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With the rapid development of Internet, especially the mobile Internet, the new applications or network attacks emerge in a high
rate in recent years. More and more tra�c becomes unknown due to the lack of protocol speci
cations about the newly emerging
applications. Automatic protocol reverse engineering is a promising solution for understanding this unknown tra�c and recovering
its protocol speci
cation. One challenge of protocol reverse engineering is to determine the length of protocol keywords and
message 
elds. Existing algorithms are designed to select the longest substrings as protocol keywords, which is an empirical way
to decide the length of protocol keywords. In this paper, we propose a novel approach to determine the optimal length of protocol
keywords and recover message formats of Internet protocols by maximizing the likelihood probability of message segmentation
and keyword selection. A hidden semi-Markov model is presented to model the protocol message format. An a�nity propagation
mechanism based clustering technique is introduced to determine the message type. �e proposed method is applied to identify
network tra�c and compare the results with existing algorithm.

1. Introduction

Network protocol speci
cations, describing the structure of
protocol messages and regulating the behaviors of commu-
nication entities on the Internet, play an important role
in addressing numbers of security or management ori-
ented issues in several domains of computer and network-
ing. For example, intrusion detection systems and 
rewall
systems require protocol speci
cations to perform deep
packet inspection. Security experts spy and understand the
speci
cation of command & control (C&C) protocols [1]
to detect and defend the botnets. Network management
administrators build up application signatures based on
protocol speci
cations to identify protocols and tunnels in
monitored network tra�c. Fuzz tests [2]make use of protocol
speci
cations to reduce the number of fault-inserted 
les
while still maintaining the maximum test case coverage. �e
protocol speci
cations are also powerful tools to enable the
interoperation betweenmultiple systems based on incompat-
ible protocols [3–5].

A complete speci
cation is referred to as both protocol
message format and protocol state machine. �e former
reveals the protocol syntax which conducts the process of
constructing di�erent types of messages to be exchanged
between communication entities, while the latter formulates
the behaviors of protocol entities during the whole process
of communication, such as the order in which di�erent types
of messages should be sent or received. For open protocols,
like HTTP and FTP, their speci
cations can be obtained by
means of accessing to the published documents. However,
for proprietary protocols used by enterprises or hackers, their
speci
cations would not be unpublished for commercial or
security reasons. To date, more and more new protocols and
mobile applications emerge every day due to the rapid devel-
opment of mobile Internet and unprecedented popularity
of smart phones [6]; network management administrators
need to know about the speci
cations of these protocols or
applications to monitor the network tra�c. However, there
is no public documentation about their speci
cations. Over
the past few years, researchers deem that the only available
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option to spy the speci
cation of proprietary protocol or new
emergingmobile applications is protocol reverse engineering.

Traditionally, protocol reverse engineering is performed
by manual analysis, which is time-consuming and error-
prone. For example, the Samba project has taken over 12
years to manually recover the speci
cation of SMB/CIFS [3].
In the Pidgin project [4], the Pidgin plug-ins have to be
patched when the target protocol is changed and the delay
between the protocol changes and working patches could be
months, caused by reverse engineering. In order to address
these problems, automatic protocol reverse engineering has
been proposed over the last decade and has become a heat
topic in research 
eld of network tra�c analysis.

Automatic protocol reverse engineering is a process of
recovering protocol message formats and inferring protocol
state machine without access to the speci
cation of target
protocol. Generally, automatic protocol reverse engineering
can be divided into network trace based approach and binary
analysis based approach. �e network trace based approach
takes captured network trace as input and reconstructs
message formats by identifying basic components, such
as message 
elds or protocol keywords, using techniques
introduced from the 
elds of data mining, bioinformatics,
nature language processing, and so on. �e binary analysis
based approach operates by observing how the executable
binary so�ware implementing the target protocol makes use
of the memory and registers during the runtime to process
the received messages or construct the sent message. �e
former approach is easy to deploy and relies only on the
network trace generated by the target protocol, while the
latter approach is useful for the scenarios where executable
binary so�ware is available and can be run in a control
environment.

In this paper, we focus on recovering themessage formats
from network trace using the network trace based approach.
Our goal is to identify the location of message 
elds and
determine the length of protocol keywords. �e message
format is comprised of message 
elds. Some 
elds (called
keyword 
elds) contain the protocol keywords. �e protocol
keywords are some constants or commands used by network
protocol. For example, “GET”, “HTTP”, and “POST” are
some protocol keywords used by HTTP protocol.

�e 
rst challenge in our research is to determine the
length of protocol keywords. Previous works [7–12] which
are based on longest common subsequence (LCS) criteria
select longest frequent substrings to be protocol keywords.
For example, if “G”, “E”, “T”, “GE”, “ET”, and “GET” are
frequent substrings, “GET” will be chosen as the protocol
keyword, since it is the longest substring. However, if the
frequency threshold is low enough, “GET abc” (“abc” is a
string that follows “GET”) will become a frequent string, so
“GET abc” will be chosen as protocol keyword, while the
true keyword “GET” would be dropped. �erefore, it is not
rational to simply choose the longest frequent substrings as
protocol keywords.

�e second challenge is to deal with binary protocols. It
is easy to de
ne and understand the protocol keywords that
bound themessage 
elds in text protocols which restrict their
content to printable ASCII characters. However, for binary

protocols, 
elds are prede
ned by the protocol speci
cations
to represent speci
c meanings instead of using the protocol
keywords as the preambles. Messages containing only 
xed-
length 
elds are not di�cult to recover. However, the com-
plexity will increase dramatically when the 
elds are variable
in length.

�e third challenge is to determine the location rela-
tionship of message 
elds. �e relationship of 
elds varies
from sequence to juxtaposition. For example, in the request
message of HTTP, the request method 
eld “GET” and the
HTTP version 
eld “HTTP/1.1” are of sequential relation,
which means that “GET” must occur in some location before
the position of “HTTP/1.1” and the location of the two 
elds
can not be exchanged, while some other 
elds, such as the
“Host” 
eld and the “Server” 
eld, are of juxtapositional
relation, which means that their locations can be exchanged
with each other.

In this paper, we apply a probabilistic model, hidden
semi-Markov model (HsMM) [13], to address the challenges
of our work. On the one hand, one can 
nd out the optimal
length of the protocol keyword with maximal likelihood
probability based on the HsMM. Obviously, the length of
keyword based on maximal likelihood probability is much
more reasonable and rigorous than those empiristic decisions
of choosing the longest frequent substrings. On the other
hand, the HsMM model is a probabilistic directed graph
(lattice). Each node in the lattice represents a state that can
emit various observations. �e states in the same longitude
are of sequential relation, while states in the same latitude
are of juxtapositional relation. �erefore, it is natural to use
HsMM to model the sequential and juxtapositional relation
of 
elds.

�e organization of this paper is as follows. In Section 2,
related work about protocol reverse engineering is studied. In
Section 3, a brief review of the concept and de
nition about
HsMM is illustrated. In Section 4, the proposed method
of modeling message format using HsMM is presented in
detail. In Section 5, the system architecture is presented and
some implementation issues are discussed. In Section 6, the
proposed method is evaluated and the experiment results are
shown. Finally, a conclusion is made in Section 7.

2. Related Work

Over the past few years, automatic protocol reverse engi-
neering has attracted tremendous research interest in both
research and industry 
eld of computer and networking
application. Numbers of works have been published to dis-
cuss and addressmany issues about the heat topic. Beddoe [7]
proposes to make use of algorithms widely used in the 
eld
of bioinformatics, that is, the sequence alignment algorithms
and phylogeny construction algorithm, to determine the
location and size of 
eld in each individual packet. Beddoe
presents his e�ort in the protocol informatics project and
implements his approach in Python to extract the longest
common subsequence (LCS) as message 
elds with constant
value. Kreibich and Crowcro� [8] introduce a novel variant
of the Jacobson-Vo algorithm [14] to compute the LCSs of
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input strings and employ a �exible gap-minimising algorithm
to improve the e�ciency and e�ectiveness of network tra�c
alignment. �e authors show that their method outperforms
the commonly used Smith-Waterman approach on a wide
range of network protocols. Both Beddoe [7] and Kreibich
and Crowcro� [8] aim to mine the commonalities of mes-
sages as the basic components of message formats based on
LCS, while our approach is to infer the location and length of
message 
elds based on the maximal likelihood probability.

Cui et al. present Discoverer [15] to recursively cluster
and align the token patterns of messages to infer protocol
message format idioms. Although Discoverer is practicable
to recover the protocol message formats of three selected
protocols, that is, HTTP, RPC, and SMB/CIFS, there are
still about 10% of the message formats that could not be
correctly inferred due to some inaccurate parsing. Discoverer

rstly tokenizes the protocol messages and initially clusters
messages according to the token patterns. �us, the lengths
of 
elds are factitiously forced to be consistent with the
size of tokens and the boundaries of message 
elds in
the text protocols are restricted to some separators (such
as space) speci
ed by the authors. Moreover, the relation-
ship of 
elds in message formats inferred by Discoverer is
sequential. In our approach, we do not make any assump-
tion about the separators and aim to infer the optimal
length of 
elds by maximizing the likelihood probability of
message segmentation. Meanwhile, we capture the location
relationship of 
elds, such as sequential and juxtaposi-
tional relation, by learning a probabilistic directed lattice
graph.

Wang et al. [16] present a framework to infer message for-
mats by improving the Aho-Corasick (AC) algorithm [17] to
identify frequent sequences and mining the association rules
among the frequent sequences. �ey evaluate the framework
in wireless environment and show that the framework can
identify ARP and ICMP packets in high accuracy. However,
their framework only searches for association rules of some
frequent 
elds in protocol messages, while the aim of our
scheme is to infer the whole format of message by inferring
all of the message 
elds.

Wang et al. propose Biprominer [18] to extract binary
protocol message formats based on the statistical nature of
message formats. Firstly, the Biprominer recursively learns
and labels frequent patterns in the message based on the
frequency of blocks (comprised of several bytes). �en, the
messages with labeled blocks are converted into a transition
probability model. Antunes and Neves [19] present building
an automaton based on sequence alignment algorithm for
recovering message formats from network trace. �ey 
rstly
extend the partial order alignment algorithm to generate an
initial automaton from messages, then apply sequence align-
ment techniques to 
nd out the optimal alignment between
the automaton and the new coming messages, and 
nally use
the alignment results to further extend the automaton.�ese
researches focus on modeling the transition probability of
message blocks or 
nding out the acceptable paths of bytes
in the automatons, while our work aims to identify message

elds with variable length as well as model the location
relationship of 
elds.

Some works leverage the semantics analysis of message

elds to infer message formats. �e so-called semantics
analysis is to identify the keyword sequences, each of which
indicates a speci
c intention of the protocolmessage. Krueger
et al. [20] present a semantics-aware tool for network
payloads analysis to automatically extract semantics-aware
components from captured network trace. �ey map pro-
tocol messages to a vector space based on tokens or words
and identify communication templates corresponding to the
base directions in the vector space. Wang et al. propose
ProDecoder [21] to reconstruct the message formats based
on semantics-aware approach. ProDecoder 
rst identi
es
keywords using Latent Dirichlet Allocation (LDA) models
taken from natural language processing. Protocol messages
are then clustered according to their semantics (di�erent
combination of keywords) using the Information Bottleneck
clustering algorithm. Finally, messages in each cluster are
aligned to 
nd out the commonparts among themusingwell-
known sequence alignment algorithms. �ese methods aim
to reveal the semantics characteristics of protocol messages
under speci
c communication motivations, so the message
formats are expected to be a�ected by the user intentions.
However, our method captures the general structures of
messages of the target protocol.

As an alternative approach to understand the unknown
or proprietary protocols, binary analysis based techniques
also draw much research attention in the 
eld of network
security. For example, Polyglot [22], Tupni [23], AutoFormat
[24], Prospex [25], and Dispatcher [26] are all systems
based on binary analysis techniques. �ey are workable and
applicable in the scenarios where the binary so�ware is
available and can be run in a controlled environment. In
addition, binary analysis techniques can not work when the
binary clients apply some interference techniques, such as
obfuscation, to protect themselves from being detected and
reverse-engineered. In this paper, we narrow our research
into the application scene that only the network trace of target
protocols is available. Hence, we do not discuss these binary
analysis based techniques but focus on those approaches
based on network trace.

3. Hidden Semi-Markov Models

A hidden semi-Markov model (HsMM) as shown in Figure 1
is an extension of hiddenMarkov model (HMM) by allowing
the underlying process to be a semi-Markov chain with a
variable duration time for each state [13, 27].

�e basic elements of HsMM include the hidden state set

S = {1, 2, . . . ,�} , (1)

the state duration set

D = {1, 2, . . . , �} , (2)

and the observation set

V = {V1, V2, . . . , V�} . (3)

�e hidden state of underlying process at time � is
donated as �� ∈ S. �e symbols 	 and 
 are used to
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Figure 1: Hidden semi-Markov model.

represent substantive values of state variable �. For simplicity
of notation, we denote the following:

(i) ��2�1 = 	 means ��1 = ��1+1 = ⋅ ⋅ ⋅ = ��2 = 	; however, the
previous state ��1−1 and the next state ��2+1may ormay
not be 	.

(ii) ��2][�1 = 	 means ��1 = ��1+1 = ⋅ ⋅ ⋅ = ��2 = 	; however,
neither ��1−1 nor ��2+1 is 	.

(iii) ��2]�1 = 	 means ��1 = ��1+1 = ⋅ ⋅ ⋅ = ��2 = 	 and ��2+1 ̸= 	;
however, the previous state ��1−1 may or may not be 	.

(iv) ��2[�1 = 	 means ��1 = ��1+1 = ⋅ ⋅ ⋅ = ��2 = 	 and ��1−1 ̸= 	;
however, the next state ��2+1 may or may not be 	.

As shown in Figure 1, the observation sequence 
�1 is the
observable process, while the state sequence ��1 and the state
transitions (	�, ��) → (	�+1, ��+1), � = 1, 2, . . . , � − 1, are
underlying process that cannot be observed. For each pair(	�, ��) in the underlying process, �� is the time duration
of state 	�.

Formally, a HsMM can be represented by

� = (�, �, �, �) , (4)

where � is the state transition probability matrix, � is the
emission probability matrix, � is the distribution of state
durations, and � is the initial distribution of states.

�e state transition probability matrix is de
ned as

� = {��,� | ∀	, 
 ∈ S} , (5)

where ��,� = �(�[�+1 = 
 | ��] = 	), subject to ∑�∈S\� ��,� = 1
and zero self-transition probabilities ��,� = 0, for all 	, 
 ∈ S.

�e emission probability matrix � is de
ned as

� = {�� (V) | ∀	 ∈ S, V ∈ V} , (6)

where ��(V) = �(�� = V | �� = 	) means that V is observed at �
in state 	.

�e distribution of the state duration is

� = {�� (�)} , 	 ∈ S, � ∈ D. (7)

�e initial distribution of states indicates the probability
of the initial state before time � = 1; that is,

� (	) = � (�� = 	) , � ≤ 1, 	 ∈ S. (8)

GET Host:GET HTTP/1.1 Host: Server:

Keyword �eld

Data �eld

f1 f2 f3 f4 f5 f6 f7 f8

Figure 2: Message format.

4. Protocol Modeling

4.1. Modeling Network Protocol Using HsMM. A network
protocol is a set of rules for regulating the exchange of
messages in the Internet. �e speci
cation of network pro-
tocol describes the strict syntactical format for valid message
and de
nes the strict procedure rules of data exchange. �e
alphabet of valid messages is the set of all possible values of a
single byte; that is,

Σ = {0x00, 0x01, 0x02, . . . , 0x##} . (9)

A string $ over Σ is de
ned as a 
nite sequence of letters
in Σ; that is, $ = �1, �2, . . . , �	, (�1, �2, . . . , �	 ∈ Σ). �e set of
all 
nite strings over alphabet Σ is represented as Σ∗.

�e protocol message, denoted as �, is de
ned as the
basic data unit exchanged between di�erent communicating
entities of application-layer protocol. A message consists of a
set of message 
elds, including keyword 
elds and data 
elds,
as shown in Figure 2. �e message 
elds, denoted as %, are
strings over Σ; that is, % ∈ Σ∗.

�e validmessages exchanged by communicating entities
are constructed according to the protocol message format.
�e relationship of 
eld location in the message format
is varying from sequential to juxtapositional. For example,
according to the HTTP speci
cation, message 
elds %1, %2,
and %3 in Figure 2 are of sequential relation; that is, the
location of %2 must go a�er %1 but preceded %3. However, the
relation of 
elds %5 and %7 is juxtapositional that means the
location of %5 and %7 can be exchanged with each other.

In order to model message format using HsMM, protocol
message is treated as an observation sequence representing
the observable process. Each 
eld is a block of observations
associated with a speci
c hidden state with the length of
this 
eld as the corresponding state duration. For example
in Figure 3, %1 is the block of observations from � = 1 to 3
associated with state 	1 and duration �1 = 3. In this model,
the emission probability matrix � implies the relationship
between observations and hidden states, while the state
transition probability matrix � implies the relationship of

eld location.
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Figure 3: Illustration of modeling HTTP based on hidden semi-
Markov model.

Let 
 be an observation sequence and let Ω be the set
of frequent strings that occurred in 
. Given $�, $ ∈ Ω, we
denote that $� ⊂ $, if $� is the substring of $. �e string $ is
closed in Ω, if there does not exist a string $�� ∈ Ω to satisfy$ ⊂ $��. �e set of closed frequent strings in Ω is denoted as
L.

Each closed string in L is associated with di�erent
hidden states; thus, the number of hidden states for closed
string in L is * = ‖L‖. Suppose that $� ∈ L is associated
with state 	; then all characters in $� are observations of state	.

Additionally, we de
ne other � − * special states (	 =*+1,*+2, . . . ,�) which are associated with any characters
in Σ.
4.2. Parameters Reestimation. In this section, we discuss an
iterative procedure for reestimating the parameters of � =(�, �, �, �), based on the Baum-Welch method [28]. At the
beginning, a random initialization of � and � is selected,
while the initialization of � and � is processed as follows.

For 	 ∈ {1, 2, . . . , *}, ��(/) = exp(−‖$�‖/10), if / ∈ Σ,
where $� ∈ L is the closed frequent string associated with	. Otherwise, ��(/) = 0, if / does not occur in $�.

For 	 ∈ {* + 1,* + 2, . . . ,�}, the emission probability of
letter / in state 	 is ��(/) = exp(−20).

For 	 ∈ S and � ∈ D,

�� (�) = �2∑�
=1 52 . (10)

In the forward-backward procedure, the forward variable
is de
ned as

6� (
, �) ≡ � ((��, 9�) = (
, �) , 
�1) , (11)

where 9� is the remaining time of the current state ��.
Initially, 61(	, �) = �(	)��(
1)��(�).
�e inductive solution for 6�(	, �) when � > 1 is given as

follows:6� (	, �) = 6�−1 (	, � + 1) �� (��)
+ (∑
� ̸=�

6�−1 (
, 1) ���)�� (��) �� (�) ,
� ≥ 1.

(12)

�e backward variable is de
ned as

A� (	, �) ≡ � (
��+1 | (��, 9�) = (	, �)) . (13)

Initially, A�(	, �) = 1.

�e inductive solution for A�(	, �)when 1 ≤ � < C is given
as follows:

A� (	, �) = �� (��+1) A�+1 (	, � − 1) , � > 1,
A� (	, 1) = ∑

� ̸=�
����� (��+1)(∑

�≥1
�� (�) A�+1 (
, �)) . (14)

We de
ne the probability that the state 	 ends at time�, while the state 
 starts at time � + 1, given the entire

observation sequence 
�1 , as follows:
F� (	, 
) ≡ � (
�1 , ��−1 = 	, �� = 
)

= 6�−1 (	, 1) ����� (��)(∑
�≥1

�� (�) A� (
, �)) . (15)

�e probability that the state 
 ends at time � with its

duration being �, given the entire observation sequence 
�1 ,
is de
ned as

G� (	, �) ≡ � (��−1 ̸= 	, �� = 	, 9� = �,
�1 )
= (∑
� ̸=�

6�−1 (
, 1) ���)�� (��) �� (�) A� (	, �) . (16)

�e probability that the state at time � is 	, given the entire
observation sequence 
�1 , is de
ned as

H� (	) ≡ � (�� = 	, 
�1 ) . (17)

In order to solve for H�(	), we consider the following
identities:

� (��+1� = 
, 
�1 ) = � (�� = 
, 
�1 ) − � (�� ] = 
, 
�1 ) ,
� (��+1� = 
, 
�1 ) = � (��+1 = 
, 
�1 )

− � (�[ �+1 = 
, 
�1 ) .
(18)

�us, we have a recursive formula for H�(	) as follows:
H� (	) = H�+1 (	) + ∑

� ̸=�
(F�+1 (	, 
) − F�+1 (
, 	)) . (19)

In the phase of recursively computing H�(	), the initial
condition is given as follows:

H� (	) = ∑
�≥1

6� (	, �) . (20)
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With these notations, the parameters of � can be updated
and improved by the following equations:

�̂� = H1 (	)∑� H1 (	) ,
�̂�� = ∑��=1 F� (	, 
)∑� ̸=�∑� F� (	, 
) ,

�̂� (�) = ∑��=1 G� (	, �)∑��=1∑��=1 G� (	, �) ,
�̂� (V
) = ∑��=1 H� (	) I (�� == V
)∑
∑��=1 H� (	) I (�� == V
) .

(21)

Note that I(expression) = 1, if expression is true.
Otherwise I(expression) = 0, if expression is not true.

4.3. Inferring Protocol Keywords. Given the reestimated

HsMM �̂ = (�̂, �̂, �̂, �̂) and an observation sequence 
, the
forward and backward variables can be computed based on
forward-backward algorithm. �en, the variable G�(
, �) can
be computed using (16). In what follows, we can infer the state
sequence with maximal likelihood probability based on the
Viterbi algorithm [29]. �e inference procedure is given as
follows:

(	1, �1) = argmax
�,�

(G� (
, �)) ,
(	2, �2) = argmax

�,�
(G�−�1 (
, �)) ,

(	3, �3) = argmax
�,�

(G�−�1−�2 (
, �)) ,
...

(		, �	) = argmax
�,�

(G�−�1−�2−⋅⋅⋅−��−1−�� (
, �)) .

(22)

�e iteration proceeds until �1 + �2 + ⋅ ⋅ ⋅ + �	 = C. �us,
the observation
 is divided into a sequence of 
elds with the5th 
eld to be $
 = 
�−�1−⋅⋅⋅−��−1�−�1−⋅⋅⋅−��−1−��+1. 	
 is referred to as the

state of $
. If 1 ≤ 	
 ≤ *, $
 is a protocol keyword with the
corresponding 
eld as keyword 
eld. If * < 	
 ≤ �, then $

is a data string and the corresponding 
eld is a data 
eld.

4.4. Inferring Message Type. In this section, we present an
algorithm to determine the type of protocol messages. �e
messages which belong to the same type have similar formats
with each other. �us, the type of protocol messages can
be determined using clustering method according to the
similarities between their message formats.

In this paper, we apply an unsupervised clustering algo-
rithm proposed by Frey and Dueck [30] to solve the problem.
�e algorithm based on the a�nity propagation mechanism
takes the similarity matrix of data points as input and
recursively selects representative exemplars for each point.
Each of the selected exemplars represents a data type, while

the type of other data points is determined by the exemplars
they select. �e number of clusters need not be speci
ed
beforehand.�e similaritymetric need not be de
ned strictly
in a continuous space and does not have to satisfy the
symmetric and the triangle inequality. �erefore, we can
de
ne the similarity in any reasonable way.

Before the further discussion about the message cluster-
ing algorithm, we de
ne some basic notations. Suppose the
universal set of protocol keywords is denoted asK and the set
of protocol keywords that occurred in message�� is denoted
as K�. Given a protocol keyword 5 of message ��, the cost of
encoding 5 in �� using the keyword set of message �� usingK� as the code book is de
ned as

/�,� (5) = {{{
log2

OOOOOK�OOOOO , 5 ∈ K�,
log2 |K| , otherwise. (23)

�e similarity of �� to �� is de
ned as the minus
summation of cost of encoding all keywords in �� using K�
as code book is de
ned as

Sim (	, 
) = − ∑
∀
∈��

/�,� (5) . (24)

�e a�nity propagation algorithm exchanges two kinds
of information between data points during the clustering
process: responsibility (P(	, 5)) and availability (�(	, 5)). �e
“responsibility” P(	, 5), sent from an ordinary data point 	
to the candidate exemplar point 5, re�ects the accumulated
evidence for how well-suited point 5 is to serve as the exem-
plar for point 	, taking into account other potential exemplars
for point 	. �e “availability” �(	, 5), sent from candidate
exemplar point 5 to point 	, re�ects the accumulated evidence
for how appropriate it would be for point 	 to choose point 5
as its exemplar, taking into account the support from other
points that point 5 should be an exemplar.

In this paper, we treat each message as a data point, and
the responsibility and availability are updated according to
the following equations:

P (	, 5) ←R Sim (	, 5) − max

� ̸=


{� (	, 5�) + Sim (	, 5�)} ,
� (	, 5)

←R min
{{{0, P (5, 5) + ∑

�� ̸=�,

max {0, P (	�, 5)}}}} .

(25)

Specially, �(5, 5) is updated by

� (5, 5) ←R ∑
∀�� ̸=


max {0, P (	�, 5)} . (26)

�e a�nity propagation algorithm clusters messages into
subclusters, each of which represents a type of messages.
�e results of message type inference are important for
constructing protocol state machine which will be discussed
in our future work.
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Figure 4: Overview of system architecture.

5. System Implementation

In this section, we will illustrate an overview of our system
architecture and discuss some implementation issues which
have to be addressed when one implements the proposed
approach.

5.1. System Overview. A brief view of our system architecture
is shown in Figure 4. Training data set is raw tra�c captured
from real world using a well-known network tra�c analysis
tool called tshark [31].

Since well-known protocols, such as HTTP, are well
studied and described in public documents, almost all of pop
analyzer tools of network tra�c embed and identifywell these
protocols, so the true ground of well-known protocols is easy
to be obtained. As a result, we consider some well-known
protocols to validate and evaluate our approach in this paper
and assume that the training data set is generated by only one
protocol.

In the session reconstruction phase, we reconstruct the
sessions according to the 5-tuple, that is, transport protocol,
source transport number, destination transport number,
source IP address, and destination IP address. For TCP-based
protocol, a session starts at the packet with the SYN �ag in
TCP header and 
nishes when the FIN �ag is acknowledged.
For UDP protocol, a session is de
ned as the packets shared
the same 5-tuple.

In the message reassembling phase, messages of TCP-
based protocols are reassembled from packets according to
the TCP sequence number and acknowledgement number
while the messages of UDP-based protocols are reassembled
according to the arrival time stamp of packets and the
transmission direction of packets.

In the HsMM modeling step, an algorithm based on the
Baum-Welch method is performed to reestimate the param-
eters of the HsMM-based protocol model. �e reestimated
HsMM model produced by this step implies the message
format.

In the message segmentation phase, the reestimated
HsMM model is applied to determine the optimal length of
protocol keywords and divide message into 
eld sequence.

In the step of message type inference, protocol messages
are clustered using the a�nity propagation mechanism and
each cluster represents a type of messages.

(1) Input: observation 
, frequency threshold Γ
(2) Output: closed frequent string setL
(3) # Find out the frequent strings
(4) Initialization: frequent candidate set X1 = Σ, 	 = 1
(5) while X� ̸= Y do

(6) # Check frequency of strings in X�
(7) for $ ∈ X� do
(8) # Freq($) is the frequency of $ in 

(9) if Freq($) < Γ then

(10) Delete $ from X�
(11) end if

(12) end for

(13) # Generate new candidate set X�+1
(14) for $1, $2 ∈ X� do
(15) if $1[1 : 	 − 1] = $2[2 : 	] then
(16) Create a new string $�[1 : 	 + 1]
(17) Let $�[1 : 	] = $2[1 : 	], $�[	 + 1] = $1[	]
(18) Add $� to X�+1
(19) end if

(20) end for

(21) 	 = 	 + 1;
(22) end while

(23) # Find out the closed frequent strings
(24) Initialization: 	 = 1
(25) while X�+1 ̸= Y do

(26) for $1 ∈ X� do
(27) for $2 ∈ X�+1 do
(28) # delete the substrings
(29) if $1 ⊂ $2 then
(30) Delete $1 from X�
(31) Break
(32) end if

(33) end for

(34) end for

(35) UpdateL = L ∪ X�
(36) 	 = 	 + 1
(37) end while

(38) UpdateL = L ∪ X�
Algorithm 1: Closed frequent string algorithm.

5.2. Extracting Closed Frequent Strings. Suppose that L is a
frequent string set. If $ ∈ L and there do not exist $� ∈ L

satisfying that $ is the substring of $�, then $ is a closed
frequent string in L. In this section, the Apriori algorithm
[32] widely used in data mining 
eld is introduced and
modi
ed to address the problem of mining closed frequent
strings as shown in Algorithm 1.

�e frequent string candidate set X� is initialized as X1 =Σ = {0, 1, . . . , 255}, each element in which represents a one-
byte character (line (4)). Note that the length of each element
in X� is 	. �e frequencies of elements in X� are checked
and the ones whose frequencies are less than the frequency
threshold Γ would be deleted from X� (lines (6)∼(12)). �e
candidates of frequent stringswith length of 	+1 are generated
in lines (14)∼(20), where the notation $[1 : 	] represents the
byte sequence from the 
rst byte to 	th byte in$. If$1, $2 ∈ X�
and the 
rst 	 − 1 characters of $1 are equal to the last 	 − 1
characters of $2, then the two strings can be combined into
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Table 1: Results of keyword extraction for text-based protocols.

System Protocol True keyword Inferred keyword True positive Precision (%) Recall (%)

HsMM
HTTP 36 80 33 41.25 91.67

SSDP 24 54 24 44.44 100

Discv
HTTP 36 859 25 2.33 69.44

SSDP 24 94 22 23.40 91.67

PI
HTTP 22 1 1 100 4.55

SSDP 20 12 4 33.33 20.00

a new string $� by merging their overlap; that is, $�[1 : 	] =$2[1 : 	], and $�[	 + 1] = $1[	]. Lines (24)∼(38) aim to 
nd
out the closed frequent strings by deleting any strings in X� if
and only if they are the substrings of some elements in X�+1.
5.3. Under	ow Problem. �e joint probabilities of observa-
tion sequence o�en decay exponentially as the sequence
length increases, which leads to a severe under�ow problem
when the forward-backward algorithms are implemented in
a real computer. To the best of our knowledge, there are three
approaches to solve this problem.

Firstly, one can implement the forward-backward algo-
rithm in the logarithmic domain to avoid the under�ow
problem [33].

Secondly, one can also re
ne the forward-backward algo-
rithm based on the notion of posterior probabilities to make
theHsMMrobust against the under�owproblem.�e re
ned
forward-backward algorithms replace the joint probabilities
with conditional ones and automatically avoid the under�ow
problem without increasing the computational complexity.
More information about the posterior probabilities and
re
ned HsMM based on conditional joint probabilities can
be found in the work by Yu [13].

�irdly, the forward-backward probabilities are adjusted
by multiplying a scaling factor whenever an under�ow is
likely to occur [27, 34, 35]. In this paper, we tackle the
under�ow problem of HsMM based on this scaling method.
In each �, we 
rst compute 6�(	) based on the procedure of
(12) and then compute the scaling factor in time �, denoted as/�, as follows:

/� = 1∑��=1 6� (	) , (27)

where � is the number of states in the HsMM.
For the A�(	) term in the backward algorithm, we use the

same scaling factors for each time � as we used for 6 in the
forward algorithm; that is,

A� (	) = /�A� (	) . (28)

As stated byRabiner [27], the scaling factorswill not a�ect
the transition variable �, initial state probability distribution�, and the observation matrix �. However, the procedure for
computing �(
 | �̂) is changed as follows:

� (
 | �̂) = 1∏��=1/� . (29)

In order to avoid the under�ow problem, we prefer to

calculate the logarithmic form of �(
 | �̂):
log� (
 | �̂) = − �∑

�=1
log /�. (30)

6. Evaluation

In this section, we evaluate the proposed approach on data
sets captured from the Internet entrance of our department
on 23 December 2013. �e data set contains network trace
generated by six protocols, including two text-based pro-
tocols (HTTP and SSDP) and four binary-based protocols
(BitTorrent, QQ, DNS, and NetBIOS).

Existing algorithms such as PI (protocol informatics) and
Discoverer are also applied to analyze the same data set.
�e PI project has released an open source Python code for
researchers in the project home page [7], so we apply the code
and perform it to analyze the data set. �e Discoverer system
is implemented according to the work presented by Cui et al.
and the parameters are set as reported in their previous work
[15].

6.1. Protocol Keyword Extraction. Since there is no infor-
mation about protocol keywords of binary protocols in
published protocol speci
cations, we only evaluate protocol
keyword extraction for text-based protocols (i.e., HTTP and
SSDP) in this section. We use the metrics of recall and
precision to evaluate the quality of keyword extraction. �e
de
nition of these metrics is presented in the following:

(i) Recall: the recall rate is de
ned as the ratio from the
number of true positives of inferred keywords to the
total number of keywords in the data set.

(ii) Precision: the precision rate is de
ned as the ratio
from the number of true positives of inferred key-
words to the total number of inferred keywords.

We randomly select 100 connections of each protocol
and only consider the 
rst 1460 bytes (it is long enough to
contain the headers of protocol messages) of each message.
�e results of protocol keyword extraction are shown in
Table 1, where “Discv” represents Discoverer system and “PI”
represents PI project. �e column of “true keyword” records
the true number of protocol keywords that occurred in the
trace, while the column of “inferred keyword” records the
number of inferred keywords. Compared with Discoverer
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Figure 5: �e results output by PI.



10 Mathematical Problems in Engineering

0
10

20
30

40

0

10

20

30

40

State i
State j

−200

−150

−100

−50

0

L
o

ga
ri

th
m

ic
 p

ro
b

ab
il

it
y

Logarithmic probability (aij) matrix of state transition

(a) Transition matrix (3D view)

5 10 15 20 25 30 35

5

10

15

20

25

30

35

State i

ij

St
at

e 
j

Logarithmic probability (aij) matrix of state transition

−180

−160

−140

−120

−100

−80

−60

−40

−20

(b) Transition matrix (2D view)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Probabilities of observations in each state

P
ro

b
ab

il
it

y

50 100 150 200 250
0

Observations

(c) Observation probability distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probabilities of state duration

P
ro

b
ab

il
it

y

20 40 60 80 1000

Duration of state

(d) State duration distribution

Figure 6: �e HsMM-based models for message format. (a) and (b) indicate the transition probability of states. (c) shows the probabilities
of observations for each state; each line is corresponding to a state. (d) illustrates the state duration distribution; each line is corresponding
to a state.

and PI project, HsMM-based method has a higher true
positive, precision, and recall rate. We found that Discov-
erer infers too many keywords, while PI project infers too
little.

Actually, there are far more protocol keywords inferred
by our approach than the true keywords. Most of them are
frequent and indispensable in the protocol messages, such as
some parameters used frequently. So, all of these strings are
also treated as protocol keywords and they play important
role in inferringmessage formats and analyzing protocol state
machine.

We also note that it has been found that the proposed
HsMM-based approach can not only extract frequent key-
words but also extract some keywords whose occurrence
frequency is low.

6.2. Protocol Message Format Inference. We illustrate the
results analyzed by PI in Figure 5. �e message formats
are inferred as the longest common substrings of protocol
messages. As shown in Figure 5, only a few protocol keywords
(such as “GET”) and 
elds are inferred by PI, so PI does not
seem to be expert in generating e�ective message formats.

As shown in Tables 2–4, we present the results of HTTP
protocol for Discoverer, PI, and HsMM in a similar form
to make it more clear for the readers. Discoverer infers
message format based on token sequence and determines
the attribute of token, such as constant token or variable
token. Far more protocol keywords (such as “HTTP/1.1” and
“Host:”) are inferred by Discoverer than PI. However, some
frequent strings (e.g., “ocspd” and “x86 64”) which are not
protocol keywords are also inferred as keywords.
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Table 2: HTTP message format inferred by Discoverer. /(�, “XXX”) means a constant 
eld, “/” means constant, “�” means text, and “XXX”
is the value of the 
eld; V(�) means a variable 
eld.

Field ID Token Field ID Token Field ID Token

1 /(�, “GET”) 8 /(�, “User-Agent:”) 15 V(�)
2 V(�) 9 V(�) 16 /(�, “(x86 64)”)

3 /(�, “HTTP/1.1”) 10 /(�, “ocspd”) 17 V(�)
4 /(�, “Host:”) 11 V(�) 18 /(�, “Connection:”)
5 V(�) 12 /(�, “(unknown”) 19 V(�)
6 /(�, “.com”) 13 V(�) 20 ⋅ ⋅ ⋅
7 V(�) 14 /(�, “Darwin”)

Table 3: HTTP message format inferred by PI.

Field ID Token Field ID Token

1 /(�, “GET”) 2 V(�)

1 2 3 T t

s1 s1 s1 s1

s2 s2 s2 s2

s3 s3 s3 s3

sM sM sM sM· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...

Figure 7: �e lattice structure for computing 6�(	) based on
forwarding algorithm. �1, �2, . . . , �� ∈ S represent the state of
observation at time �.

In this paper, the proposed approach embeds themessage
formats into a HsMM-based protocol model. For each proto-
col, we train a HsMM by recursively reestimating the model
parameters, including initial state probability, state transition
probabilitymatrix, and observation probabilitymatrix. Using
the HsMM, the optimal lengths of protocol keywords are
determined and optimal segmentation of protocol message
is inferred based on the maximal likelihood probability.

�e parameter of a trained HsMM-based HTTP model
is shown in Figure 6. In this model, the number of states
is assigned to 35. As shown in Figure 6(c), the observations
are mainly distributed in the area of [10, 127] for each state,
while the probabilities of observations located in [128, 256]
are much smaller. We can also 
nd that the duration of each
state is mainly distributed between 1 and 30, which means
that the lengths of most 
elds in the message vary from 1 to30.

When the HsMM is used to analyze an observation
sequence (such as protocol message or network �ow), a
lattice, as shown in Figure 7, is constructed to compute
the forward variable 6�(	) based on the model parameters.

�e state at each time � may be in one of � states in S,
while each state may emit multiple observations (characters
varying from 0 to 255) with di�erent probabilities, so HsMM
could reveal the characteristics of both sequential 
elds and
juxtapositional 
elds and such lattice implies the message
formats. When forward variable computing is 
nished, the
Viterbi algorithm can be applied to infer an optimal path
which leads to a message 
eld sequence with maximal
likelihood probability. An example of inferringmessage 
elds
based on our approach is illustrated in Figure 8. In this
illustration, protocol keywords are labeled with states less
than 26, while other 
elds are labeled with states between 26
and 35. Some 5cd-V�efc pairs are found in the message, such
as the 5cd-
elds labeled with state 28 (in green) and V�efc-

elds labeledwith state 33 (in light blue). IP address and some
number sequence are labeledwith state 33.We also found that
the carriage return line feed (i.e., “0D0A” in hex) is labeled
with the state of 32.
6.3. Message Type Inference. �e results of message type
inference are important for the future work of constructing
protocol state machine. In our experiment, one type of
messages will be clustered into serval types. However, we
can treat them as serval di�erent types since each inferred
type represents a cluster of messages which share the same
characteristic and have similar message format.

In order to compute the accuracy of message type infer-
ence, we label each cluster as the true type which dominates
the cluster. �e accuracy of message type inference is shown
in Table 5.

6.4. Tra
c Identi�cation. �e proposed technique can be
used for network tra�c identi
cation in the application of
network management or network monitoring. Suppose Λ ={�̂1, �̂2, . . . , �̂	} is the set of learned HsMM-based protocol

models, where �̂� (	 = 1, 2, . . . , �) is the HsMM-based model

of protocol 	. For each session o = 
�1 , the class of o = 
�1 ,
denoted as X(o), can be inferred as follows:

X (o) = arg max
�=1,2,...,	

log (� (o | �̂�)) , (31)

where �(o | �̂�) is the likelihood of o given �̂�. �(o | �̂�) can
be computed by (30).

�is scenario is related to previous work by Ma et al. [36]
in the 
elds of tra�c identi
cation based on application-layer
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Table 4: HTTP message format inferred by HsMM.

Field ID Token Field ID Token Field ID Token

1 /(�, “GET”) 6 /(�, “User-Agent:”) 11 V(�)
2 V(�) 7 V(�) 12 /(�, “Referer:”)
3 /(�, “HTTP/1.1”) 8 /(�, “Accept-Language:”) 13 V(�)
4 /(�, “Host:”) 9 V(�) 14 /(�, “Connection:”)
5 V(�) 10 /(�, “Accept:”) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

3 32153328

GET / pa?p=1:364773698:9 HTTP/1.1

16 3218730

Host: wpa.qq

19 3223

Connect ion: keep-alive

25 329113324359173314

User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit (KHTML, like Gecko) Chrome/ /537.1

12

21 321333029230

Referer: http:// www.yuanlin.com/ B2B/Sell/ C2/18/59.shtml

12 32301022

Accept-Encoding: gzip, de�ate, sdch

20 32731

Accept-Language: zh-CN,zh;q=0.8

12 32735731

Accept-Charset: GBK,utf-8;q=0. ;q=0.3

23 283328332833283328

Cookie: pgv_pvid=8400408728; o_cookie=893810970; ptui_loginuin=893810970; pgv_info=ssid=s5837432496; qz_gdt=v

34

Xec_4tcW9_ISO3ClI2SMRRz!pCbInn6gnu7gzr8EWYNJsA7ZW42aW9!aher9LHu7r4PI_p A1C

s; ptcz=3fed38d0576a5e98f34ea7b26db4ada6900bf5372adf1b099b3cfb3716f7385b;

28 3328302728332833

28 33

pt2gguin=o0893810970; uin=o0893810970; skey=@RRU0pCW li; q m_sid=15638e3ef3c74a3cd5432e69d693f263,

34

qZ3BpZ1VtSHlwa0dicVplbm9ZOTNGeVZ2MXRvTDVtMmw5eGtMcEFIbExjRV8.;

28 322833

qm_username=893810970; ptisp=ctc5?

State:

Field:

State:

Field:

State:

Field:

State:

Field:

State:

Field:

State:

Field:

State:

Field:

State:

Field:

State:

Field:

State:

Field:

State:

Field:

State:

Field:

State:

Field:

State:

Field:

State:

Field: Rh

33

29

7,∗

Accept: ∗/∗

32

/537.1 21.0.1180.89 Safari

.com

ü

Figure 8: Illustration of 
eld segmentation for HTTP message.

payload.Ma et al. buildMarkovmodels from the application-
layer payload and apply them to identifying network tra�c.
In this paper, we also implement the Markov model as
stated in [36] and compare their results with ours, as shown
in Figure 9. �e results show that the proposed method
outperforms the Markov based method in the 
eld of tra�c
identi
cation.

7. Conclusion

�e protocol keywords and message 
elds are inferred
based on hidden semi-Markov model by maximizing the

likelihood probability ofmessage segmentation.�e segmen-
tation of messages reveals some semantic information about
the 
eld, such as keyword, IP address, and 5cd-V�efc pair.
�e proposed technique is shown to be applied to the 
eld
of network tra�c identi
cation and outperforms existing
algorithm.

�e proposed HsMM-based protocol message format
can be applied to 
eld of intrusion detection or anomaly
detection. One can use the HsMM-based message format of
normal tra�c to calculate the average likelihood probability
of the new coming tra�c and check whether the average
likelihood probability is deviated from a normal level. Our
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Table 5: �e accuracy of message type inference.

Protocol HTTP SSDP BitTorrent QQ DNS NetBIOS

Accuracy (%) 96.63 97.46 100 95.16 96.18 100

HTTP SSDP BitTorrent QQ DNS NetBIOS

HsMM

Markov

70

75

80

85

90

95

100

A
cc

u
ra

cy
 (

%
)

Figure 9: �e accuracy of tra�c identi
cation. “HsMM” repre-
sents the HsMM-based method proposed in this paper, while the
“Markov” represents the Markov model based method presented by
previous work.

method can also be applicable for tra�c identi
cation, fuzz
test, vulnerability discovery, and so on.
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