
Analyzing Network Coding Gossip Made Easy ∗

Bernhard Haeupler
Massachusetts Institute of Technology

32 Vassar Street, 32-G622
Cambridge, MA 02139, USA

haeupler@mit.edu

ABSTRACT
We introduce projection analysis – a new technique to an-
alyze the stopping time of gossip protocols that are based
on random linear network coding (RLNC). Projection anal-
ysis drastically simplifies, extends and strengthens previous
results. We analyze RLNC gossip in a general framework
for network and communication models that encompasses
and unifies the models used previously in this context. We
show, in most settings for the first time, that the RLNC gos-
sip converges with high probability in optimal time. Most
stopping times are of the form O(k + T), where k is the
number of messages to be distributed and T is the time it
takes to disseminate one message. This means RLNC gossip
achieves “perfect pipelining”.

Our analysis directly extends to highly dynamic networks
in which the topology can change completely at any time.
This remains true, even if the network dynamics are con-
trolled by a fully adaptive adversary that knows the com-
plete network state. Virtually nothing besides simple O(kT)
sequential flooding protocols was previously known for such
a setting.

While RLNC gossip works in this wide variety of networks
our analysis remains the same and extremely simple. This
contrasts with more complex proofs that were put forward
to give less strong results for various special cases.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures; G.2.2 [Discrete Mathemat-
ics]: Graph Theory—network problems

∗A preliminary version of this research was presented at an
invited session of the 2010 Allerton Conference for Com-
munication, Computing and Control; A full version of this
paper is available at ArXiv:1010.0558.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’11, June 6–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0691-1/11/06 ...$10.00.

General Terms
Algorithms, Performance, Theory

Keywords
dynamic networks, gossip, multicast, network coding

1. INTRODUCTION
This paper presents a new way to analyze gossip pro-

tocols based on random linear network coding, which we
call projection analysis. Projection analysis substantially
simplifies, extends, and strengthens the results of previous
work [4, 9, 10,30,31].

Gossip is a powerful tool to efficiently disseminate in-
formation. Its randomized nature is especially well-suited
to work in unstructured networks with unknown, unstable
or changing topologies. Because of this, gossip protocols
have found a wide range of applications [1,11,15,16,26] and
have been extensively studied over the past several decades
[3, 5, 15,20,22,24,25,29].

Recently, gossip protocols based on random linear network
coding (RLNC) [2, 21, 28] have been suggested [8] to cope
with the additional complexities that arise when multiple
messages are to be distributed in parallel. RLNC gossip has
been adopted in many practical implementations [6, 13–15,
23] and has performed extremely well in practice.

These successes stand in contrast to how little RLNC gos-
sip is understood theoretically. Since its initial analysis on
the complete graph [8–10], several papers [4,30,31] have tried
to give good upper bounds on the stopping time of RLNC
gossip in more general topologies. However, none of them
address the case of unstable or changing topologies, and,
even with the restriction to static networks, the guarantees
are far from being general or tight on most graphs. In addi-
tion, all existing proofs are quite involved and do not seem
to generalize easily.

1.1 Our Results:
This paper has two main contributions. The first is our

new projection analysis technique which is both simpler and
more powerful than previous approaches. Projection anal-
ysis relates the stopping time for k messages to the much
easier to analyze time T needed to disseminate a single mes-
sage. For the first time, and in practically all settings, this
technique shows that RLNC gossip achieves perfect pipelin-
ing, i.e., it disseminates k messages in order optimal O(T+k)
time. Our results match, and in most cases improve, all pre-
viously known bounds and apply to more general models.

293

To formalize this, we give a general framework for network
and communication models that encompasses and unifies the
models suggested in the literature so far. We give concrete
results for several instantiations of this framework and give
more detailed comparisons with previous results in each sec-
tion separately.

As a second major contribution, our framework extends
all models to (highly) dynamic networks in which the topol-
ogy is allowed to completely change at any time. All of
our results hold in these networks, even if the network dy-
namics are controlled by a fully adaptive adversary that
decides the topology at each time, based on the complete
network state as well as all previously used randomness.
Virtually nothing, besides simple O(kT) sequential flood-
ing protocols [27], is known for such truly pessimistic net-
work dynamics so far. Having optimal “perfectly pipelined”
stopping times in worst-case adaptive dynamic networks is
among the strongest stability guarantees for RLNC gossip
that one might hope for. To this end, our results are the
first that formally explain RLNC gossip performance in the
dynamic environments it is used in and was designed for.
While the algorithm works in this wide variety of settings,
our analysis remains mostly the same and extremely simple,
in contrast with complex proofs that were previously put
forward for the static setting.

1.2 Organization:
Section 3 reviews the RLNC algorithm and Section 4 de-

scribes the new projection analysis technique. In Section 5
we introduce the network model framework. Section 6 shows
how to apply the projection analysis in various instantia-
tions of this framework. Section 7 discusses several ways in
which the intentionally simple proofs from Section 6 can be
extended or sharpened.

2. BACKGROUND AND RELATED WORK
Gossip is the process of spreading information via a ran-

domized flooding procedure to all nodes in an unstructured
network. It stands in contrast to structured multi-cast in
which information is distributed via an explicitly built and
maintained structure (e.g., a selection of spanning trees).
While structured multi-cast can often guarantee optimal
use of the limited communication resources, it relies heavily
on having a known and stable network topology and fails
in distributed or uncoordinated settings. Gossip protocols
were designed to overcome this problem. By flooding in-
formation in a randomized fashion they guarantee to de-
liver messages with high probability to all nodes with lit-
tle communication overhead. This stability and distributed
nature of gossip makes it an important tool for collabora-
tive content distribution, peer-to-peer networks, sensor net-
works, ad-hoc networks and wireless networks; literature ap-
plying gossip in many areas and for many purposes is vast
(e.g., [1, 11,15,16,26]).

The gossip spreading of both a single message and multi-
ple messages [3,5,15,20,22,24,25,29] has been intensely stud-
ied. The spreading of one message often follows a compar-
atively simple epidemic random process in which the mes-
sage is flooded to a randomly chosen subset of neighbors.
Spreading multiple messages in parallel is significantly more
complicated because nodes need to select which information
to forward. The main problem in this context is that widely

spread messages get forwarded more often and quickly out-
number rarer messages. In many cases the slow spread of
the rare messages dominates the time needed until all nodes
know every message.

A powerful and elegant way to avoid this and similar prob-
lems is the use of network coding techniques. Network cod-
ing as introduced by the seminal work of Ahlswede, Cai,
Li and Yeung [2] breaks with the traditional concept that
information is transported by the network as an unchanged
entity. Ahlswede et al. show that in many multi-cast scenar-
ios the optimal communication bandwidth can be achieved
if and only if intermediate nodes in the network code infor-
mation together. Li et al. [28] showed that for multi-cast it
is enough if intermediate nodes use linear coding, i.e., com-
puting linear combinations of messages. Following this, Ho
et. al [21] showed that the coefficients for these linear com-
binations need not be carefully chosen with regard to the
network topology; indeed, using of random linear combina-
tions works with high probability for any fixed network.

The strong performance guarantees and the independence
of the coding procedure from any global information about
the network makes random linear network coding (RLNC)
the perfect tool for spreading multiple messages. This was
first observed and made formal by Deb and Médard [8].
They show that using randomized gossip and RLNC in a
complete network in which each of the nodes starts with
one message, all information can be spread to all nodes in
linear time, beating all non-coding approaches. After the
introduction of this protocol in [8] and its follow-up [9, 10]
it was used in many applications [6, 13, 14, 23], most no-
tably the Microsoft Secure Content Distribution (MSCD) or
Avalanche System [15]. There has also been more theoreti-
cal work [4,30,31] investigating the convergence time of the
RLNC-algorithm on general static network topologies. We
give a detailed description and comparison to these works in
Section 6.

3. THE RLNC ALGORITHM
In this section, we give a brief description of the RLNC

algorithm. The algorithm is simple and completely indepen-
dent of the network structure or communication protocol.
Alternative descriptions of the algorithm can be found in [8]
or [6].

The RLNC algorithm sends out packets in the form of
vectors over a finite field Fq, where q is an arbitrary prime
or prime power. We assume that there are k messages,
~m1, . . . , ~mk, that are vectors from Flq of length l. Every

packet that is sent around during the execution of the algo-
rithm has the form (~µ, ~m), where ~m =

∑k
i=1 µi ~mi ∈ Flq is a

linear combination of the messages, and ~µ = (µ1, . . . , µk) ∈
Fkq is the vector of the coefficients. If enough packets of this
form are known to a node, i.e., the span of the coefficient
vectors is the full space Fkq , Gaussian elimination can be used
to reconstruct all messages. For this, only k packets with lin-
early independent coefficient vectors are needed. Linearity
furthermore guarantees that any new packet that is created
by taking a linear combination of old packets has the same
valid format. With this, it is easy to see that a node can pro-
duce any packet whose coefficient vector is spanned by the
coefficient vectors of the packets it knows. The algorithm is
now easily described:

Each node v maintains a subspace Xv that is the span

294

of all packets known to it at the beginning and received so
far by simply storing all received packets. If v does not
know any messages at the beginning, then Xv is initialized
to contain only the zero vector. If v knows some message(s)
~mi at the beginning, Xv is initialized to contain the packet
(~µ, ~mi) in which ~µ is the ith standard basis vector. Xv also
contains all linear combinations that complete the span of
these packet(s). Whenever node v sends out a packet, it
chooses a uniformly random packet from Xv by taking a
random linear combination of the stored packets. At the
end of each round, all received packets are added to Xv
and again the span is taken. If the subspace spanned by
the coefficient vectors is the full space, a node decodes all
messages.

Throughout the rest of the paper we will solely concen-
trate on the “spreading” of the coefficient vectors; the linear
combination of the messages implied by a coefficient vector
~µ is always sent along with it. We therefore define Yu to be
only the coefficient part of Xu, i.e., the projection onto the
first k components.

4. THE PROJECTION ANALYSIS

4.1 Previous Approaches
When analyzing the RLNC algorithm, Sub and Médard [8]

were the first to use the dimensionality of the subspaces Yv
as a measure of progress. They defined a node u to be
helpful for a node v if it knows something v does not, i.e.,
if the subspace Yu is not contained in Yv. Whenever node
v receives a packet with a coefficient vector outside of Yu
the dimension of Yv increases, which can happen at most k
times. More importantly, Sub et al. made the observation
that if a node u that is helpful to node v sends this node
a packet, this dimension increase is very likely to happen.
The reason for this is that the vectors Yu ∩ Yv, that do not
extend the dimensionality of Yv, form a lower dimensional
subspace in Yu. Thus, whenever a node u sends a random
vector from Yu to a node v it is helpful for, the probability
that the dimension of Yv increases is at least 1− 1/q. This
fact and the notion of helpfulness is used as a crucial tool in
all further RLNC proofs [4, 9, 10,30,31].

4.2 The Projection Analysis Technique
We argue that the right way to look at the spreading of

information is to look at the orthogonal (dual) complement
Y ⊥u of the coefficient subspaces Yu. While the coefficient sub-
spaces grow monotonically to the full space their orthogo-
nal complement decreases monotonically to the empty span.
To see how quickly this happens, we first concentrate on
one fixed (dual) vector ~µ ∈ F kq , determine the time that is

needed until it disappears from all subspaces Y ⊥u with high
probability and than take a union bound over all those dual
vectors.

A different and maybe even simpler way of looking at
this is that we are analyzing the spreading process by look-
ing at its qk one-dimensional projections. To keep track of
these projections we introduce the following crucial notion
of knowing:

Definition 1. A node u knows about ~µ ∈ Fq iff its coef-
ficient subspace Yu is not orthogonal to ~µ, i.e., if there is a
vector ~c ∈ Yu with 〈~c, ~µ〉 6= 0.

Note that a node u knowing a vector ~µ does not imply
~µ ∈ Yu or anything about u being able to decode a mes-
sage associated with the coefficients ~µ. Counter intuitively,
because we are not working over a positive-definite inner-
product space, it can even be that ~µ ∈ Yu but u does not
know ~µ. Knowing ~µ solely expresses that the node is not
completely ignorant about the set of packets that have a co-
efficient vector orthogonal to ~µ. The next lemma proves the
two facts that make this notion of knowledge so useful:

Lemma 2. If a node u knows about a vector ~µ and trans-
mits a packet to node v then v knows about ~µ afterwards
with probability at least 1 − 1/q. Furthermore, if a node
knows about all vectors in Fkq then it is able to decode all k
messages.

Proof. Knowledge about a ~µ spreads with a transmis-
sion with probability 1− 1/q because the vectors in Yu that
are perpendicular to ~µ form a lower dimensional hyperplane
(with at most a 1/q-fraction of the volume). For the second
claim, we prove that any node u that is not able to decode
does not know at least one vector ~µ: If u can not decode
than Yu is not the full space. Because Yu is a subspace, it is
lower-dimensional and we can find a vector ~µ that is orthog-
onal to Yu. This vector ~µ is then by definition not known to
u, a contradiction.

Lemma 2 implies that the spreading of knowledge for a
fixed vector ~µ ∈ F kq is a monotone increasing, epidemic set
growing process – or differently phrased – each projection
looks essentially like a 1/q-faulty one-message flooding pro-
cess. It is usually relatively easy to understand this process
and to determine the expected time T until all nodes know ~µ.
Furthermore, because the set growing process is a monotone
Markov chain its stopping probability has an exponentially
decaying tail. In most cases this tail kicks in close to the ex-
pectation. This allows to pick a time t (usually t = O(T+k))
after which any vector in Fkq has spread with probability at

least 1 − 2−O(k). Taking a union bound over all qk vectors
then completes the proof that with high probability every-
thing has spread. The following theorem summarizes these
ideas:

Theorem 3. Fix a prime (power) q ≥ 2, a probability
δ > 0 and an arbitrary network and communication model
whose dynamics do not depend on what nodes know.
We define a projection or faulty one-message broadcast of
the model as follows: One message starts at some node v,
and in every round, every node, that knows the message and
is supposed to communicate according to the communication
model, forwards it with probability 1−1/q and remains silent
otherwise.
If, for every node v, the probability that the message reaches
all nodes after t rounds is at least 1− δq−k then k messages
can be spread in the same model in time t with probability
1− δ using RLNC gossip protocol with field size q.

Proof. The theorem follows directly from the discussion
above and Lemma 2. Initially every non-zero vector ~µ ∈ Fkq
is known to at least one node, namely the one that knows
about the ith message, where i is a non-zero component of ~µ.
Whenever the network and communication model dictates
that a node u that knows ~µ sends a message to a node v,
Lemma 2 shows that with probability 1 − 1/q the node v
afterwards knows ~µ. Therefore, the spreading of each vector

295

~µ behaves like a faulty flooding process that floods ~µ in
every transmission with probability 1− 1/q. By assumption
we have that after t time steps every vector from Fkq fails to

spread to all nodes with probability at most δq−k. Taking a
union bound over all qk vectors gives the guarantee that the
probability that after t rounds all nodes know all vectors is
at least 1− δ. According to Lemma 2 all nodes can decode
in this case and have learned the k messages.

4.3 A Typical Template
Next, we give a typical and easy way to apply Theorem 3.

We show that, even for q = 2 the time for one vector ~µ to
spread is often dominated by a negative binomial distribu-
tion NB(T, 1 − p), where T is the expected time to spread
one message, and p is a constant probability. Such a distri-
bution has a strong enough tail to prove optimal O(T + k)
stopping times. In what follows we give a simple template
for this argument:

What is needed for this template is a definition of a “suc-
cessful round”, such that at most T such rounds are needed
to spread a single vector ~µ and such that a round is not a
success with probability at most p. The appropriate defini-
tion of success depends on the network model and is usually
centered around how many additional nodes come to know
the vector in a “good round”.

Since nodes do not forget any information, this spread-
ing process is monotone, i.e., no progress gets lost in a bad
round. Thus, if the knowledge about ~µ has not spread af-
ter t = c(k + T + log δ−1) steps, then there were at least
c(k + T + log δ−1) − T > (c − 1)(k + T + log δ−1) failures,
whereas one would only expect pc(k + T + log δ−1). If we
choose the constant c large enough, a standard Chernoff
bound implies that the probability for this to happen is at

most 2−O(k+T+log δ−1). This is small enough that, after a
union bound over all qk vectors (e.g., for q = 2), the proba-
bility that all k messages have not spread is at most δ.

This is usually all that is needed to prove order optimal
O(k + T) stopping times. It also shows that we actually
obtain high probability results. In particular as shown here,
an additive Θ(log δ−1) additional rounds typically suffices to
obtain a 1− δ success probability for any δ > 0. This strong
and optimal guarantee is (up to some scaling) true for all
our results, even so we do not state it explicitly for sake of
simplicity.

5. NETWORK MODEL FRAMEWORK
In this section, we elaborate on our network model frame-

work that encompasses and extends the models suggested
in the literature so far. The models and the results can be
easily extended further; we chose the following framework
as a trade-off between simplicity and generality.

The Network:
We consider networks that consist of n nodes. A network
is specified by a (directed) graph G(t) on these nodes for
every time t. Edges in G(t) are links and present potential
communication connections between two nodes in round t.

(Adversarial) Dynamics:
In all previous papers that analyzed the RLNC algorithm,
the network topology was assumed to be static, i.e., ∀t :
G(t) = G. As discussed in the introduction, we allow the

network topology to change completely from round to round
and allow a fully adaptive adversary to choose the network.
Because we are dealing with randomized protocols, we have
to specify precisely what the adversary is allowed to adapt
to. In our models (similar to [27]) an adaptive adversary
gets to know the complete network state and all previously
used randomness when choosing the topology. After that,
independent randomness is used to determine the communi-
cation behavior and the messages of the nodes on this topol-
ogy. The last assumption is not essential; in further work
of the author [17] it was shown that, for a large enough q,
the analysis presented here works even against omniscient
adversaries, that get to know all randomness used for the
coding coefficients in advance.

The Goal: Gossip:
Distributed over the network are k messages, each with a
unique index from 1, . . . , k. Each message is initially known
to at least one node. Throughout this paper, we assume a
worst-case starting configuration for all messages, including
the case in which all messages are exclusively known to only
one node (see also Section 7.1). The goal of gossip protocols
is to make all messages known to all nodes in the network
using as little time as possible (in expectation and with high
probability).

Communication:
Nodes communicate along links during transactions that are
atomic in time. In each round, one packet is transmitted
over a link, if this link is activated in this round. From the
view of a node there are four commonly considered types of
connections. Either a node sends to all its neighbors, which
is usually referred to as BROADCAST, or it establishes a
connection to one (e.g., uniformly random) neighbor and
sends (PUSH) or receives (PULL) a message or both (EX-
CHANGE). In all cases, the packet is chosen without the
sender knowing which node(s) will receive it.

Message and Packet Size:
As described in Section 3, we assume that all messages and
packets have the same size, and that a packet exactly con-
tains one encoded message and its RLNC-coefficients. Note
that the restriction on the message size is without loss of
generality, since one can always cut a big message into mul-
tiple messages that fit into a packet. We also assume that
the message size is large enough that the size of the RLNC-
coefficients that are sent along is negligible, i.e., l� k. This
assumption was made by all previous work and is justified
by simulations and implementations in which the overhead
is only a small fraction (e.g., < 1% [8]) of the packet size.

Synchronous versus Asynchronous Communication:
We consider two types of timing models. In the synchronous
case, all nodes get activated at the same time, choose their
messages independently, and messages get delivered accord-
ing to the current network G(t) and who sends and receives
from whom. Note that this model is inherently discrete, and
we assume that t = 1, 2, . . . are the times when nodes com-
municate. For the asynchronous case, we assume that every
node communication is triggered independently by a Pois-
son clock, which implies (with probability one) that at most
one node sends its message at any time. This model can be
directly translated into a discrete time model that defines
round i as the ith time such a communication takes place.
The model considered in the literature so far assumes that

296

every node is activated uniformly at random to communi-
cate and then chooses a uniformly random neighbor for a
PUSH, PULL or EXCHANGE. They also scale the time in
the asynchronous model by a factor of 1/n so that each node
gets activated once per time unit in expectation. We do not
assume uniformity in either of the two distributions, and we
present results for this more general model in Section 6.2.

6. APPLICATIONS AND RESULTS
In this section we take the models from Section 5 and

describe the results that can be obtained for them using the
projection analysis technique. There is a section for each
communication model. We concentrate on showing simple
proofs that solely use the template from Section 4.3. In
Section 7, we revisit the models covered here and discuss
some proof extensions.

6.1 Random Phone Call Model
We first consider the paper [8] by Deb and Médard and

the follow-up [9, 10] and show how to simplify and improve
the analysis. The papers use a fairly simple model from
our framework, namely the synchronous PUSH or PULL
model on the complete graph, i.e., G(t) = Kn. This means
in each round each node picks a random other node to ex-
change information with. This model is also known as the
random phone call model and was introduced by [11]. It
is shown in [8] that it is possible in this model to spread
k = Θ(n) messages in O(n) time if q = n. This beats the
O(n logn) time of n sequential O(logn)-phases of flooding
just one message (see also [12] for a different non-coding
approach to this problem). The follow-up papers [9,10] gen-
eralize this result to smaller number of messages k and allow
q to be as small as k. They show that the running time of
the algorithm is t = O(k+

√
k log k logn), i.e., order optimal

as long as k ≥ log2+ε n for any ε > 0. In order to prove this
result, they have to assume that each node knows initially
only one message and that initially the messages are equally
spread. Even with these assumptions the analysis is long
and complicated and the authors state themselves in their
abstract that “While the asymptotic results might sound
believable, owing to the distributed nature of the system,
a rigorous derivation poses quite a few technical challenges
and requires careful modeling and analysis of an appropriate
time-varying Bernoulli process.”

Our next lemma shows that RLNC gossip actually fin-
ishes with high probability in order optimal stopping time
O(k + logn). Our analysis is much simpler and has many
further advantages: It holds for all choices of k and allows
q to be as small as 2. The proof is (almost) the same for all
communication models while two completely separate proofs
for the PUSH and the PULL protocol were given in previous
works. Furthermore, our proof does not rely on any assump-
tions on the initial message distribution. This is important
since we show in Section 7.2, that the well-mixed initial state
assumed in [8–10] actually provably speeds up the stopping
time compared to the worst-cast distribution for which our
result holds. Our proof gives a success probability of 1− 2t

if the algorithm runs for O(t) time. In the setting of [8] with
k = n, this is 1 − 2−n instead of the 1 − 1/n stated there.
Lastly, it is interesting to note that later, more general ap-
proaches like [4] and [30] were unable to prove any running
time that beats the simple non-coding O(n logn) sequential

flooding approach when applied to the complete graph ([4]
even gives only a O(n2) convergence time).

Lemma 4. RLNC gossip in the random phone call model
with q = 2 spreads k messages in O(k + logn) time with
high probability. This holds independently from the initial
distribution of the messages and of the communication model
(e.g., PUSH, PULL, EXCHANGE).

Proof. We use the template from Section 4.3: For this
we fix a coefficient vector ~µ and define a round as successful
if the number of nodes that know it increases by at least
a constant factor λ > 1 or if the number of nodes that do
not know ~µ decreases by a factor of λ. There are at most
O(logn) successful rounds needed until at least n/2 nodes
know ~µ and at most another O(logn) successful rounds until
all nodes know ~µ. It remains to be shown that each round
succeeds with constant probability.

We first consider the PULL model. At first we have i <
n/2 nodes that know ~µ and at least n/2 nodes pulling for it.
Each of those nodes has a probability of i/n to hit a knowing
node. We expect a i/n fraction of the ignorant nodes, i.e.,
at least i/2 nodes, to receive a packet from a node that
knows about ~µ. The independence of these successes and
Lemma 2 prove that with constant probability at least Ω(i)
nodes learn about ~µ. Once there are at least n/2 nodes
that know ~µ, each of the ignorant nodes pulls a packet from
a knowing node with probability at least 1/2 and applying
Lemma 2 again finishes this case, too.

The proof for the PUSH model is similar. If there are
i < n/2 nodes that know ~µ and push out a packet, then
there are at least n/2 ignorant nodes that each receive at
least one packet from one of the i nodes with probability
1 − (1 − 1/n)i. It is not hard to see that, in total, Ω(i)
ignorant nodes receive a packet from a node that knows ~µ
with constant probability. Lemma 2 now guarantees that,
with constant probability, the number of ignorant nodes that
learn ~µ is only a small factor smaller. Once there are n/2
nodes knowing ~µ and each of these pushes out, each node
that does not know ~µ has a chance of (1 − 1/n)n/2 ≈ e−2

per round to receive a packet from a node that knows ~µ.
Applying Lemma 2 again finishes the proof.

6.2 Asynchronous Single Transfer Protocols
After the helpfulness of RLNC gossip was established for

the complete graph by [8], the papers [30], [31] and [4] gen-
eralized it to general static topologies and consider asyn-
chronous and synchronous PUSH, PULL and EXCHANGE
gossip. In this section we first review the previous results
and than show how to improve over them giving an exact
characterization of the stopping time or RLNC gossip for
k = n messages using the template of Section 4.3.

The paper “Information Dissemination via Network Cod-
ing” [30] by Mosk-Aoyama and Shah was the first to consider
general topologies. They consider a similarly general version
of the synchronous and asynchronous gossip as presented
here and analyze the stopping times for k = n in depen-
dence on the conductance. Their analysis implies that with
high probability O(n logn) phases of n asynchronous rounds
suffice for the complete graph and constant degree expanders
and O(n2) such phases for the ring-graph. While the anal-
ysis is very interesting, these results do not beat the simple
(non-coding) sequential flooding protocol and the stopping

297

time of the ring-graph and many other graphs is even off
by a factor of n. Their running times for the synchronous
model are similar but loose another log n-factor. Their de-
pendence is on the success probability 1 − δ is furthermore
multiplicative in log δ−1 because it stems from a standard
probability amplification argument.

More recently, [31] and the paper “Tight bounds on Alge-
braic Gossip on Arbitrary Graphs” [4] also analyzed RLNC
gossip using two completely different approaches. The au-
thors of [4] point out that the analysis of [31] is flawed and
prove that the asynchronous RLNC gossip on a network with
maximum degree ∆ takes with high probabilityO(∆n2) time
(using the scaling of time used in this paper). Their proof
uses an interesting reduction to networks of queues and ap-
plies Jackson’s theorem. They also give a tight analysis and
lower bounds for a few special graphs with interesting be-
havior (see below). While their analysis is exact for few se-
lected graphs the analysis is far from tight; in most graphs
the maximum degree has nothing to do with the stopping
time of RLNC gossip. The major question asked in [4] is to
find a characterizing property of the graph that determines
the stopping time.

We give such a characterization for the asynchronous case
with k = n assuming a worst-cast message initialization.
The model we use is a generalization of the classical PUSH,
PULL and EXCHANGE model: We allow the topology in
every round to be specified by a graph with directed and/or
undirected edges and a probability weight pe on every edge
e, such that the sum over all edges is at most 1. In every
round each edge gets exclusively selected with probability
pe, i.e., in each round at most one edge gets selected. If
the edge is undirected an EXCHANGE is performed and if
a directed edge gets activated a packet is delivered in the
direction of the edge. Note that this model is a generaliza-
tion of the “classical” communication models. To obtain the
probability graph from an undirected network with PUSH or
PULL, one just has to replace every undirected edge {u, v}
by two directed edges with probability weight 1

n∆u
and 1

n∆v
,

where ∆u and ∆v are the degrees of u and v respectively.
To obtain the EXCHANGE protocol each undirected edge
{u, v} simply has the probability weight 1

n∆u
+ 1

n∆v
.

Given such a network graph G with probability weights
pe we define the min-cut γ(G) as:

γ(G) = min
∅6=S⊂V

∑
e∈Γ+

G
(S)

pe,

where Γ+
G(S) are all edges leaving a non-empty vertex-subset

S ⊂ V in G. The next two lemmas show that this quantity
exactly captures how long the RLNC gossip takes to spread
n messages.

Lemma 5. If for every time t the min-cut of G(t) is at
least γ then the asynchronous single transfer algorithm with
q = 2 spreads n messages with probability at least 1 − 2−n

in O(n
γ

) time.

Proof. Our proof proceeds along the lines of the simple
template from Section 4.3 and concentrates on the spreading
of one coefficient vector ~µ. We define a round as a success
if and only if one more node learns about ~µ. It is clear
that exactly n successes are needed. From the definition of
γ and Lemma 2 follows that each round is successful with
probability at least γ(1− 1/q). Thus, if we run the protocol

for t = cn
(1−1/q)γ

rounds we expect at least cn successes,

where c is a constant greater than 1. A standard Chernoff
bound implies that the probability that we get less than n
is at most 2−O(n). If we choose c appropriately this is small
enough to end up with 2−n after taking the union bound
over the qk = 2n vectors.

The next lemma proves that the O(n
γ

) bound is optimal.

Lemma 6. With high probability, the asynchronous single
transfer algorithm takes exactly Θ(n

γ
) rounds to spread n

messages if it is used on any fixed graph G with min-cut
γ(G) on which at least Θ(n) messages are initialized inside
this cut.

Proof. In each round, at most one packet can cross the
min-cut. For this to happen, an edge going out of the cut
has to be selected and the probability for this is by definition
exactly γ. In order to be able to decode the Θ(n) messages
at least Θ(n) packets have to cross the cut, each taking in
expectationO(1

γ
) rounds. A standard Chernoff bound shows

that it takes with high probability at least Ω(n
γ

) rounds until

Θ(n) packets have crossed the cut. This proves the lower
bound and Lemma 5 gives the matching upper bound.

Applying Lemma 5 to the standard PUSH/PULL model
gives a O(∆n2) stopping time for any connected static or
dynamic graph whose maximum degree is bounded by ∆.
Restricted to the static case, this is the main result of [4]. It
also givesO(n2) for the complete graph (instead of theO(n3)
of [4]) and nicely explains the behavior of the barbel graph
and the extended barbel-graph that were considered by [4].
The proof of Lemma 5 can furthermore easily be extended to
show that the dependency on the success probability is only
logarithmic and additive in contrast to both [30] and [4].

6.3 BROADCAST
In this section we give stopping times for synchronous and

asynchronous BROADCAST protocols in arbitrary dynamic
networks. These are to our knowledge the first results for
the RLNC algorithm in such a setting. We think the results
in this section are of particular interest for highly dynamic
networks because many of the unstable or dynamic networks
that occur in practice, like ad-hoc-, vehicular- or sensor-
networks, are wireless and thus have an inherent broadcast-
ing behavior.

To fix a model, we first consider the simple synchronous
broadcast model. We assume without loss of generality that
the network graph G is directed because any undirected edge
can be replaced by two directed, anti-parallel edges. Having
wireless networks in mind, we also assume that in each round
each nodes computes only one packet which is then send out
to all neighbors. Our results also hold for the easier but less
realistic model where nodes send out a different packet to
each neighbor.

The parameter that governs the time to spread one mes-
sage in a static setting is (not surprisingly) the diameter D
and it is easy to prove Θ(D + k) stopping times for k mes-
sages using the projection analysis. In a dynamic setting
this is not true. Even for just one message, an adaptive
adversary can, for example, always connect both the set of
nodes that know it and the set of nodes that do not know it
to a clique and connect the two cliques by one edge. Even

298

though the graph G(t) has diameter 3 at all times, it clearly
takes at least n rounds to spread one message. In order to
prove stopping times in the adaptive adversaries model we
switch to a parameter that indirectly gives a good upper-
bound on the diameter for many graphs. The parameter we
use is the isoperimetric number h(G), which measures the
“node expansion” of a graph as follows:

h(G) := min
S⊆V

|N+
G (S)|

min(|S|, |S|)
,

where N+
G (S) are the nodes in G outside of the subset S

that are in the directed neighborhood of S.
To give a few example values: for disconnected graphs

h(G) is zero and for connected graphs it ranges between 1
and 2

n
; for a k-vertex-connected graph G we have h(G) =

Ω(k
n

) and h(G) = Θ(1) holds if and only if G is a vertex-
expander (or a complete graph).

We are going to show that the expected time for one mes-

sage to be broadcast is at most T = log(nh(G))
h(G)

. This is O(n)

for a line or cycle, O(n log k
k

) for a k-vertex-connected graph,
and O(logn) for any vertex-expander. Our bound is tight
in the sense that for any value h with 1 ≥ h ≥ 2

n
there is a

static graph G that has diameter at least O(T) and isoperi-
metric number h(G) = Θ(h). Having an upper bound on
the time T it takes to spread one message we again prove a
perfectly pipelined time of O(T + k) for k messages:

Lemma 7. With high probability the synchronous broad-

cast gossip protocol takes at most O(log(nh)
h

+ k) rounds to
spread k messages as long as the isoperimetric number of
the graph G(t) is at least h at every time t.

Proof. We use the simple template from Section 4.3 and
concentrate on the spreading of one coefficient vector ~µ. We
define a round to be a success if and only if the number of
nodes that know ~µ grows at least by a h

7
fraction or if the

number of nodes that do not know ~µ shrinks at least by the
same factor.
We want to argue that at most T = O(log(nh)

h
) successes

are needed to spread ~µ completely. Note that this is slightly
better than the straight forward (1 + h

7
)T ≥ n bound that

would lead to T = O(log(n)
h

). The improvement comes from
exploiting the fact that the number of nodes that learn is an
integral quantity: In the first 7

h
successful rounds at least

one node learns about ~µ. The next 7
2h

successful rounds at

least 2 nodes learn about ~µ and the following 7
3h

successful

rounds it is 3 new nodes and so on. There are n
2
·
(

7
h

)−1

such phases until at least n/2 nodes know ~µ. The downward
progression than follows by symmetry. The total number of
successes sums up to:

T ≤ 2
7

h

O(nh)∑
i=1

1

i
= O(

lognh

h
).

To finish the proof, we show that every round has a con-
stant success probability. This follows from Lemma 2 if for
a success only one node is supposed to learn about ~µ. If at
least die ≥ 2 nodes are supposed to learn then by the defi-
nition of a success and of h(G(t)) there are k ≥ d7ie ≥ 4die
nodes on the knowledge cut, i.e., at least k nodes that do
not know ~µ are connected to a node that knows about ~µ.
We invoke Lemma 2 again to see that each of these nodes

fails to learn about ~µ with probability at most 1/q ≤ 1/2.
Finally, Markov’s inequality gives that the probability that
more than k − die ≥ 3

4
k nodes fail to learn ~µ is at most

2/3. A round is therefore successful with probability at least
1/3.

A similar result to Lemma 7 can be proven for the asyn-
chronous BROADCAST model in which at every round each
node gets selected uniformly independently at random (i.e.,
with probability 1

n
) to broadcast its packet to its neighbors:

Lemma 8. With high probability the asynchronous broad-

cast gossip protocol takes at most O(n · (log(nh)
h

+ k)) rounds
to spread k messages as long as the isoperimetric number of
the graph G(t) is at least h at every time t.

7. EXTENSIONS
In this section we discuss how the simple proofs from Sec-

tion 6 that use only the template from Section 4.3 can be
extended to give more detailed or sharper bounds.

7.1 Exploiting a Well-Mixed Message Initial-
ization

As stated in Section 5 we assume throughout the paper
that k messages are to be spread that are initially distributed
in a worst-case fashion. All earlier papers restricted them-
selves to the easier special case that k = n and that each
node initially holds exactly one message [4, 30], or that k is
arbitrary but the network starts in a similarly well-mixed
state in which each message is known by a different node
and all messages are equally spread over the network [10].
In many cases the worst-case and any well-mixed initializa-
tion take equally long to converge because the running time
is lower bounded and bottlenecked by the flooding time T for
a single message or the time it takes for a node to receive at
least k packets. Nevertheless, there are cases where a well-
mixed initialization can drastically improve performance.

Our proof technique explains this and we give a simple
way to exploit assumptions about well-mixed initializations
to prove stronger performance guarantees: If, e.g., each node
initially holds exactly one of k = n messages then most vec-
tors ~µ are already known to most nodes initially. More pre-
cisely exactly the

(
n
i

)
(q−1)i vectors with i non-zero compo-

nents are initially known to exactly i nodes. With many vec-
tors already widely spread initially the union bound over the
failure probabilities for all vectors to spread after t rounds
can decrease significantly. Taking the different quantities
and probabilities for nodes that are initially known to a cer-
tain number of nodes in account one can prove in theses
cases that a smaller t suffices.

One example for a mixed initialization being advantageous
is discussed in Section 7.2. Another one is the convergence
time of the asynchronous PUSH and PULL protocol on the
star-graph: For both PUSH and PULL the network induced
by the star-graph has a min-cut of 1/n2 which leads accord-
ing to Lemma 5 and 6 to a stopping time of Θ(n3) under
a worst-case initialization. The corresponding lower bound
from Lemma 6, which relates the convergence time to the
min-cut of the network graph, has to assume that at least
a constant fraction of the messages are initialized inside a
bad cut. For the “classical” initialization in which each node

299

starts with exactly one message this is true for the PUSH
model but not in the PULL model in which every bad cut
only contains few messages. Indeed assuming a well-mixed
initialization the PUSH protocol still takes Θ(n3) time to
while a much lower Θ(n2 logn) stopping time for the PULL
model can be easily derived using the projection analysis.

7.2 Exact Dependence on k

In many (highly connected) networks the spreading time
T for one message is short and O(k) becomes the dominant
term in the order optimal O(k+T)-type upper bounds pre-
sented in this paper. So is, for example, T = O(logn) for
most expanding networks. While it is clear that at least k
packets need to be received at each node it becomes an in-
teresting question how large the constant factor hidden by
the O-notation is. Differently stated, we ask how large the
fraction of helpful or innovative packets received by a node
is over the execution of the protocol.

Determining and even more optimizing proofs to obtain
such constants is usually a big hassle or even infeasible due to
involved proofs. In those cases simulation is used in practice
to get a good estimation of the constants (e.g., [10]). Our
method is simple enough that it is often possible to prove
(optimal) constants (and lower order terms). All that is
needed is to replace the Chernoff bound in the template from
Section 4.3 by an argument that gives the correct base in the
exponential tail-bound. In many cases one can show that
this constant is arbitrarily close to the optimal constant one,
i.e., we get t = k + O(T) stopping times. We demonstrate
this on the synchronous BROADCAST from Section 6.3:

Lemma 9. With high probability the synchronous broad-
cast gossip protocol that uses logarithmic size coding coeffi-
cients, i.e., log q = Ω(log n), takes at most k+O(T) rounds

to spread k messages, where T = log(nh)
h

if the isoperimetric
number of the graph G(t) is at least h at any time t.

For the proof of Lemma 9 we need the following proposi-
tion:

Proposition 10. Let X1, X2, . . . , Xl be i.i.d. Bernoulli
variables with probability P (X1 = 0) = p ≤ 1

2
. The probabil-

ity that a positively weighted sum of the variables is at most
1
4

its expectation is at most p, i.e.:

∀w1, . . . , wl > 0 : P (
∑
j

wjXj ≤
1

4
(1− p)

∑
j

wj) ≤ p.

Proof. We first scale the weights such that
∑
j wj = 1

and than use the second moment method:

P

(∑
j

wj Xj ≤ 1

4
(1− p)

)

= P

(∑
j

wj(1−Xj)− p
∑
j

wj ≥ 1− 1

4
(1− p)− p

)

= P

((∑
j

wj(1−Xj)− p
∑
j

wj

)2

≥ 9

16
(1− p)2

)

Now the left-hand side is the variance of a weighted sum of
i.i.d. Bernoulli variables with probability 1− p, and as such

its expectation is exactly
∑
j w

2
j (1 − p)p. Using Markov’s

inequality on this expectation, we get that the probability
we want to bound is at most:(∑

j

w2
j (1− p)p

)(
9

16
(1− p)2

)−1

=
16

9

p

1− p
∑
j

w2
j

≤ 16

9
· 2p · 1/4 ≤ p.

The last transformation holds because 1 − p ≥ 1/2 and be-
cause we can assume that all weights are at most 1/4. This
is true because if there is a wi ≥ 1/4 then already Xi = 1
leads to an outcome of at least one fourth of the expectation
and the probability for this to happen is p.

Proof of Lemma 9 (Sketch). We modify the proof of
Lemma 7 only in the way that we use a slightly more precise
tail bound, namely that the probability that after t = k +
O(T) independent trials there are less than T successes is
at most pk, where p is the failure probability (as long as
− log p ≥ Ω(log t)). To see this, we pick t = k − (T +
1) log t/ log p+ T and get that

pk = pt−T tT+1 >

t∑
i=t−T

(
t

t− i

)
pi(1− p)t−i,

which is exactly the probability for having at least t − T
failures in t rounds.

We keep the same definition of success as in the proof of
Lemma 7 but prove that the success probability of a round
is at least 1− 1/q, instead of 1/4 as in Lemma 7:

If only one node is supposed to learn for a success, this is
again clear by Lemma 2. If at least die nodes are needed to
a success, we know also, by the definition of a success, that
at least 4die nodes that do not know ~µ are connected to a
node that knows about it. We assign each ignorant node to
exactly one node that knows about ~µ, breaking ties arbitrar-
ily. Now, according to Lemma 2, with probability 1 − 1/q
each such node independently sends out a message that is
not perpendicular to ~µ. In this case all ignorant nodes con-
nected to it learn ~µ. We can now directly apply Lemma 10
and obtain that we indeed have a success probability of at
least 1− 1/q per round. This finishes the proof.

Another interesting case, that was considered in [10], is
the Rumor Mongering process from Section 6.1. The au-
thors of [10] give a theoretical analysis in the regime where
the O(k) term clearly dominates and prove an upper bound
of 3.46k for the PUSH protocol and 5.96k for the PULL
model. They also simulated the protocol and estimated the
stopping time to be 1.5k+log2 n. Both their analytic bounds
and the simulation assume that messages start out in sepa-
rate nodes and are equally spread over the network (see also
Section 7.1).

The projection analysis technique can be used to prove an
upper bound of 1.82462135k for the PULL model (even for
q = 2) starting from a worst-case initialization. On the other
hand, we have a lower bound showing that a leading constant
of 1.58197671k is best possible in this case. Interestingly,
if one assumes that messages start out in separate nodes,
we can use the techniques from Section 7.1 to prove that
the PULL model achieves the optimal constant 1. More
extensive simulation results than the ones in [10] confirm
that the constant for the dependency on k should indeed be
smaller than the projected 1.5k.

300

7.3 Asynchronous Single Transfer Protocols
with Few Messages

Section 6.2 proves convergence times for spreading k = n
messages using the asynchronous single transfer protocols.
These bounds are tight and directly extend to a Θ(k

γ
) bound

for k = Ω(n) messages. In what follows, we want to gen-
eralize this to smaller number of messages and discuss the
bounds that can be obtained using the projection analysis
technique.

For small number of messages, e.g., k = 1, the convergence
time of RLNC single transfer gossip can be much faster than
O(n

γ
) but still be ω(k

γ
). This shows that the min-cut γ is

not the right quantity to look at in this scenario. Again, as
in Section 6.3, conductance quantities capture much better
how fast a small number of messages spreads. The quantity
we consider is:

λ(G) = min
S⊂V

∑
e∈out(S) pe

min(|S|, |S|)

It is easy to see that it takes at most T = O(logn
λ

) time
for one message to spread if the conductance is bounded by
λ at every time t. This is a tight bound for many regular
graphs and gives, e.g., a convergence time of Θ(n logn) for
the complete graph or any other regular expanders. The
other lower bound that kicks in for large enough k is the
Ω(k

γ
) lower bound from Lemma 6.

Similar to the results for the other models we can show
that essentially the total running time is either dominated
by the T = logn

λ
rounds to spread one message or for larger

number of messages k the O(k
γ

) rounds coming from the
communication lower bound that the k messages have to
cross the worst case cut. The exact statement that is proven
in the full version of this paper has an additional log n factor
and is also obtained by a simple analysis of the tail proba-
bility for the spreading time of vector ~µ. This probability is
dominated by a sum of negative binomial random variables
with increasing success probability and we suspect that us-
ing a tighter tail bound for this sum should get rid of the
extra logn-factor:

Lemma 11. With high probability disseminating k mes-
sages in the asynchronous single transfer model with q = 2

takes at most t = O(k
γ

+ log2 n
λ

) rounds, if the graph G has a
min-cut of at most γ and a conductance of at least λ at all
times t.

7.4 Weaker Connectivity Requirements
The idea behind proving performances in the extremely

strong and pessimistic adaptive adversarial model used in
this paper is that the guarantees directly extend to the
widest possible range of dynamic networks, including ran-
dom models. Most of our proofs, like the ones of Lemma 5,
7 or 8, demand that the network graph G(t) has a certain
connectivity requirement at any time t. These requirements
might be slightly too strong for random network models. In
the following we briefly discuss how these requirements can
be easily weakened in many ways:

The simple fact that no progress in the spreading of knowl-
edge gets lost, makes it easy to deal with the case that
the connectivity fluctuates (e.g., randomly). Increasing the
stopping time by a constant factor easily accounts for models

in which the desired connectivity occurs only occasionally or
with constant probability. Looking at the average connec-
tivity is another possibility. It is furthermore not necessary
to require the entire graph to be expanding on average but it
suffices to demand that each subset expands on average with
constant probability according to its size. This way, con-
vergence can be proven even for always disconnected graphs
(see also [19]). In many models it is furthermore possible and
helpful to consider the union of the network graphs of con-
secutive rounds, i.e., G′(t) = G(3t′)∪G(3t′ + 1)∪G(3t′ + 2).

We demonstrate the usefulness of these ideas on a small
example, namely, an alternative way to prove Lemma 4: In-
stead of analyzing the random phone call model as a gos-
sip process on the complete graph one can alternatively see
it as a synchronous BROADCAST on a random network.
The network graph G(t) is in this case simply formed by
a random directed in-edge, directed out-edge or undirected
edge at each node, depending on whether the PUSH, PULL
or EXCHANGE model is used. For these random topolo-
gies G(t) Lemma 7 will not directly give any stopping time
bound, simply because the network graph G(t) is with high
probability disconnected. Using either of the two ideas intro-
duced above solves this problem: with constant probability
every set has a constant expansion; alternatively one can use
that the union of a constant number of rounds forms most
likely with an expander.

8. CONCLUSIONS
We introduced the projection analysis technique as a new

way to analyze (gossip) protocols based on random linear
network coding. Our analysis drastically simplifies, extends
and strengthens previous results. In all settings considered
in this paper we prove that the RLNC gossip spreads mes-
sages in a perfectly pipelined manner and stops with high
probability in optimal time. As most notable extension all
our results hold in highly dynamic networks that are con-
trolled by a fully adaptive adversary.

Theorem 3 gives a direct way to transfer results for a
single-message gossip process to the corresponding multi-
message RLNC gossip process, given that strong enough tail
bounds are provided. One candidate for which this could
be [5], which can be interpreted as giving bounds on a syn-
chronous single transfer gossip for one message. Other in-
teresting candidates are the stationary Markovian evolving
graphs studied in [7].

The projection analysis technique is quite simple and flex-
ible and we expect that it has more applications and exten-
sions. Since the initial submission of this paper the author,
in collaboration with Karger, Médard, and Kim, demon-
strated some of these: among other things, [17] shows that
RLNC, with a large enough q, continues to work optimally
against omniscient adversaries. This also leads to a (non-
uniform) derandomization. [19] uses the projection technique
to show that optimal stopping times are preserved if nodes
keep only one instead of all packets for further coding pur-
poses. Lastly, [18] shows, using techniques based on [21],
that in any model with an oblivious adversary RLNC stops
in exactly optimal time, i.e., when there is enough connec-
tivity in the time-expanded graph. This implies that the
projection technique can be seen as proving tight bounds on
the connectivity of many network models, an important but
usually very challenging task.

301

Acknowledgments
The author wants to thank Jon Kelner for his support and
helpful discussions. He also wants to thank David Karger,
Chen Avin, Muriel Médard and the anonymous reviewers.

9. REFERENCES
[1] D. Agrawal, A. El Abbadi, and R. C. Steinke.

Epidemic algorithms in replicated databases (extended
abstract). In Proc. of the 16th Symposium on
Principles of Database Systems (PODS), pages
161–172, 1997.

[2] R. Ahlswede, N. Cai, S. Li, and R. Yeung. Network
information flow. Transactions on Information Theory
(TransInf), 46(4):1204–1216, 2000.

[3] J. Aspnes and E. Ruppert. An introduction to
population protocols. Middleware for Network
Eccentric and Mobile Applications, pages 97–120,
2009.

[4] M. Borokhovich, C. Avin, and Z. Lotker. Tight
Bounds for Algebraic Gossip on Graphs. In Proc. of
the Int’l Symposium on Information Theory (ISIT),
pages 1758–1762, 2010.

[5] F. Chierichetti, S. Lattanzi, and A. Panconesi. Almost
tight bounds for rumour spreading with conductance.
In Proc. of the 42nd Symposium on Theory of
Computing (STOC), pages 399–408, 2010.

[6] P. Chou, Y. Wu, and K. Jain. Practical network
coding. In Proc. of the 41st Allerton Conference on
Communication Control and Computing, pages 40–49,
2003.

[7] A. Clementi, A. Monti, F. Pasquale, and R. Silvestri.
Information spreading in stationary Markovian
evolving graphs. In Proc. of the Int’l Symposium on
Parallel & Distributed Processing (IPDPS), pages
1–12, 2009.

[8] S. Deb and M. Médard. Algebraic gossip: a network
coding approach to optimal multiple rumor
mongering. In Proc. of the 42rd Allerton Conference
on Communication, Control, and Computing, 2004.

[9] S. Deb, M. Médard, and C. Choute. On random
network coding based information dissemination. In
Proc. of the Int’l Symposium on Information Theory
(ISIT), pages 278 –282, 2005.

[10] S. Deb, M. Médard, and C. Choute. Algebraic gossip:
a network coding approach to optimal multiple rumor
mongering. Transactions on Information Theory
(TransInf), 52(6):2486 – 2507, 2006.

[11] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database
maintenance. In Proc. of the 6th Symposium on
Principles of Distributed Computing (PODC), pages
1–12, 1987.

[12] Y. Fernandess and D. Malkhi. On collaborative
content distribution using multi-message gossip.
Journal of Parallel and Distributed Computing,
67(12):1232–1239, 2007.

[13] C. Fragouli, J. Le Boudec, and J. Widmer. Network
Coding: An Instant Primer. Computer
Communication Review, 36(1):63, 2006.

[14] C. Fragouli, J. Widmer, and J.-Y. Le Boudec. Efficient

broadcasting using network coding. Transactions on
Networking (TON), 16(2):450–463, 2008.

[15] C. Gkantsidis and P. Rodriguez. Network coding for
large scale content distribution. In Proc. of the 24th
Int’l Conference on Computer Communications
(INFOCOM), volume 4, pages 2235–2245, 2005.

[16] Z. J. Haas, J. Y. Halpern, and L. Li. Gossip-based ad
hoc routing. Transactions on Networking (TON),
14(3):479–491, 2006.

[17] B. Haeupler and D. Karger. Faster Information
Dissemination in Dynamic Networks. In Proc. of the
30th Symposium on Principles of Distributed
Computing (PODC), 2011.

[18] B. Haeupler, M. Kim, and M. Médard. Optimality of
Network Coding in Packet Networks.
ArXiv:1102.3569, 2011.

[19] B. Haeupler and M. Médard. One Packet Suffices -
Highly Efficient Packetized Network Coding With
Finite Memory. ArXiv:1102.3204, 2011.

[20] S. M. Hedetniemi, S. T. Hedetniemi, and A. L.
Liestman. A survey of gossiping and broadcasting in
communication networks. Networks, 18:319–349, 1988.

[21] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros,
J. Shi, and B. Leong. A random linear network coding
approach to multicast. Transactions on Information
Theory (TransInf), 52(10):4413–4430, 2006.

[22] R. Karp, C. Schindelhauer, S. Shenker, and
B. Vöcking. Randomized rumor spreading. In Proc. of
the 41st Symposium on Foundations of Computer
Science (FOCS), pages 565–574, 2000.

[23] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard,
and J. Crowcroft. XORs in the air: practical wireless
network coding. Transactions on Networking (TON),
16(3):497–510, 2008.

[24] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. In Proc. of the
44th Symposium on Foundations of Computer Science
(FOCS), pages 482–491, 2003.

[25] D. Kempe and J. Kleinberg. Protocols and
impossibility results for gossip-based communication
mechanisms. In Proc. of the 43rd Symposium on
Foundations of Computer Science (FOCS), pages
471–480, 2002.

[26] D. Kempe, J. Kleinberg, and A. Demers. Spatial
gossip and resource location protocols. Journal of the
ACM (JACM), 51(6):943–967, 2004.

[27] F. Kuhn, N. Lynch, and R. Oshman. Distributed
computation in dynamic networks. In Proc. of the
42nd Symposium on Theory of Computing (STOC),
pages 557–570, 2010.

[28] S. Li, R. Yeung, and N. Cai. Linear network coding.
Transactions on Information Theory (TransInf),
49(2):371–381, 2003.

[29] Y. Minski. Spreading rumors cheaply, quickly, and
reliably. PhD thesis, Cornell University, 2002.

[30] D. Mosk-Aoyama and D. Shah. Information
dissemination via network coding. In Proc. of the Int’l
Symposium on Information Theory (ISIT), pages
1748–1752, 2006.

[31] D. Vasudevan and S. Kudekar. Algebraic gossip on
Arbitrary Networks. ArXiv:0901.1444, 2009.

302

