brazil, France,
Germany, Greece, Italy, Japan, Lebanon, Madagascar, Pakistan, Re Union: La possession, Russia, Thailand, Turkey, USA, Hawaii (USA), Vietnam;
(3)Romania; (4) Australia, Taiwan; (5) Germany; (8) Cambodia; (9) Madagascar; (10) India; (12) Vietnam. C) Anopheles subpictus: (1) (2) (4) (5) (16) India;
(3) (8) India, Pakistan. D) Anopheles stephensi: (1) Pakistan, South Africa; (2) Thailand. E) Anopheles peditaeniatus: (1) (2) India, Pakistan; (3) India; (4) (5)
(6) (7) (11) (12) (14) (15) (16) Thailand. F) Culex quinquefasciatus: (1) Brazil, China, India, Iran, Japan, Malaysia, Mexico, Pakistan, Thailand, Uganda, USA;
(11) (20) Brazil; (15) Mexico. G) Culex tritaeniorhynchus: (1) (14) (23) (34) (25) (28) (33) (35) (42) (48) (51) Japan; (6) (16) (31) (39) China; (5) (15) China,
Japan; (20) Thailand.
doi:10.1371/journal.pone.0097268.g006

Figure 7. Map showing the distribution of Aedes (Stegomyia)
aegypti (A) and Aedes (Stegomyia) albopictus (B) in the dengue-
affected areas of Punjab, Pakistan.
doi:10.1371/journal.pone.0097268.g007
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