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Jan Beran and Guerino Mazzola

Abstract. Musical performance theory and the theory of musical struc-

ture in general is a rapidly developing field of musicology that has wide

practical implications. Due to the complex nature of music, statistics

is likely to play an important role. In spite of this, up to the present,

applications of statistical methods to music have been rare and mostly

limited to a formal confirmation of results obtained by other methods.

The present paper introduces a statistical approach to the analysis of

metric, melodic and harmonic structures of a score and their influence

on musical performance. Examples by Schumann, Webern and Bach il-

lustrate the proposed method of numerical encoding and hierarchical

decomposition of score information. Application to performance data is

exemplified by the analysis of tempo data for Schumann’s “Träumerei”

op. 15/7. The paper demonstrates why statistics should play a major ac-

tive part in performance research. The results obtained here are only

a starting point and should, hopefully, stimulate a fruitful discussion

between statisticians, musicologists, computer scientists and other re-

searchers interested in the area.

Key words and phrases: Bandwidth, cluster analysis, hierarchial

smoothing, kernel smoothing, musical analysis, music, musicology, per-

formance theory, regression, tempo.

1. INTRODUCTION

This paper grew out of the attempt to gain better

understanding of musical performance of western

classical music for which a clearly defined score ex-

ists. A second issue that has to be addressed as a

prerequisite is whether and how the metric, melodic

and harmonic structure of a musical score can be

translated into numerical data.

In the last few years, there has been an increas-

ing interest in modelling musical performance. This

development is in particular due to dramatic ad-

vances in computer technology and the availability

of digitized score and performance data. By the

very nature of music, “understanding” musical per-

formance is a multidisciplinary task, including in

particular aspects of music theory, semiotics, psy-
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chology, mathematics, physics, and music history.

Nontrivial models of performance must be general

enough to incorporate the broad variety of aspects

appropriately. In particular, a useful theory of per-

formance has to take into account that there may

be a large, or even an infinite, number of adequate

performances of the same score. Similarly, experi-

ence suggests that, from the point of view of the

listener or critic, there is no unique way of “explain-

ing” a performance, that is, of uniquely identifying

properties of the score that caused specific fea-

tures of the physical performance. In view of these

general facts, a realistic theory of musical perfor-

mance cannot be purely causal and deterministic.

Statistical and probabilistic methods are therefore

likely to play an important role. Nevertheless, up

to now, applications of statistical methods to ques-

tions in musicology and performance research have

been very rare [9, 31, 36, 42, 44]. Apart from a

few information theoretical approaches (see, e.g.,

[44]), most applications of statistics consist of us-

ing standard statistical methods as an additional

confirmation of results or conjectures that had been

“derived” before by psychological or musicologi-
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Fig. 1. “Träumerei” op. 15/7 by R. Schumann.

cal reasoning (see, e.g., [9, 36]). In contrast, the

aim of our paper is to demonstrate that statis-

tics can play a major active and more substantial

role in performance research and musicology in

general, provided that the special nature of the mu-

sical context is taken into account appropriately.

The possibly controversial suggestions presented

here may stimulate discussions among interested

scientists.

The examples discussed here are Schumann’s

“Träumerei” op. 15/7, Webern’s second Variation for

Piano op. 28/2, Bach’s Canon Cancricans from Das

Musikalische Opfer BWV 1079 and Schumann’s

“Kuriose Geschichte” op. 15/2. The scores are dis-
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Fig. 2. Variation für Klavier op. 28/2 by A. Webern.

played in Figures 1–4. The main focus here will be

on investigating the relationship between a score

and its performance when score information is

coded in a numerical form. The method for extract-

ing numerical data from a score will be discussed

only briefly here. For a more detailed account of

extracting numerical information from scores see

[24]–[22] and [27]. The relationship between score

and performance will be illustrated using tempo

measurements for Schumann’s “Träumerei” op.

15/7. The tempo measurements of 28 performances

by various famous pianists were provided to us by
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Fig. 3. Canon Cancricans by J. S. Bach.

Bruno Repp [32]. The performers are listed in Table

1; see [31] for the complete data.

The reason for restricting attention to the tempo

of a performance is that only these data were avail-

able to us at the present. Clearly, many other

aspects of performance will need to be consid-

ered in future research. The main question asked

with respect to the tempo data is what kind of

relationship—if any—there is between the score

and the tempo curve of a performance. Note that

again this is a simplification, since no other infor-

mation than that contained in the printed score is

considered. A more complete performance analy-

sis would have to include emotional and gestural

rationales.

A major difficulty is that it is not clear a priori

which information a score contains and how this in-

formation can be quantified. Apart from obvious in-

formation such as the sequence in which notes are

played, a score usually contains explicit but ambigu-

ous information (such as ritardando, accelerando,

andante, p, ff, etc.) as well as hidden structural in-

formation. The latter consists, for example, of the

harmonic, metric and melodic structure, motivic re-

lationships and so on. This hidden information can

be highly complex and ambiguous. Moreover, it is

not clear up to which depth such hidden information

should be extracted in order to be relevant for the

performance. A detailed discussion of this problem

involves musicological considerations that would be

beyond the scope of this paper. Therefore, only a

brief description of the basic principles is given here

(in Section 2) that lead to so-called metric, harmonic

and melodic weights (or curves).

The structure of the paper is as follows. A brief

description of the general background and of a

method for encoding score-specific information is

given in Section 2.1. The approach yields basic met-

ric, melodic and harmonic weights obtained from

an analysis of the score that can be used for the

further analysis. The definitions are based on a

mathematical music theory first developed in [21]

and performance theory, developed in [25]. Soft-

ware [19] based on this music theory has been used

successfully by various composers in the past (e.g.,

Jan Beran [2, 3, 5], Kurt Dahlke, Wilfried Jentzsch,

Guerino Mazzola [20], Dieter Salbert, Karl-Heinz

Schöppner, Tamas Ungvary). Some examples of

weight curves are discussed in Section 2.2. Section

2.3 discusses the decomposition of these weights

according to a natural score-specific hierarchy. In

Section 2.4, the results are used to define a matrix

Z of explanatory score-variables for Schumann’s

“Träumerei” that can be related subsequently to

the observed tempo y: Section 3 discusses the re-

lationship between Z and y and the consequences

for performance theory. Remarks in Section 4 about

open statistical problems and the general signif-

icance of the proposed method for the analysis
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Fig. 4. “Kuriose Geschichte” op. 15/2 by R. Schumann.
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Table 1

Repp’s list of performances

Year of

Abbreviation Artist performance

ARG Martha Argerich <1983

ARR Claudio Arrau 1974

ASH Vladimir Ashkenazy 1987

BRE Alfred Brendel <1980

BUN Stanislav Bunin 1988

CAP Sylvia Capova <1987

CO1 Alfred Cortot 1935

CO2 Alfred Cortot 1947

CO3 Alfred Cortot 1953

CUR Clifford Curzon 1955

DAV Fanny Davies 1929

DEM Jörg Demus 1960

ESC Christoph Eschenbach <1966

GIA Reine Gianoli 1974

HO1 Vladimir Horowitz 1947

HO2 Vladimir Horowitz <1963

HO3 Vladimir Horowitz 1965

KAT Cyprien Katsaris 1980

KLI Walter Klien ?

KRU André Krust 1960

KUB Antonin Kubalek 1988

MOI Benno Moisewitsch 1950

NEY Elly Ney 1935

NOV Guiomar Novaes <1954

ORT Cristina Ortiz <1988

SCH Artur Schnabel 1947

SHE Howard Shelley <1990

ZAK Yakov Zak 1960

and synthesis of musical performance conclude the

paper.

2. GENERAL BACKGROUND, ENCODING

SCORE INFORMATION, EXAMPLES

2.1 Metric, Melodic and Harmonic Weights

In the context of classical western music tradition,

performance deals with a complex transformation

process that starts from the data of a given score

and produces physical sound data. The present sta-

tus of performance theory is still in its beginning

[16]. Recent references to performance theory are,

for instance, [25, 38, 39, 40, 41, 17, 11 and 22].

To date, the most investigated subject of perfor-

mance theory—including corresponding software—

is agogics, that is, timing microstructure of tempo

curves (see [16, 23]). The present work deals with

this subject: agogics as an expression of the analysis

of harmonic, melodic and rhythmic structures. We

investigate empirically the basic question whether,

and in which mathematical–statistical conceptual-

ization, agogics may be viewed as being an expres-

sion of structural data obtained from a specific set

of musicological analyses.

The numerical encoding of score structures is

done by the RUBATO software for musical analysis

and performance [24]. In the following, we briefly

discuss the approach used by RUBATO. A detailed

account of the method can be found in [22, 24, 25,

27 and 46].

A musical score consists of a set of symbols, or

“events,” with specific (though not always uniquely

defined) meanings. In particular, for piano music, a

simplified representation of the event “note” in the

score is �t; e� = �t; e1; e2; e3�; where t is “onset” (the

symbolic time in the score at which the note e oc-

curs) and the components of the note e = �e1; e2; e3�
are “pitch,” “loudness” and “duration,” respectively.

The notes in a musical score (usually) follow cer-

tain structures of compositional grammars. Which

relevant structure there is in a score is the subject

of (structural) musical analysis. Here we consider

three major types of structure, namely, the met-

ric (rhythm), harmonic and melodic structures. In

the present approach to performance theory, it is

assumed that, depending on the metric, harmonic

or melodic structure, each note in the score can be

assigned a “weight” that measures its metric, har-

monic or melodic “importance,” respectively. The two

main tasks that have to be carried out are there-

fore: (1) metric, harmonic and melodic analysis of

the score and (2) translation of the analysis into nu-

merical weights of “importance” for each note in the

score. In RUBATO, explicit rules, derived from gen-

eral music theory and practice, are used for analyz-

ing a score and for transforming the results into nu-

merical weights. The user can control the depth and

the type of the analysis (by a set of rules), as well as

the impact on the resulting weights, by setting var-

ious parameters in defined analytical subroutines

(so-called Rubettes). Figure 5 shows the flow chart

of RUBATO.

The metric analysis used by RUBATO essentially

considers all periodically repeating metric struc-

tures, so-called local meters. A note in the score

is metrically important if it is part of many local

meters. The melodic analysis considers similar-

ities between musical motives (configurations of

notes) of the score. Essentially, a note is considered

melodically important if it is part of motifs that are

similar to many other motifs that occur elsewhere

in the score. Finally, the harmonic analysis gives

higher weights to notes that are harmonically im-

portant in the sense of an extended classical theory

of harmony (Riemann theory [34]).

As final result, each note event �t; e�; at score on-

set time t is associated with a metric, melodic and
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Fig. 5. Flow chart of the RUBATO platform.

harmonic weight. [We adopt time units which lit-

erally reproduce the score data for duration; i.e., a

quarter note has a (symbolic) duration of 0.25, and

a 4/4 bar has duration 1.] In principle, at a given

score-onset time t; an arbitrary number of note

events can occur, for instance, in a chord. Thus,

at time t; we may have more than one associated

metric, harmonic and melodic weight. To simplify

the analysis below, for onset times with multiple

note events, the average weight (averaged over all

notes occurring at the given onset time) will be

used. Thus, for each onset time t with at least one

score event, we then have three weights xmetric�t�;
xmelod�t� and xharmo�t�:

2.2 Four Examples

As previously indicated, the following scores are

considered here: Schumann’s “Träumerei” op. 15/7

(Kinderszene No. 7), Webern’s second Variation for

Piano op. 27/II, the Canon Cancricans from Bach’s

Musikalisches Opfer BWV 1079 and Schumann’s

“Kuriose Geschichte” op. 15/2 (Kinderszene No. 2).

Figure 6a–d displays the melodic (dotted, middle),

metric (full, lower) and harmonic (dashed, upper)
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Fig. 6. Metric, melodic and harmonic weights for (a) Schumann’s “Träumerei,” (b) Webern’s Variation op. 27/2, (c) Bach’s Canon

Cancricans and (d) Schumann’s “Kuriose Geschichte.”

weights for these scores. (The scores themselves

appear in Figures 1–4.) For onset times with more

than one value of the melodic and harmonic weight,

respectively, the average of the values was taken.

It is interesting to look at scatterplots of the three

types of weights against each other. Figure 7 shows,

for instance, the scatterplots for Bach’s Canon Can-

cricans. For each of the compositions, some simple

regular features of the weights can be seen:

• “Träumerei”—The score reveals that this compo-

sition may be divided into four disjoint parts Pj,

j = 1;2;3;4, corresponding to the onset inter-

vals I1 = �0;8� and Ij = ��j − 1� · 8; j · 8�, j =
2;3;4, respectively. These four parts are similar
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Fig. 7. Scatterplots of analytic weights for Bach’s Canon Cancricans.

to each other, with P3 differing most from the

other parts. In fact, P2 is, by definition, an ex-

act replicate of P1 (except for the slightly differ-

ent upbeat). In Figure 8a–c, the metric, melodic

and harmonic weights for the four parts are plot-

ted on top of each other (i.e., onset time is taken

modulo 8). The weights are indeed almost iden-

tical to each other. Interestingly, the fact that P3

differs most from the other parts shows only for

the melodic weights. Also, the scatterplots of the

weights against each other (not shown) do not in-

dicate any strong relationships between the three

weight functions. The sample correlations are all

in the range [−0:01; 0.09].

• Variation op. 27/II—With respect to the melodic

and harmonic weights, and from the score, this
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Fig. 8. Analytic weights for Schumann’s “Träumerei” against onset time modulo 8.

composition again can be seen to be divided into

four disjoint parts Pj; j = 1;2;3;4, corresponding

to a division of the onset time into four intervals of

equal length. The first two parts are almost iden-

tical with respect to the melodic and the harmonic

weights. The same is true for the last two parts.

For the metric weights, however, P2 is not a sim-

ple replicate of P1. The same is true for the last

two parts. Also, for P1 and P2, the maximal val-

ues of the metric weights are much higher than
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for P3 and P4. Again, no apparent relationship

is shown in the scatterplots between the three

weights (not shown). However, the largest correla-

tion (in absolute value) is much larger than in the

previous example: namely, −0.31 between metric

and harmonic weights.

• Canon Cancricans—As expected for a retrograde

canon, there is an almost exact time symmetry

with respect to the middle of the onset axis. The

symmetry is not exact, because the retrograde is

not just a reflection of onsets but a transvection

in the onset-duration space, parallel to the on-

set axis (see, e.g., [21]). Also striking is the clus-

tered nature of the weights and the apparently

very regular high-frequency oscillation of the met-

ric curve. A high metric weight is almost always

succeeded by a low weight and vice versa. Because

of the clustered nature of the weights, it is more

difficult to detect relationships from scatterplots.

The correlations between the weights are again

very small, ranging between 0.03 and 0.04.

• “Kuriose Geschichte”—Here, the score is again

divided into four disjoint parts corresponding to

the onset intervals [0,6], (6,12], (12,21], (21,30],

with P1 a repetition of P2 and P3 a repetition of

P4. Again, it is difficult to tell whether and how

closely the three different curves may be related

to each other. Note, however, that the metric

weights are much lower for onset times above

21. Thus, for the metric weights, the correspon-

dence between P3 and P4 is much weaker. The

reason is the breakdown of local meters at bar

21. Similarly to Webern, the strongest correlation

between the weights is quite remarkable, namely,

−0.33 between melodic and harmonic weights.

It is also interesting to compare the four composi-

tions with each other. The weights of Bach’s Canon

Cancricans exhibit an extreme high-frequency os-

cillation that is not observed for the other scores.

Ignoring that onset times are not exactly equidis-

tant, this can be seen for instance by comparing the

sample autocorrelations of the metric weights (Fig-

ure 9).

Another property of interest is the marginal

distribution of the weight functions after elimi-

nating global “trends” by taking first differences

x�tj� − x�tj−1�: Figure 10 shows, for instance, the

histograms for metric weights. For the composi-

tions by Schumann and Bach, the first differences

of the metric weights can essentially be classified

into three clusters (low, medium, high). For We-

bern’s score, the distribution is completely different

and in fact rather close to a normal distribution.

In contrast, the distributions of the differenced

melodic weights turn out to be qualitatively similar

for all four scores. Finally, all distributions for the

harmonic weights appear to be essentially symmet-

ric. However, while for Schumann’s “Träumerei”

and the score by Webern there appear to be three

clusters, the histograms for Bach and the “Kuriose

Geschichte” are essentially unimodal.

In summary, a first look at the weight func-

tions has revealed certain elementary features of

the score. In the following it will be demonstrated

that a more thorough analysis leads to further new

insights about the structure of the scores. In par-

ticular, note that the three weight functions were

defined by a completely different analytical ap-

proach. It may therefore be expected that there

is no strong relationship between the curves. The

scatterplots of the weights seem to support this con-

jecture. However, the following analysis will show

that certain components of the weight functions are

indeed closely related.

2.3 Hierarchical Decomposition of

Weight Functions

2.3.1 General motivation. As remarked above,

the weight functions display certain “obvious”

features of the scores. Can additional structural in-

sight be gained by suitable analysis of the analytic

weights? The idea of the following method is to find

a “natural” decomposition of the weight functions in

order to find hidden regularities. In time series ter-

minology, the general problem can be stated as fol-

lows: Let �xs�ti�; ti ∈ R; s = 1; : : : ; k; i = 1; : : : ; n�
be a collection of k time series, measured at the

time points ti: The aim is to find a decomposition

xs�ti� =
M
∑

j=1

xj;s�ti�

such that the components �xj;s; s = 1; : : : ; k� re-

veal a maximal amount of “regular structure.” One

of the difficulties is to define what is meant by “reg-

ular structures” and to define corresponding mean-

ingful measures of the amount of “regular struc-

ture.” Here, a pragmatic approach is taken, in that

the amount of “regular structure” is judged visually.

Clearly, more formal definitions could be used.

Before introducing the idea of hierarchical decom-

position, a few general remarks should be made:

Remark 1. Traditionally, one of the main struc-

tures of interest for time series is periodicity. In

particular, spectral decomposition based on sines

and cosines may be used for this purpose (see, e.g.,

[7, 30]). In our context, this is not applicable, be-

cause many compositions are likely to have much
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Fig. 9. Autocorrelograms of metric weights for (a) Schumann’s “Träumerei,” (b) Webern’s Variation op. 27/2; (c) Bach’s Canon Cancricans

and (d) Schumann’s “Kuriose Geschichte.”

more interesting structures than just periodicities.

In fact, some scores may not contain any nontriv-

ial periodicities at all. More generally, the problem

is that using the same basis of functions, irrespec-

tive of the structure of the score, results in focussing

on a very limited number of predetermined features

that may in fact not be present.

Remark 2. As a consequence, a nonparametric

approach based on kernel smoothing will be pro-
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posed here. In a traditional setting, the bandwidth

b is chosen by minimizing a criterion such as the

mean squared error as n tends to infinity. In par-

ticular, b tends to zero with increasing sample size.

This concept is not directly applicable in our context.

The main reasons can be summarized as follows:

1. Based on the definitions given above, the met-

ric, melodic and harmonic aspects of a score are

characterized, respectively, by one weight func-

tion only. In contrast, a composer is likely to have

a hierarchical view. For instance, a piece has on

one hand a global harmonic shape that makes

the piece coherent as a whole, and on the other

hand more local structures. Some composers in

fact consciously write a score using a hierarchical

approach, first defining a global shape and then

refining more and more local structures. Simi-
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larly, while rehearsing, a performer is likely to

focus first on global features of the score and

then sucessively refine more and more local fea-

tures. This fact was also used in RUBATO to de-

sign the process from a prima vista performance

(i.e., a performance that only “translates” literar-

ily score information that is written down explic-

itly in the score) to the refined artistic result [27].

In order to obtain a better picture of the struc-

ture of a score it is therefore necessary to “ex-

tract” the hierarchy that is hidden in the weight

functions. For smoothing, this means that there

is not just one optimal bandwidth that is of in-

terest. Instead, there is a hierarchy of relevant

bandwidths b1 > b2 > · · · > bM: Moreover, the

structure of the score, rather than an omnibus

statistical criterion (such as the mean squared

error), is likely to yield the key information about

which sets of bandwidths could be interesting.

2. The weight functions obtained from the analysis

above are generally rather complex. In partic-

ular, the weights often jump abruptly up and

down between very small and very large val-

ues (compare Figure 7). This can certainly not

be carried over linearly to musical performance.

For instance, the tempo of a “musically accept-

able” performance is unlikely to change up and

down drastically and repeatedly within a few

seconds. It is therefore reasonable to assume

that a performance is not a linear function of

the weights but rather a weighted sum of non-

linearly deformed smoothed versions of these

functions. Again, there may be a hierarchy of

several bandwidths that need to be considered.

These general considerations motivate the idea of

hierarchical smoothing and hierarchical decomposi-

tion described below.

2.3.2 Hierarchical smoothing. Let �xs�ti�; ti ∈
R; i = 1; : : : ; n; s = 1; : : : ; k� be a k-dimensional

time series observed at time points t1; : : : ; tn, and

let Kb be a smoothing kernel with bandwidth b and

support �−b; b�: Applying the smoothing operator

Kbxs�t� =
n
∑

i=1

Kb�t; ti�xs�ti�;

t ∈ R, for a hierarchy of bandwidths b1 > · · · > bM;

we obtain a hierarchy of k-dimensional curves

�xj; s�t� = Kbj
xs�t�; s = 1; : : : ; k�; j = 1; : : : ;M:

Here, the Naradaya–Watson kernel

Kb�t; ti� =
K��t− ti�/b�

∑n
j=1 K��t− tj�/b�

with a triangular function K�s� = 1��s� ≤ 1�·�1−�s��
was used. (Here 1�A� is the indicator of A:) For

b = 0; we have Kbxs�t� = xs�t�: Figures 11 and

12 display hierarchies of smoothed curves for Schu-

mann’s “Träumerei” and Bach’s Canon Cancricans,

resulting from the metric, melodic and harmonic

weights. The figures for the other two compositions

are omitted to save space. The corresponding band-

widths are given in Section 2.3.3. The figures il-

lustrate that different bandwidths make different

features more visible. In particular, for the met-

ric weights, smoothing highlights places where high

values occur more frequently. Also, some remark-

able similarities between the metric, melodic and

harmonic weights become apparent after smooth-

ing.

The statistical technique of using smoothing ker-

nels deserves a comment from the point of view of

(inverse) performance theory [22, 25]. Taking into

account neighboring values of the analyses by ker-

nel smoothing has a musical meaning: the inter-

preter is rightly supposed to be conscious of what

happened and will happen within a certain time

bandwidth b. Conceptually, a related approach was

suggested in [25] and [22], where so-called inter-

action matrices are used to model the influence of

different local parts of the score on the performance

at a given onset time.

2.3.3 Hierarchical decomposition. The approach

of hierarchical smoothing suggests a decomposition

of the weight function into components of vary-

ing smoothness. Thus, let �xs�ti�; ti ∈ R; s =
1; : : : ; k; i = 1; : : : ; n� be a collection of k time se-

ries. As discussed above, the aim is to find a de-

composition xs�ti� =
∑M

j=1 xj; s�ti� such that the

components �xj; s; s = 1; : : : ; k� reveal a maximal

amount of “regular structure.” Structure can be,

for instance, the following: symmetry; repeated

shapes or periodicities; relationship between dif-

ferent components. Note that, with respect to

cross-correlations, a number of methods are known

in the literature for testing dependence between

stationary time series (see, e.g., [12–14]; also see

[30] and references therein). A direct adaptation

of these methods is not possible for the following

reasons: (1) the series considered here are not sta-

tionary in a nontrivial way and can, in particular,

not be reduced to white noise by applying a linear

filter; (2) the time points are not equidistant; (3) the

aim is not only to obtain high cross-correlations but

also to highlight regular features of the individ-

ual series; (4) not only cross-correlations between

“residuals” but between all components are inter-

esting; (5) the musical context suggests that the
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decomposition should be hierarchical in the sense

that, with increasing index j; xj; s should contain

increasingly local features.

We thus define the following decomposition:

1. Define a hierarchy of bandwidths b1 > b2 > · · · >
bM = 0; based on structural information from the

score.

2. Define the smoothed function

x1; s = Kb1
xs

and, for 1 < j ≤ M,

xj; s = Kbj

(

xs −
j−1
∑

l=1

xl; s

)

:

It should be noted that this decomposition is only

one of many possible decompositions of xs: The prob-

lem of choosing a meaningful decomposition of a

time series is not new. In particular, in the context

of the regression analysis in Section 3, it is a spe-

cial case of the general problem of defining mean-

ingful explanatory variables in regression models.

Here, subject-specific considerations provide impor-

tant guidelines. From a pragmatic point of view,

a chosen decomposition can be considered reason-

able if the subsequent regression analysis leads to

meaningful interpretable results. In our context, the

above decomposition appears meaningful, since it

decomposes xs in a simple additive way into com-

ponents of decreasing smoothness. This translates,

in a straightforward way, the generally accepted fact

that a musical composition as well as a performance

may be considered as a superposition of a hierarchy

of local and global “shaping features,” obtained by

different degrees of “zooming in or out.” For a given

sequence of bandwidths b1 > b2 > · · · > bM = 0;

the first component x1; s represents the most global

view of the score (or more specifically of the metric,

harmonic or melodic structure, respectively), x2; s

represents the next step of refinement by consider-

ing, in a more detailed fashion with a smaller band-

width b2 < b1; the remaining information (obtained

by subtracting the “global information” x1; s�; and

so on.

Specifically, application to the four examples was

carried out using M = 4: This choice was based

on musicological considerations (time signature and

bar grouping) as explained in the following. In this

sense, the analysis here is exploratory, since no sta-

tistical selection criterion was used for choosing M:

For possible approaches to choosing M automati-

cally in a related model class see [6]. The follow-

ing notation will be used here: x1 = xmetric = metric

weight, x2 = xmelod = melodic weight, x3 = xhmean =
harmonic (mean) weight, xj;metric = xj;1; xj;melod =

xj;2; xj;hmean = xj;3: The choice of the bandwidths

was based on the time signature and bar grouping

information. Example, Schumann’s “Träumerei” is

written in 4/4 signature; the grouping is 8+8+8+8.

The chosen bandwidths are therefore 4 (4 bars), 2

(2 bars) and 1 (1 bar). The Webern example is writ-

ten in 2/4 signature; its formal grouping is 1 + 11 +
11+11+11; however, Webern insists on a grouping

in 2-bar portions [43], suggesting the bandwidths of

5.5 (11 bars), 1 (2 bars) and 0.5 (1 bar). The Bach

example is written in 4/4 signature; the grouping is

9+ 9+ 9+ 9: The chosen bandwidths are 9 (9 bars),

3 (3 bars) and 1 (1 bar). For the other Schumann

example, “Kuriose Geschichte,” the time signature

is 3/4; the grouping is 8 + 8 + 12 + 12. The cho-

sen bandwidths are 3 (4 bars), 1.5 (2 bars) and 0.75

(1 bar).

Figures 13 “Träumerei” and 14 (Canon Can-

cricans), and the corresponding plots for Schu-

mann’s “Kuriose Geschichte” and Webern’s Varia-

tion op. 27/II (not shown here), show remarkable

regularities that have not been observed for the

original weights. It is in particular remarkable

that, for all four compositions, much stronger simi-

larities between the metric, melodic and harmonic

components can be observed than for the original

weights, especially for j = 2 and 3. Moreover, for

the first two scores, the same kind of relationship

can be observed for j = 2 and 3; namely, positive

correlation between xj;melod and xj;hmean; nega-

tive correlation between xj;melod and xj;metric and

negative correlation between xj;hmean and xj;metric:

Particularly surprising is the fact that Webern’s

score shows the same type of association as Schu-

mann’s “Träumerei.” This leads to new insights into

different approaches to composition and their anal-

yses. In fact, the weight functions are very complex

data and deserve a refined “analysis of analysis.”

Hierarchical smoothing is a possible approach to

this problem.

Webern’s piece is written in a completely dodeca-

phonic way, and thus breaks with harmonic and ho-

mophonic tradition. This deserves a special method-

ologial comment. The fact that we have neverthe-

less applied harmonic analysis could be viewed as

being in contradiction to Webern’s rupture with har-

mony. Now, we do not claim that this analysis corre-

sponds to Webern’s poietic position when composing

his “Variationen.” Nonetheless, an objective analy-

sis according to the Riemann approach [34] is rea-

sonable for two reasons. (1) Riemann intended to

attribute a field of tonalities to any possible chord.

The fact that he did not succeed in his goal is no rea-

son for refraining from completion of his sketch. The

harmonic analysis of RUBATO uses an extended
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Fig. 13. Hierarchical components of metric (solid lines), melodic (dotted lines) and harmonic (dashed lines) weights for Schumann’s

“Träumerei,” as defined in Section 2:3:3: (a) b = 4y (b) b = 2y (c) b = 1y (d) remaining (residual) series.
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Cancricans, as defined in Section 2:3:3: (a) b = 9y (b) b = 3y (c) b = 1y (d) remaining (residual) series.
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Riemann theory that indeed allows one to attribute

tonality to any possible chord. (2) Applying this ap-

proach to apparently atonal compositions is an

interesting experiment that is likely to yield a

testbed for the universality of Riemann’s approach.

In view of these considerations the following fact

is not completely surprising, although it has not

been established explicitly elsewhere in the litera-

ture: the correspondence between metric, melodic

and harmonic structure in Webern’s Variation is

very similar to Schumann’s “Träumerei.” It should

be emphasized that this conclusion is obtained

by a quantitative analysis of the scores. To our

knowledge, this conclusion and in particular its

quantitative demonstration is new in the musico-

logical literature.

Schumann’s “Kuriose Geschichte” also shows a

strong correspondence between the three curves for

j = 1, 2 and 3. However, this time, the relations are

different:

For onset times below 12, we have the following:

1. For j = 1, cor�x1;metric; x1;melod� = 0:83;

cor�x1;metric; x1; hmean� = −0:71, cor�x1; hmean;

x1;melod� = −0:63.

2. For j = 2, cor�x2;metric; x2;melod� = 0:00;

cor�x2;metric; x2; hmean� = −0:31, cor�x2; hmean;

x2;melod� = −0:82.

3. For j = 3, cor�x3;metric; x3;melod� = −0:67;

cor�x3;metric; x3; hmean� = −0:20, cor�x3; hmean;

x3;melod� = −0:61:

It is in particular remarkable that, in contrast to

the other scores, melodic and harmonic components

are negatively correlated.

After onset time 12, the correlations are as fol-

lows:

1. For j = 1, cor�x1;metric; x1;melod� = 0:10;

cor�x1;metric; x1; hmean� = −0:38, cor�x1; hmean;

x1;melod� = −0:29:

2. For j = 2, cor�x2;metric; x2;melod� = −0:47;

cor�x2;metric; x2; hmean� = −0:14, cor�x2; hmean;

x2;melod� = −0:11:

3. For j = 3, cor�x3;metric; x3;melod� = −0:75;

cor�x3;metric; x3; hmean� = 0:58, cor�x3; hmean;

x3;melod� = −0:69:

Finally, for Bach’s composition, the only no-

ticeable correlations occur between metric and

harmonic weights, namely:

1. For j = 1, cor�x1;metric; x1; hmean� = 0:94.

2. For j = 2, cor�x2;metric; x2; hmean� = 0:63.

3. For j = 3, cor�x3;metric; x3; hmean� = 0:61:

With respect to the shapes of xj;·; for j = 2 and

3, the two scores by Schumann and the one by We-

bern are clearly more similar to each other com-

pared with Bach’s shapes. From the point of view of

music history, this is quite plausible, because We-

bern’s organic composition principle is more related

to Schumann’s rankly growing romanticism than to

Bach’s self-disciplined architectural setup (see also

the following remarks).

Finally, note that the scatterplots in Figure 7

show that Bach’s harmonic weights are highly clus-

tered, and that the smoothed curves in Figure 14a–d

are more “edgy” than for the other compositions.

In this sense, Bach’s composition exhibits a high

degree of organization. This confirms the general

belief that the principle of architectural rather than

processual construction plays a dominating role in

Bach’s music.

Overall, we may conclude that hierarchical de-

composition reveals interesting properties, in partic-

ular strong similarities between the metric, melodic

and harmonic weights, that were not visible in the

original series. The results are musically plausible

in that the analysis of Bach’s score turns out to

be the most regular one and the analyses of We-

bern and Schumann appear to be closer to each

other than to Bach’s. The results are surprising in

that (the analysis of) Webern turns out to be closer

to (the analysis of) Schumann than expected. Also,

the strong relationship between the three analytic

curves could not be expected a priori, because the

three weights were calculated using completely dif-

ferent aspects of the score and the scatterplots of

the original curves did not show much association.

Based on the results, one may conjecture that ap-

propriate matching of metric, melodic and harmonic

structure plays an important role in music, indepen-

dently of musical style. The tools introduced here

provide the possibility of investigating which types

of relationships may exist in which musical and

historical contexts. An important task for future

research will be to investigate such aspects for a

larger variety of compositions.

2.4 A more complex design matrix for

Schumann’s “Träumerei”

The following elaboration of the above method

was applied exclusively to Schumann’s “Träumerei”

because, in this case, we dispose of tempo measure-

ments. Of course, it could be applied to the other

examples mutatis mutandis.

2.4.1 Maximal harmonic weights. Harmonic

weights are originally defined for each note. More

than one note, and thus harmonic weight, may ex-

ist at a given onset time. In the above analysis,

the harmonic weight at onset time tl was defined
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as the average of all original harmonic weights

at tl: As an alternative, one may consider for in-

stance the maximal harmonic weight. The following

notation will be used: xhmean�tl� is the average har-

monic weight at onset time tl; and xhmax�tl� is the

maximal harmonic weight at onset time tl: Thus,

four different weight functions will be used in the

following analysis: xmetric, xmelod, xhmean and xhmax.

2.4.2 Derivatives. In the investigation of the re-

lationship between analytic weight functions and

tempo data, “discrete derivatives” (difference quo-

tients) turned out to play an important role. For a

given time series x�t1�; : : : ; x�tn�; define

dx�tj� =
x�tj� − x�tj−1�

tj − tj−1

and

dx�2��tj−1� =
dx�tj� − dx�tj−1�

tj − tj−1

:

This definition is applied to xmetric, xmelod, xhmean

and xhmax: Thus, for instance,

dxmetric; j�ti� =
xmetric; j�ti� − xmetric; j�ti−1�

ti − ti−1

and

d2xmetric; j�ti� =
dxmetric; j�ti� − dxmetric; j�ti−1�

ti − ti−1

:

In a second step, each of the weights and their

first and second discrete derivatives is decomposed

hierarchically into four components, as decribed

above. The bandwidths used for the decomposition

are b1 = 4 (weighted averaging over 8 bars), b2 = 2

(4 bars), b3 = 1 (2 bars) and b4 = 0 (residual—no

averaging). This gives the following list of a total of

48 functions:

xmetric;1 xmetric;2 xmetric;3 xmetric;4

dxmetric;1 dxmetric;2 dxmetric;3 dxmetric;4

d2xmetric;1 d2xmetric;2 d2xmetric;3 d2xmetric;4

xmelodic;1 xmelodic;2 xmelodic;3 xmelodic;4

dxmelodic;1 dxmelodic;2 dxmelodic;3 dxmelodic;4

d2xmelodic;1 d2xmelodic;2 d2xmelodic;3 d2xmelodic;4

xhmax;1 xhmax;2 xhmax;3 xhmax;4

dxhmax;1 dxhmax;2 dxhmax;3 dxhmax;4

d2xhmax;1 d2xhmax;2 d2xhmax;3 d2xhmax;4

xhmean;1 xhmean;2 xhmean;3 xhmean;4

dxhmean;1 dxhmean;2 dxhmean;3 dxhmean;4

d2xhmean;1 d2xhmean;2 d2xhmean;3 d2xhmean;4

2.4.3 Other essential score information. Apart

from the metric, melodic and harmonic structure,

a score typically contains a number of symbolic

or verbal performance instructions. Clearly, this

information must be included when analyzing per-

formance data. It should be noted, however, that

the main aim here is to check whether and in which

sense the metric, melodic and harmonic weights

“explain” a large part of the tempo. Therefore, the

following prima vista functions are defined in the

most elementary way:

1. Ritardandi—The score shows four onset inter-

vals R1, R2, R3, R4 for ritardandi, starting at

onset times to�Rj� �j = 1;2;3;4�, respectively.

We define the four linear functions

�1� xritj
�t�=1�t∈Rj� · �t− to�Rj��; j=1;2;3;4:

2. Suspensions—The score shows four onset inter-

vals S1, S2, S3, S4 for suspensions, starting at

onset times to�Sj� �j = 1;2;3;4�, respectively.

We define the four linear functions

�2� xsusj
�t�=1�t∈Sj� · �t− to�Sj��; j=1;2;3;4:

3. Fermatas—The score shows two onset intervals

F1, F2 for fermatas. We define the two support

functions

�3� xfermj
�t�=1�t∈Fj�; j=1;2:

2.4.4 Initial design matrix X. Summarizing, we

have a total of 58 = 48 + 4 + 4 + 2 onset functions

of analytical and prima vista types. Call X the an-

alytical matrix of these 58 functions. The following

notation will be used below: Let A be a �p × q1�-
matrix and B a �p × q2�-matrix. Then C = �A;B�
denotes the �p× �q1 + q2��-matrix obtained by “ap-

pending” B on the right-hand side of A: Using the

definitions above, we define for j = 1;2;3;4 the

�n× 4�-matrices

Xj�harmo� =
(

xhmean; j; xhmax;j;

xmetric; j; xmelod; j

)

;

Xj�metric� =
(

xmetric; j; xhmean; j;

xhmax;j; xmelod; j

)

;

Xj�melod� =
(

xmelod; j; xhmean; j;

xhmax;j; xmetric; j

)
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Furthermore, we define

dXj�harmo� =
(

dxhmean; j; dxhmax;j;

dxmetric; j; dxmelod; j

)

;

dXj�metric� =
(

dxmetric; j; dxhmean; j;

dxhmax;j; dxmelod; j

)

;

dXj�melod� =
(

dxmelod; j; dxhmean; j;

dxhmax;j; dxmetric; j

)

d2Xj�harmo� =
(

d2xhmean; j; d
2xhmax;j;

d2xmetric; j; d
2xmelod; j

)

;

d2Xj�metric� =
(

d2xmetric; j; d
2xhmean; j;

d2xhmax;j; d
2xmelod; j

)

;

d2Xj�melod� =
(

d2xmelod; j; d
2xhmean; j;

d2xhmax;j; d
2xmetric; j

)

and the �n× 10�-matrix

Xadd = �Xrit;Xsus;Xferm�;

where Xrit = �xrit1
; xrit2

; xrit3
; xrit4

�; Xsus = �xsus1
;

xsus2
; xsus3

; xsus4
� and Xferm = �xferm1

; xferm2
�:

Finally, define the �n×p�-matrices (with p = 58)

X�harmo�

=
(

X1�harmo�;X2�harmo�;X3�harmo�;

X4�harmo�; dX1�harmo�; dX2�harmo�;

dX3�harmo�; dX4�harmo�; d2X1�harmo�;

d2X2�harmo�; d2X3�harmo�;

d2X4�harmo�;Xadd

)

;

X�metric�

=
(

X1�metric�;X2�metric�;X3�metric�;

X4�metric�; dX1�metric�; dX2�metric�;

dX3�metric�; dX4�metric�; d2X1�metric�;

d2X2�metric�; d2X3�metric�;

d2X4�metric�;Xadd

)

;

X�melod�

=
(

X1�melod�;X2�melod�;X3�melod�;

X4�melod�; dX1�melod�; dX2�melod�;

dX3�melod�; dX4�melod�; d2X1�melod�;

d2X2�melod�; d2X3�melod�;

d2X4�melod�;Xadd

)

:

Each of the matrices X�metric�, X�melod� and

X�harmo� turned out to be singular, in that the last

column can be expressed as a linear combination

of the previous columns. Hence, from now on, the

last column is omitted. For simplicity of notation,

the new �n × 57�-matrices will also be denoted by

X�metric�; X�harmo� and X�melod�:

Remark 3. In the next section, a regression of

tempo curves on the X-space will be performed. In

view of the close relationship between the smoothed

components of the metric, melodic and harmonic

weights for j = 2 and 3 (see the discussion in the

previous section), it may not be possible to distin-

guish exactly whether certain characteristics of the

tempo curve stem from the metric, the harmonic or

the melodic analysis.

Remark 4. Clearly, the definition of the full de-

sign matrix X is based on our specific approach.

In particular, based on musicological considerations,

the following a priori choices were made: (1) specific

definition of melodic, metric and harmonic weights;

(2) specific decomposition of the weights by hierar-

chical smoothing; (3) choice of the bandwidths and

of the number of “derivatives.” One may ask how the

results of the regression analysis below may change,

if other choices are made in 1, 2 and 3. It would be

beyond the scope of this paper to investigate this

question in its full generality. In particular, there is

a huge number of possible variations of 1 and 2. Par-

tial answers to 3 are given in [6], where, in a sim-

ilar but not identical modelling framework, band-

widths and the number of explanatory variables are

estimated from the data, instead of being chosen a

priori. The general musicological conclusions and,

in particular, clusters of performances obtained in

[6] are very similar to those obtained here (in Sec-

tion 3). This indicates that the concrete conclusions

are not unduly influenced by our a priori choice of

bandwidths and derivatives.

2.4.5 Orthonormal matrix Z. Define Z�harmo�,
Z�metric� and Z�harmo� to be the three �n× 57�-
matrices obtained by orthonormalizing succes-

sively the columns of X�harmo�, X�metric� and

X�harmo�, respectively. The reason for computing

three different matrices is that orthonormalization

depends on the initial sequence of the columns.

An artificial preference of the variables that are

accidentally in the first (or first few) column(s)

is avoided by carrying out three separate re-

gression analyses with the respective matrices

Z�harmo�;Z�metric� and Z�melod� and by com-

paring the common features of the three results.
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By definition, Z�metric� puts first emphasis on

metric weights, Z�melod� emphasizes melodic

weights and Z�harmo� focusses first on harmonic

(mean) weights. Finally, note that, with respect to

derivatives, the order is (1) no derivative (all three

weights, all hierarchical levels), (2) first derivative

(all three weights, all hierarchical levels), (3) second

derivative (all three weights, all hierarchical lev-

els). Thus, models with no or low-order derivatives

are favored. This appears to be a natural choice,

since simple models are preferred and derivatives

generally represent more complex features.

3. RELATIONSHIP BETWEEN TEMPO AND

SCORE STRUCTURE

3.1 The Tempo Data

The tempo data was provided to us by Bruno

Repp. The data consist of tempo measurements (or

tempo curves) for m = 28 performances. The onset

times are on a grid of 1/8th beats. Thus, for instance,

grace notes are excluded. From this set of onset

times, we consider only onset times where at least

one note is actually played. This results in a set T of

n = 212 nonequidistant onset times ti, i = 1; : : : ; n,

which are multiples of 1/8: In view of the expecta-

tion that a performer may control the tempo in a

relative rather than an absolute way, the logarithm

of the tempo instead of the original tempo is consid-

ered. Moreover, the interest lies in investigating the

shape of the tempo curves rather than the absolute

tempo values. Therefore, each of 28 tempo curves

is standardized to zero sample mean and standard

deviation 1. Thus, let y∗�ti; j� be the (natural) loga-

rithm of the tempo of the jth performance at onset

time ti, i = 1; : : : ; n, j = 1; : : : ;m: Then the stan-

dardized tempo data are defined by

y�ti; j� = �y∗�ti; j� − ȳ∗�j��/s∗�j�;

where ȳ∗ = n−1
∑n

i=1 y
∗�ti; j� and s∗�j� = ��n −

1�−1
∑n

i=1�y
∗�ti; j�− ȳ∗�2�1/2: Figure 15 displays the

28 standardized logarithmic tempo curves.

3.2 The Regression Model

Let Z be one of the three matrices Z�harmo�;
Z�metric� or Z�melod�, respectively. The follow-

ing model for the jth individual tempo curve is as-

sumed:

y�j� = Zβ�j� + ε�j�;

where y�j�=�y�t1; j�; y�t2; j�; : : : ;y�tn; j��
t; β�j�=

�β1�j�; : : : ; βp�j��
t; p = 57; and ε�j� = �ε�t1; j�;

ε�t2; j�; : : : ; ε�tn; j��
t is a vector of n identically

distributed, but possibly correlated, zero mean

random variables ε�ti; j�, ti ∈ T, with variance

var�ε�ti; j�� = σ2�j�: Thus, it is assumed that

each performance is essentially characterized by a

57-dimensional parameter vector β�j�: Due to stan-

dardization of y and Z; there is no intercept in the

model.

Because β�j� is the parameter vector correspond-

ing to the performance number j; it may be as-

sumed to be a random vector, sampled from the

space of all “possible” interpretations, with expected

value E�β�j�� = β: Thus, we may write

β�j� = β+ η�j�;

where η�j� is a random vector with E�η�j�� = 0:

The (logarithmic) tempo of the jth performance is

then decomposed into an “average performance”

Zβ; an individual deviation from the average

Zη�j� and an unexplained deviation ε�ti; j�:

y�j� = Zβ�j� +Zη�j� + ε�j�:

3.3 Results of Regression Analysis

The relationship between analytic weights and

the tempo is investigated with respect to (1) exis-

tence, (2) type and complexity and (3) comparison of

different performances.

3.3.1 Existence.

• Maximal values of R2—Disregarding questions of

significance and model choice, the values of the

unadjusted R2 for the full model are interesting

in order to see how much the regression model

can “explain.” The result is 0:65 ≤ R2 ≤ 0:85;

depending on the performance.

• R2 after variable selection—A stepwise for-

ward selection with F-to-enter level 0.01 was

performed. The remaining coefficients turned

out to be significant at the 5% level, even af-

ter taking into account possible serial corre-

lations in the residuals. Note that, for vari-

able selection, which of the design matrices

Z�metric�; Z�melod� or Z�metric� was used

plays a role. The results are 0:46 ≤ R2 ≤ 0:79 for

Z�harmo�, 0:48 ≤ R2 ≤ 0:78 for Z�metric� and

0:36 ≤ R2 ≤ 0:77 for Z�melod�: Excluding the

performance of Kubalek (with R2 = 0:36�; the

lower bound for Z�melod� is 0.51. The quality

of the fitted models turned out to be very good.

A few typical observed and fitted curves [using

Z�melod�] in Figure 16 illustrate this.

Further evidence that the association found in the

regression model is meaningful is provided by the

discussion of communalities and diversities below.
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Fig. 15. Standardized log-tempo curves.

3.3.2 Complexity. Musical performance is con-

sidered to be a very complex process. This is

confirmed within the given formal setup. For most

performances, the selected models turned out to

be rather complex. For instance, for the perfor-

mance by Brendel (Figure 16b) and Z�melod�
(with R2 = 0:76�; 17 significant variables were se-

lected. The selected variables are: zmelod;1, zhmean;1,

zhmean;2, zhmax;2, zmelod;3, zhmean;3, zhmax;3, zmelod;4,

dzmelod;1, dzmelod;2, dzhmean;2, dzmelod;3, dzhmean;3,

d2zmetric;1, zrit3
; zrit4

and zferm1
: In particular, the

model contains all four types of weights (met-

ric, melodic, harmonic-mean, harmonic-maximum).

Also, all degrees of smoothness, first and second

derivatives and additional prima vista variables

are included.

3.3.3 Comparison of different performances. As

noted previously, the smoothed components of

metric, melodic and harmonic weights are closely

related. Performance is therefore necessarily am-

biguous in that a clear decision whether certain

features of the tempo are “due to” the harmonic, the

metric or the melodic content cannot be reached.

This may explain partially the phenomenon that

expert opinions about a performance often differ

substantially. The following results show, however,

that there are also strong similarities between the

regression results with Z�metric�; Z�melod� and

Z�harmo�: This indicates that there is at least

a core of tempo features that are unambiguously

attributable to specific weight functions.

The following aspects are considered here:

• signs of coefficients;

• frequency of selection of a variable;

• relative size of coefficients.

The latter will be used for finding clusters of perfo-

mances.

(a) Sign of coefficients. Consider the models ob-

tained after variable selection. Let p = 57, and set

β̂�j� = �β̂1�j�; : : : ; β̂p�j��
t, where β̂k is set equal to

zero, if the kth variable was not selected. Then for

Z�metric�; all except 3 coefficients (out of 57) turn

out have the same sign for all performances. The

same is true for Z�harmo� for all except 2 coeffi-

cients, and for Z�melod� for all except 1 coefficient.

Thus, the sign of almost all coefficients is common

to all performances. The effect of analytic curves

has the same direction independently of the perfor-

mance style. As a general tendency, the results sug-

gest that (1) the tempo decreases as the original (not

orthogonalized) harmonic weight increases, (2) the

tempo increases as the original (not orthogonalized)

metric weight increases and (3) the tempo decreases

as the original (not orthogonalized) melodic weight

increases. Clearly, this is only an approximate rule

under the assumption that all other variables are

kept fixed. This is not really the case, because the

weights are strongly correlated. The actual relation-

ship between weights and tempo is therefore much

more complicated.

(b) Frequency of inclusion. Define nk to be the

number of performances for which variable k was
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Fig. 16. Examples of observed and fitted log-tempo curves for (a) Argerich, (b) Brendel, (c) Cortot (performance 3) and (d) Horowitz

(performance 1).

included in the final model. Plots of the curves (vari-

ables) that were chosen at least 24 times (out of

28) for Z�harmo�, Z�metric� and Z�melod�, re-

spectively [see Figure 17 for Z�melod�] show at

least two types of curves that are common to al-

most all performances, independently of the ma-

trix that is used: (1) very smooth “global” curves,

such as zmelod;1; that shape the overall tendency of

the tempo; (2) almost periodic curves, with a period

of about 4 measures, corresponding to the approxi-

mate periodicity of the harmonic curve zhmean;2: It

is also remarkable that, independently of the design

matrix, zmelod;1 is chosen for all 28 performances.

Thus, the melodic aspect seems to be particularly

important. Finally note that, for Z�melod�; we have

zmelod;1 = xmelod;1: For Z�harmo� and Z�metric�;
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Fig. 17. Most frequently chosen components of X�melod�: (a) −z−�melod;1� chosen for 28 performances, (b) −d−Ez−�melod;3� chosen

for 28 performances, (c) −z−�hmean;2� chosen for 27 performances, and (d) −z−�hmean;1� chosen for 25 performances.

zmelod;1 can be considered as a nonlinear deforma-

tion of xmelod;1: Nonlinear deformations of analyti-

cal weights as arguments of refined shaping of per-

formance is also implemented in the performance

module of RUBATO.

In summary, the results suggest the existence

of a small number of “canonical” analytical weight

curves that are relevant for most performances of

“Träumerei” and essentially do not depend on the

analytical emphasis.

(c) Relative size of coefficients. Recall that Z

is orthonormal so that coefficients are compara-

ble with respect to their size. For fixed j; let

rk�j� be the rank of �β̂k�j�� in the set ��β̂s�j��;
s = 1; : : : ; p�: Furthermore, for 1 ≤ l ≤ p; let

fk�l� =
∑m

j=1 1�rk�j� > p − l� be the number of

performances for which �β̂k�j�� is at least the lth

largest.

For l = 1; fk�1� is the number of performances

for which the kth variable is most important. For

Z�harmo�; only four different curves are most im-

portant for at least one performance (Figure 18),

namely, zhmean;2, zhmean;1, zmetric;1, and zmelod;4. De-

pending on which of the four curves has the largest

coefficient, the individual performances can be clas-

sified into four clusters (Table 2a). Performances in

the first cluster emphasize the 4-measure periodic-

ity of the harmonic structure. It is in particular in-

teresting that all Cortot performances are included,

whereas none of the Horowitz performances is con-

tained. Performances in the second cluster empha-

size mainly a globally descending curve. This clus-

ter includes in particular Horowitz1 and Horowitz2.

The third cluster, consisting of Bunin and Gianoli,

has a global curve with a peak around the 15th mea-

sure as dominant feature. The fourth cluster con-

sists solely of the first performance by Horowitz. Ap-

parently, in this performance, a very detailed local

structure of the melodic curve zmelod;4 is dominant.

The results for Z�metric� are almost identical and

are therefore omitted.

It is remarkable, in particular, that Horowitz’s

extraordinary first performance from 1947 shows

a preference for very detailed local information,

from the melodic and from the metrical analysis—

contrasting, for instance, with Argerich’s highly co-

herent performance. This observation is confirmed

by an investigation of the correlation coefficients in

the algebro-geometric analysis of the performance

genealogy in the sense of RUBATO’s stemma the-
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Fig. 18. Components of X�harmo� with largest coefficient; fk�1� is the number of performances for which the corresponding component

was the most important one (i.e., had the largest coefficient in absolute value).

ory (see [22, 25]). When translated into common

language, these quantitative results are in per-

fect coincidence with the judgments of experts on

Argerich’s and Horowitz’s specific differences in

performance [1].

For Z�melod� (Figure 19), we obtain the clus-

ters shown in Table 2b. The corresponding variables

are zmelod;1, zhmean;2 and zmelod;2. Here, very sim-

ple clusters are obtained (Table 2b). Qualitatively,

only two types of curves occur as the most impor-

tant ones: (1) a globally descending smooth curve or

(2) an almost periodic curve (with period 4). (Note,

however, that the type-2 curves are not identical.)

Only Cortot1, 2 and 3, Krust and Ashkenazy have

the second type of curve as dominating feature.

Many more results can be obtained by consid-

ering arbitrary values of l: For l > 1; fk�l� is the

number of performances for which the kth vari-

able is among the l most important ones. As an

example, consider l = 3 and Z�melod�: Table 3

summarizes the resulting partially overlapping

clusters. The variables with fk�3�6=0 and the cor-

responding column labels are zmelod;1, zhmean;2,

zhmean;1, dzmelod;3, zmelod;2, dzmelod;2, zhmax;2,

zhmax;3, zmelod;4, dzmelod;1, d2zmelod;1 and zsus2.

The following conclusions can be made. All per-

formers except Ashkenazy put high emphasis on

the global shape zmelod;1: Cortot and “Cortot-type”

performances have a high degree of four-measure

periodicity (corresponding to the bandwidth b2 = 2).

In particular, all Cortot performances have the

same three “most important” curves. Apart from

the “global” curve zmelod;1; the two other most

important curves are zhmean;2 and dzmelod;2 cor-

responding to the bandwidth b2 = 2 (and thus a

neighborhood of four measures). In contrast, for all

three Horowitz performances, the very “local” curve

zmelod;4 corresponding to the bandwidth b4 = 0

is among the three most important explanatory

variables. Thus, Cortot and Horowitz have dia-

metrically opposite ways of shaping tempo. The

Horowitz-cluster corresponding to the complex local

melodic structure of zmelod;4 suggests that Horowitz

puts unusually high emphasis on local structures.
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Table 2a

Overview of clusters as derived by the criterion in

Section 3:3:3(c), with l = 1 and Z�harmo�

Artist zhmean, 2 zhmean, 1 zmetric, 1 zmelod, 4

ARG d

ARR d

ASH d

BRE d

BUN d

CAP d

CO1 d

CO2 d

CO3 d

CUR d

DAV d

DEM d

ESC d

GIA d

HO1 d

HO2 d

HO3 d

KAT d

KLI d

KRU d

KUB d

MOI d

NEY d

NOV d

ORT d

SCH d

SHE d

ZAK d

3.3.4 Hierarchical decomposition and synthe-

sis of tempo. Using the size of �β̂k� as criterion

for the importance of variable k; we may de-

duce a natural way of obtaining simplified tempo

curves that contain the most important features.

For given j and 1 ≤ q ≤ p; let the �p × 1�-
vector γq�j� = �γq;1�j�; γq;2�j�; : : : ; γq;p�j��

t be

defined by γq; k�j� = β̂k�j�1�rk�j� > p − q�: Then

yq�ti; j� = Zγq�j� is a simplified tempo curve

that corresponds to using the variables (analytic

curves) that are among the q most important ones

for tempo curve j; importance being measured by

rk�j�: Thus, the resulting tempo curve is a sim-

plified curve obtained by superposing the q most

important features only. Note that, for q = p; this

yields the complete curve fitted by stepwise regres-

sion. Figure 20a–d displays yq, q = 1; : : : ; p for

Z�harmo� for four typical performances. Using this

approach may lead to an objective way of discussing

and comparing typical features of performances. On

the other hand, the method of successive superposi-

tion may also be used for synthesis of tempo curves,

an unsolved problem in performance theory.

Table 2b

Overview of clusters as derived by the criterion in Section

3:3:3(c), with l = 1 and Z�melod�

Artist zmelod, 1 zhmean, 2 zmelod, 2

ARG d

ARR d

ASH d

BRE d

BUN d

CAP d

CO1 d

CO2 d

CO3 d

CUR d

DAV d

DEM d

ESC d

GIA d

HO1 d

HO2 d

HO3 d

KAT d

KLI d

KRU d

KUB d

MOI d

NEY d

NOV d

ORT d

SCH d

SHE d

ZAK d

3.3.5 Summary. In summary, the regression

model leads to the following conclusions:

• There is a strong association between the metric,

melodic and harmonic weights and the tempo.

• The exact relationship is very complex, but a large

part of the complexity can be modelled by the pro-

posed method.

• There is no unique way of “explaining” a perfor-

mance by attributing features of the tempo to

exactly one cause (harmonic, metric or melodic

analysis). However, there is a small number of es-

sential curves, independent of the chosen priori-

ties (metric, melodic, harmonic), that characterize

important commonalities and diversities between

tempo curves. It is important to note that these

“canonical curves” are score specific.

• Based on the regression results, natural clusters

can be defined.

• The proposed method leads to a natural score-

specific decomposition of tempo curves into a se-

ries of simplified tempo curves containing an in-

creasing number of features.
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Fig. 19. Components of X�melod� with largest coefficient; fk�1� is the number of performances for which the corresponding component

was the most important one (i.e., had the largest coefficient in absolute value).

4. FINAL REMARKS

In this paper, a method for obtaining numerical

results about analytical score structure and its re-

lation to the tempo of a performance was proposed.

It was demonstrated that a variety of results can

be obtained that are interpretable from the point

of view of music theory and performance theory.

The method of encoding the score structure essen-

tially consists of two steps: (1) definition of weight

functions based on considerations from computa-

tional musicology; (2) hierarchical decomposition of

the weight functions.

The application to the four scores and to the

tempo data shows that the weight functions and

the hierarchical approach of decomposing these

functions into components of different degree of

smoothness seems to be appropriate. Also, hier-

archical decomposition is meaningful from the

“poietical” point of view of a musician (composer

and performer). It is common practice to rehearse

first the most global features of a score and then re-

fine the performance successively in greater detail

(see [25] for the background of this approach).

In comparison with previous studies about perfor-

mance structures, our approach is fundamentally

different in that the “explanation” of the perfor-

mance is score specific. It is, however, remarkable

that our result that Cortot and Horowitz represent

two extreme types of performances confirms a previ-

ous result by Repp [31]. Repp came to the same con-

clusion by applying principal component analysis.

In contrast to this standard analysis, our approach

yields information about the score-related nature of

the commonalities, diversities and clusters. This is

due to the fact that the tempo is projected on a

space that is defined by the specific score structure,

instead of calculating an “omnibus-decomposition”

such as principal components or a Fourier decom-

position. From the musical point of view this is es-

sential and differs fundamentally from traditional

mathematical “omnibus-decompositions.”
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Table 3

Overview of clusters as derived by the criterion in Section 3:3:3(c), with l = 3

Artist zmelod, 1 zhmean, 2 zhmean, 1 dzmelod, 3 zmelod, 2 dzmelod, 2 zhmax, 2 zhmax, 3 zmelod, 4 dzmelod, 1 d2zmelod, 1 zsus2

ARG d d d

ARR d d d

ASH d d d

BRE d d d

BUN d d d

CAP d d d

CO1 d d d

CO2 d d d

CO3 d d d

CUR d d d

DAV d d d

DEM d d d

ESC d d d

GIA d d d

HO1 d d d

HO2 d d d

HO3 d d d

KAT d d d

KLI d d d

KRU d d d

KUB d d d

MOI d d d

NEY d d d

NOV d d d

ORT d d d

SCH d d d

SHE d d d

ZAK d d d

At this point, the proposed statistical approach

is heuristic and exploratory. The definitions used

for the analysis were justified intuitively, given

background knowledge from musical experience.

Much more theoretical and empirical research will

be needed to develop a set of statistical tools that

are appropriate for data analysis in music. Spe-

cific methodological problems within the framework

discussed here include the following, for instance:

• Model extension—The proposed regression model

already “explains” a large part of the observed

tempo curves. However, for all performances, an

analysis of the residuals, using for instance the

approximate maximum likelihood method in [4],

revealed clear serial dependencies in the resid-

uals for practically all of the 28 performances.

Furthermore, the coherence between the regres-

sion residuals and the analytic weights turned out

to deviate from zero for certain frequencies. In-

clusion of lagged explanatory variables (obtained

from Z) does improve the fits and the residuals

considerably, but leads to extremely complex mod-

els. Clever modelling will be needed to take into

account lagged dependencies while keeping the di-

mension of the explanatory matrix low.

• Bandwidth choice—In the decomposition of the

score, triangular kernel smoothing was used.

Bandwidth choice was done intuitively, based

on knowledge about the score. More formal pro-

cedures could be defined. In particular, when

relating the score to performance data, the var-

ious bandwidths could be chosen by optimizing

the fit.

• Hidden structures and other decompositions—

The aim of decomposing the weight functions was

to extract more relevant analytical information

about the score. The idea was to use a score-

specific hierarchy and to avoid predetermined

functional shapes. Other types of decompositions

may exist that reveal other hidden structures.

These may include, for instance, other smoothing

procedures, multiplicative instead of additive de-

composition, nonlinear transformations and other

hierarchies.

• Semiparametric techniques—The proposed re-

gression method may be called semiparametric

in that it first decomposes the weight functions

nonparametrically, and then applies a paramet-
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Fig. 20. Successive approximation of log-tempo curves by (a) Argerich, (b) Brendel, (c) Cortot (performance 3) and (d) Horowitz (perfor-

mance 1) by fitted regression curves.

ric regression model. The success of the model

is based on this combination of nonparametric

and parametric techniques. Clearly, there may

be other models that could be developed in this

semiparametric context.

• Other definitions of analytic weights—The defi-

nitions in Section 3 are based on musicological

and mathematical considerations. It is, however,

clear that there is no unique way of characteriz-

ing metric, melodic and harmonic structures. The
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given definitions of metric, melodic and harmonic

weights, as defined in RUBATO, contain many

free “parameters” that need to be set before a

score is analyzed. It is an open problem how to

define criteria for finding meaningful parameter

settings. The basic problem is that meaning is

not given a priori, but has to be found without

secure guidelines! In our analysis, the choice was

based on musicological preferences. Instead, one

may for instance try to find parameter settings

that correspond best to a performance. How this

should be done in detail is unclear because of the

large number of free parameters. From the mu-

sical point of view, performance-based parameter

settings would be meaningful, because different

performers may use a different degree of analyt-

ical insight. More generally, different definitions

of analytic weight functions may be considered,

possibly with more precise semantic guidelines.

• Other aspects of the score—In the present paper,

encoding score information was reduced to the cal-

culation of metric, melodic and harmonic weights.

This is only a part of the information contained

in the score. For example, contrapuntal structures

could also be taken into consideration.

• Other aspects of performance—Here, only the

tempo of a performance was analyzed. Other as-

pects of performance will need to be investigated

simultaneously. It can be expected that data

that encodes most aspects of performances will

be high-dimensional and highly structured in a

nontrivial way.

• Other aspects than the score—Clearly, other as-

pects than the score may influence a performance.

Thus, for instance, psychological, educational or

historical circumstances may have to be incorpo-

rated. This problem has already been mentioned

in the introductory remarks.

• Computational difficulties—The definitions of an-

alytic weight functions involve a large number of

combinatorial calculations. For example, the mo-

tivic calculations exceed any reasonable amount

of calculation if handled with ideal boundary con-

ditions. The same is true for harmonic weights.

Appropriate sampling and programming tech-

niques may have to be developed to reduce the

number of calculations.

Overall, we may conclude that there are a large

number of statistical problems that need to be

solved in the context of music and performance

theory. It can be expected that a vast amount of

data will become available that will allow for an

empirical development of this scientific discipline.

The challenging task for statisticians will be to

develop methods for high-dimensional and highly

structured data sets, while taking into account the

musical context and the large amount of musico-

logical knowledge appropriately. In particular, it

must not be ignored that, by the very nature of mu-

sic, “knowledge” about music is mostly qualitative

and partially ambiguous. For many problems the

number of good solutions can be infinite. For in-

stance, there is not just one but probably an infinite

number of good performances.

The approach presented here provides a possi-

ble framework for a more objective discussion about

musical structure and performance. It should be em-

phasized that the aim cannot be to provide a com-

plete “objective” explanation of music. The claim is,

however, that certain aspects of music can be dis-

cussed in a quantitative semi-objective way. For in-

stance, the decomposition of a tempo curve into a hi-

erarchy of features of decreasing importance leads

to a better understanding of the main commonali-

ties and differences between performances. The col-

laborative effort of statisticians, musicologists and

other scientists is likely to bring many exciting in-

sights into music in general.
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