
Citation: Priyadarshini, J.;

Premalatha, M.; Čep, R.; Jayasudha, M.;

Kalita, K. Analyzing Physics-Inspired

Metaheuristic Algorithms in Feature

Selection with K-Nearest-Neighbor.

Appl. Sci. 2023, 13, 906. https://

doi.org/10.3390/app13020906

Academic Editors: Juan A.

Gómez-Pulido and Michele Girolami

Received: 12 September 2022

Revised: 30 December 2022

Accepted: 6 January 2023

Published: 9 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Analyzing Physics-Inspired Metaheuristic Algorithms in
Feature Selection with K-Nearest-Neighbor
Jayaraju Priyadarshini 1, Mariappan Premalatha 1 , Robert Čep 2 , Murugan Jayasudha 1 and Kanak Kalita 3,*

1 School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600027, India
2 Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering,

VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic
3 Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science

and Technology, Avadi 600062, India
* Correspondence: drkanakkalita@veltech.edu.in

Abstract: In recent years, feature selection has emerged as a major challenge in machine learning. In
this paper, considering the promising performance of metaheuristics on different types of applications,
six physics-inspired metaphor algorithms are employed for this problem. To evaluate the capability of
dimensionality reduction in these algorithms, six diverse-natured datasets are used. The performance
is compared in terms of the average number of features selected (AFS), accuracy, fitness, convergence
capabilities, and computational cost. It is found through experiments that the accuracy and fitness of
the Equilibrium Optimizer (EO) are comparatively better than the others. Finally, the average rank
from the perspective of average fitness, average accuracy, and AFS shows that EO outperforms all
other algorithms.

Keywords: optimization; non-traditional algorithms; feature reduction; KNN; algorithms

1. Introduction

Data mining is the process of finding meaningful information or extracting knowledge
from large amounts of data. Data mining has the challenging problem of dealing with huge
data dimensions. When working with data that has a large number of dimensions, even
the advantages of technology can be a hassle [1]. The data-mining process may suffer due
to a huge number of dimensions. It may also require a lot of computing time and space.
Traditional machine-learning (ML) methods cannot handle these huge datasets [2]. The
dataset is made up of several samples that collectively give information about a specific
case of the problem. Each sample has a variety of attributes or features. The dataset may
have several superfluous or duplicate attributes, in addition to its huge dimensionality. The
model may be complex, and the dataset may include a substantial amount of noise. The best
subset of the useful features that will contribute to the output is chosen via a pre-processing
technique called feature selection (FS) [2]. FS can reduce the training time as well as the huge
number of dimensions in the data. Moreover, the model’s accuracy is enhanced in addition
to the simplification of the model and the best utilization of computing resources [3].

The two main FS approaches are wrapper methods and filter methods. The major
drawback of the filter methods is that they work independently of the ML classifiers and
do not take any input from them [4]. Meanwhile, the wrapper method uses the classi-
fier directly and picks the features using an optimization algorithm [5]. Optimization
algorithms provide the advantage of choosing an optimal or nearly optimal subset of
features in a reasonable amount of time as opposed to the conventional exhaustive search.
An exhaustive search becomes impractical, because it finds the solution by creating all
feasible feature subsets (2m different solutions for m features) [6]. In the literature, optimiza-
tion algorithms are categorized into several groups, such as evolution-based algorithms,

Appl. Sci. 2023, 13, 906. https://doi.org/10.3390/app13020906 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13020906
https://doi.org/10.3390/app13020906
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7685-5417
https://orcid.org/0000-0001-9610-4215
https://orcid.org/0000-0001-9289-9495
https://doi.org/10.3390/app13020906
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13020906?type=check_update&version=1

Appl. Sci. 2023, 13, 906 2 of 19

swarm-based algorithms, human behavior-inspired algorithms, physics-inspired algo-
rithms, etc. [7]. Swarm-based algorithms mimic the collective but decentralized intelligence
of living creatures, such as birds [8], wolves [9], whales [10], bacteria [11], etc. Evolutionary
algorithms mimic the emergence of the fittest and healthiest individuals over generations.
A few examples are the Genetic Algorithm (GA) [12], Differential Evolution (DE) [13],
Biogeography-Based Optimization (BBO) [14], etc. Human behavior-inspired algorithms
mimic the collective intelligent behavior of human beings in different real-life situations,
such as politics [15], sports [16], corporations [7], etc. Finally, physics-based algorithms
are inspired by the laws of nature, such as the gravitational law [17], black holes [18],
galaxies [19], etc.

In recent years, metaphor-based algorithms have extensively been used to solve FS
problems from different domains. Examples include feature selection using Particle Swarm
Optimization (PSO) for document clustering [20], the use of a real-valued Grasshopper Opti-
mization Algorithm (GOA) for feature selection [21], hybridization of the Whale Optimization
Algorithm (WOA) and Simulated Annealing (SA) for the feature selection problem [22],
feature selection for intrusion detection in wireless mesh networks incorporating genetic oper-
ators in WOA [23], the incorporation of levy flight and opposition-based learning in chaotic
Cuckoo Search (CS) for feature selection [24], feature selection using Moth Flame Optimization
(MFO) [25], feature selection using the Firefly Algorithm (FA) [26], the hybridization of SA
with Harris Hawk Optimization (HHO) for the feature selection problem [27] and feature
selection using binary Teaching–Learning-Based Optimization (TLBO).

According to the No-Free-Lunch (NFL) theorem [28], no single optimization algorithm
is capable of solving every optimization problem by outperforming all other optimization
techniques. Because of this, one optimizer can perform better than the others on some
problems, but not on all of them. Hence, it is crucial to compare several optimization
algorithms on a variety of datasets to find the optimum solution to the feature selection
problem. Since there are hundreds of optimization algorithms in the literature, in this study,
a few well-known and highly cited physics-inspired algorithms are chosen for this purpose.
The rationale is to carry out a comparison of the various metaphors drawn from physics
and evaluate their effectiveness. To evaluate the performance of these algorithms, six small-
to-large-sized classification datasets are used. The accuracy, convergence, and average
fitness of these algorithms are compared. This paper has the following contributions:

• The main novelty of our paper lies in its comparative analysis of six well-cited physics-
inspired metaphor algorithms for the problem of feature selection.

• To the best of our knowledge, this is the first time these physics-inspired algorithms
have been compared for this specific problem, and our findings provide valuable
insights into their performance.

• Our study also has broader implications for the field of machine learning and data min-
ing, as it helps to shed light on the effectiveness of different optimization algorithms
for feature selection.

• Our work contributes to the growing body of research on metaheuristics and their
potential applications in machine learning and data mining, and it highlights the
potential value of using physics-inspired optimization algorithms for feature selection.

• Additionally, our use of variable-sized classification datasets allows us to assess the
applicability of these algorithms on a wide range of problems, making our results
more generalizable and applicable to practitioners.

Overall, we believe that our paper represents a significant contribution to the field and
has the potential to impact the way practitioners approach the problem of feature selection.
The rest of the paper is organized as follows. The methodology is discussed in Section 2.
Section 3, namely, the Results and Discussion, covers the results and comparative analysis
of all six algorithms, and the concluding remarks are given in Section 4.

Appl. Sci. 2023, 13, 906 3 of 19

2. Methodology
2.1. Wrapper Method for Feature Selection

For feature selection, we employed a wrapper method. To accomplish their task,
wrapper techniques use a learning algorithm that applies a search strategy to explore the
space of feasible feature subsets, ranking them according to the quality of their performance
in a specific algorithm. In most cases, wrapper approaches outperform filter methods,
since the feature selection process is tailored to the specific classification algorithm being
employed. Wrapper methods, on the other hand, are prohibitively time- and resource-
intensive for high-dimensional data, since they require evaluating each feature set with the
classifier algorithm. Figure 1 depicts the way in which wrapper methods function.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 3 of 20

Section 2. Section 3, namely, the Results and Discussion, covers the results and compara-

tive analysis of all six algorithms, and the concluding remarks are given in Section 4.

2. Methodology

2.1. Wrapper Method for Feature Selection

For feature selection, we employed a wrapper method. To accomplish their task,

wrapper techniques use a learning algorithm that applies a search strategy to explore the

space of feasible feature subsets, ranking them according to the quality of their perfor-

mance in a specific algorithm. In most cases, wrapper approaches outperform filter meth-

ods, since the feature selection process is tailored to the specific classification algorithm

being employed. Wrapper methods, on the other hand, are prohibitively time- and re-

source-intensive for high-dimensional data, since they require evaluating each feature set

with the classifier algorithm. Figure 1 depicts the way in which wrapper methods func-

tion.

Figure 1. Wrapper feature selection framework.

In this paper, K-Nearest Neighbor (k-NN) is used as the evaluator algorithm. The k-

NN method uses a set of K neighbors to determine how an object should be categorized.

A positive integer value of K is pre-decided before running the algorithm. To classify a

record, the Euclidean distances between the unclassified record and the classified records

are determined and ranked.

2.2. Fitness Function

The effectiveness of an optimizer is evaluated by its fitness function. The fitness func-

tion in feature selection is dependent on the classification error rate and the number of

features used for classification. It is deemed to be a good solution if the selected feature

subset reduces the classification error rate and the number of features chosen. The follow-

ing fitness function is used in this paper [29]:

↓ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝜆𝛾𝑆(𝐷) + (1 − 𝜆)
|𝑆|

|𝐹|
 (1)

where 𝛾𝑆(𝐷) is the classification error computed by the classifier, |𝑆| is the reduced

number of features in the new subset, |𝐹| is the total features in the dataset, and 𝜆 𝜖 [0, 1]

Figure 1. Wrapper feature selection framework.

In this paper, K-Nearest Neighbor (k-NN) is used as the evaluator algorithm. The
k-NN method uses a set of K neighbors to determine how an object should be categorized.
A positive integer value of K is pre-decided before running the algorithm. To classify a
record, the Euclidean distances between the unclassified record and the classified records
are determined and ranked.

2.2. Fitness Function

The effectiveness of an optimizer is evaluated by its fitness function. The fitness
function in feature selection is dependent on the classification error rate and the number of
features used for classification. It is deemed to be a good solution if the selected feature
subset reduces the classification error rate and the number of features chosen. The following
fitness function is used in this paper [29]:

↓ Fitness = λγS(D) + (1− λ)
|S|
|F| (1)

where γS(D) is the classification error computed by the classifier, |S| is the reduced number
of features in the new subset, |F| is the total features in the dataset, and λ ε [0, 1] is a
factor corresponding to the importance of the classification performance and length of the
reduced subset.

2.3. Physics-Inspired Metaphor Algorithms

In this paper, six well-cited physics-inspired metaphor algorithms are employed to
solve the problem of feature selection. In this section, the functioning of these algorithms
and their position-updating mechanisms are discussed.

Appl. Sci. 2023, 13, 906 4 of 19

2.3.1. Simulated Annealing

Simulated Annealing is a fundamental nature-inspired algorithm that was proposed
in 1983 by Kirkpatrick et al. [30]. The source of inspiration behind this algorithm is the
annealing process of metals. The process of annealing, which starts at a very high temper-
ature and progressively cools down, is used to physically harden metals. The algorithm
involves three main parameters, including the cooling rate (c), the final temperature (Tf),
and the starting temperature (T0). The starting temperature is kept very high initially, and
the cooling rate gradually reduces until it reaches the final temperature. The process is
mimicked by randomly generating a candidate solution. The algorithm runs iteratively, and
a new solution is generated in the neighborhood of the current solution in each iteration.
The fitness of the current and neighbor solutions is compared. If the fitness of the new
solution is better, then the position of the current solution is updated. Moreover, the best
solution keeps the best position found so far. The terminating condition of the repetitive
process is reaching the Tf . In each iteration, T is updated as follows:

T = T ∗ C, 0 < c < 1 (2)

SA is a global optimization algorithm, because it can explore as well as exploit the
search space. The exploration is performed by updating the current solution with a worse
neighboring solution in early iterations based on the value of T and the worse value of the
neighboring solution. The chance of accepting the worse neighbor is computed using the
following equation:

exp
(
− δ

T

)
≤ r (3)

where exp is the exponential function, δ is equal to the fitness difference of current and
neighboring solutions, and r is randomly generated in the range [0, 1].

2.3.2. Gravitational Search Algorithm

This algorithm is inspired by Newton’s law of gravitation and the second law of
motion [17]. It treats each candidate solution in the search space as an object whose mass
is considered to be its fitness. Heavier objects are considered fitter than lighter objects.
The objects are attached to each other with some gravitational force that causes objects to
explore the search space. The heaviest object is considered the global best solution. Since
the heavier objects attract other objects with more force, the whole population ultimately
converges toward the heaviest object, called the global best solution. The algorithm is
comprised of a few mathematical equations that are expressed below.

Force calculation: The force from an object j on an object i is calculated using the
following equation:

Fd
ij(t) = G(t)Mpi(t)×

Maj(t)
Rij(t) + ε

(xd
j (t)− xd

i (t)) (4)

In the above equation, G is the gravitational constant that controls the search accuracy,
Mpi is the passive gravitational mass of solution i, Maj is the active gravitational mass of
solution j, the distance between solution i and solution j is denoted by Rij, xd is the position
of a solution in dth dimension, and ε is a small constant.

The ultimate force on a solution (mass) is calculated by taking the weighted sum of all
the forces on that solution from the kbest solutions, which are calculated as follows:

Fd
i (t) = ∑

j∈kbest , j 6=i
randjFd

ij(t) (5)

Appl. Sci. 2023, 13, 906 5 of 19

Acceleration calculation: Once the total force on a solution in a particular dimension d
is calculated, the acceleration of the solution in that dimension can be computed using the
following equation:

ad
i (t) =

Fd
i (t)

Mii(t)
(6)

where Mii is the mass of inertia of solution i.
Velocity calculation: Based on the acceleration, the velocity of a solution can be

computed by adding the acceleration to a fraction of the previous velocity of that solution.
The equation to compute velocity is given below:

vd
i = randi × vd

i (t) + ad
i (t) (7)

Position updating: To update the position of a solution, the updated velocity is simply
added to the old position of the solution, as formulated below:

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (8)

Gravitational constant updating: To update G, the following relation is used:

G(t) = G0 exp
(
−α

t
tmax

)
(9)

where G0 is the initial gravitational constant, and α is a constant. t and tmax represent the
current and final iteration numbers.

2.3.3. Sine Cosine Algorithm

The Sine Cosine Algorithm (SCA) [31] has a very unique source of inspiration. It
utilizes two sine and cosine functions to update the position of solutions when searching
the space to find the global optimum. The position-updating model of this algorithm is
very simple and is formulated below:

Xt+1
i =

{
Xt

i + r1 × sin(r2)×
∣∣r3Pt

i − Xt
i

∣∣, r4 < 0.5
Xt

i + r1 × cos(r2)×
∣∣r3Pt

i − Xt
i

∣∣, r4 ≥ 0.5
(10)

In the above equation, Xi denotes a solution in the ith dimension, and Pi denotes the
global best solution, namely, the destination solution in the paper. The above equation
involves a few other variables that are defined below.

r1 is an adaptive parameter that is linearly reduced with the course of iterations. It
starts from a prefixed value and linearly decreases in each iteration. It is computed as
follows:

r1 = α− t
α

T
(11)

where α is constant.

• r2 is randomly generated in the range of 0 to 2π.
• r3 is also a random number that is generated in the range of 0 to 2.
• r4 is also a random number that is generated in the range of 0 to 1, and based on its

value, it is decided whether to use the sine function or the cosine function in updating
the position of the current solution.

When multiplied by r1, the range of values provided by sin(r2) and cos(r2) shifts
from [−1, 1] to [−2, 2]. Due to a linear decrease in the values of the parameter r1, the
range begins at [−2, 2] and linearly declines to [0, 0] during iterations. The position-
updating equation of SCA creates two regions around the destination P: an inner region
that promotes exploitation and an outer region to promote exploration. The precondition
to search the inner region is {−1 <= r1 X cos(r2) <= 1} or {−1 <= r1 X sin(r2) <= 1},

Appl. Sci. 2023, 13, 906 6 of 19

and the precondition to search the outer region is {r1 X cos(r2)}, or {r1 X sin(r2)} gives a
value greater than 1 or lesser than −1.

2.3.4. Atom Search Optimization

Atom Search Optimization (ASO) [32], which is inspired by molecular dynamics,
has shown a tremendous performance on a variety of applications in the literature. Each
atom is considered a candidate solution, and the mass is mapped with the fitness in the
optimization algorithm, where the higher the mass, the fitter the solution. Every atom
in the population pulls or repels other atoms in the search space. The heavier atoms
generate more force and pull lighter objects rapidly, and the heavier objects are pulled
slowly towards the others due to their mass. The slowly moving atoms create exploitation
in the algorithm, because they can search more locally, whereas the rapidly moving atoms
allow the algorithm to explore the search space because of longer and quicker jumps.
The algorithm starts with random initializations. In every iteration, the atoms move and
accelerate, and the location of the atom that has performed the best up to that point is also
likewise adjusted. Atomic acceleration is also caused by two other factors: L-J potential
and constraint forces. The acceleration helps to update the velocity of the solutions (atoms).
Finally, the velocity is added to the previous position to update the current position of the
solution. The position-updating mechanism of the algorithm is discussed below.

The population is generated by randomly generating position and velocity vectors for
each atom in the population.

Xi =
[

X1
i , X2

i , . . . , XD
i

]
(12)

Vi =
[
V1

i , V2
i , . . . , VD

i

]
(13)

The fitness of each solution in the population is computed, and the global best Xbest is
determined.

The mass of each atom is computed using the following equation:

mi =
Mi

∑N
j=1 Mj

(14)

where M is computed from the fitness of the current solution, the best solution, and the
worst solution.

The value of K is computed, where K denotes the size of the subset of atoms:

K = N − (N − 2)

√
t
T

(15)

where N is the size of the population.
The interaction force on an atom is calculated, which is accomplished using the

following equation:
Fi

d = ∑
j∈K

randjFij
d (16)

where randj is a random number in the range of [0, 1].
The constraint force is computed using the following equation:

Gd
i = λ

(
Xd

best − Xd
i

)
(17)

where λ is the Langrangian multiplier that is computed as follows:

λ = β e−20t
T (18)

where β is the multiplier weight.

Appl. Sci. 2023, 13, 906 7 of 19

Once the mass, constraint forces, and interaction forces are computed, the acceleration
is computed as follows:

ad
i =

Fd
i

md
i
+

Gd
i

md
i

(19)

Once the acceleration is computed, the velocity of an atom can be computed as follows:

Vd
i (t + 1) = r1Vd

i (t) + ad
i (t) (20)

Using the updated velocity, the position of a solution is updated as follows:

Xd
i (t + 1) = Xd

i (t) + Vd
i (t + 1) (21)

2.3.5. Henry Gas Solubility Optimization

Henry Gas Solubility Optimization (HGSO) is inspired by Henry’s gas law [33], which
is stated below:

“At a constant temperature, the amount of a given gas that dissolves in a given type and
volume of liquid is directly proportional to the partial pressure of that gas in equilibrium
with that liquid”.

This law can be interpreted as the partial pressure of a gas and the solubility of that
gas being directly proportional. If one increases, then the other increases, too. This relation
is expressed through the following equation:

Sg = H × Pg (22)

where the gas solubility is denoted by Sg, Henry’s constant is denoted by H, and the
partial pressure of the gas is represented by Pg. The proportionality constant H is highly
dependent on the temperature, as it varies with the change in the temperature. In HGSO,
each gas particle is considered a candidate solution, whereas all particles collectively make
up the population. Initially, gas particles (population) are randomly generated, and then
gas particles update their positions in the course of iterations by exploring and exploiting
the search space. HGSO involves the following steps.

Population initialization: A population of N gas particles is randomly generated using
the following equation:

Xi(t+1) = X{min} + r×
(

X{max} − X{min}

)
(23)

where Xi denotes the initial position of the ith solution, X{min} and X{max} are the lower
and upper bounds of the problem function under consideration, r is a randomly generated
real number between 0 and 1, and t is the iteration number.

The properties of each search agent in HGSO can be initiated using the following equation:

Hj(t) = l1 × rand(0, 1), P{i,j} = l2 × rand(0, 1), Cj = l3 × rand(0, 1) (24)

where Hj(t) represents Henry’s constant for the jth cluster, P{i,j} denotes the partial pressure
of the ith particle in the jth cluster, and Cj indicates the initial constant value for the jth cluster.

Clustering: This step divides the search agents into K clusters to map different types
of gases, where the same types of gases are grouped into a cluster. Therefore, each cluster
has the same value of Henry’s constant Hj.

Fitness Evaluation: In this step, each search agent in the jth cluster is evaluated through
the objective function to find the best solution Xj,best in the jth cluster. Once all the clusters
are evaluated, then the gases are ranked to find the global best particle Xbest.

Appl. Sci. 2023, 13, 906 8 of 19

Update Henry’s coefficient: The partial pressure of each gas particle changes in each
iteration. Therefore, the value of Henry’s coefficient Hj is updated using the following equation:

H(t + 1) = exp
{(
−Cj ×

(
1
T
− 1

T0

)
× Hj(t)

)}
, ; T(t) = exp

{(
− t

t{max}

)}
(25)

where Hj represents the value of Henry’s constant for the jth cluster, T indicates the temper-
ature, T0 denotes a reference temperature equivalent to 298.15 K, and t{max} represents the
maximum iterations.

Update solubility: In this step, the solubility S{i,j} of the ith particle in the jth cluster is
updated using the following equation:

S{i,j}(t) = K× Hj(t+1) × P{i,j}(t) (26)

where K is a constant, and P{i,j} is the partial pressure of gas i in cluster j.
Update position: The properties of particles computed in the previous steps are

utilized to update the position of the ith gas particle in the jth cluster according to the
following equation:

X{i,j}(t+1) = X{i,j}(t) + F× r1 × γ×
(

X{j, best}(t) − X{i,j}(t)
)

+F× r2 × a×
(

S{i,j}(t) × X{best}(t) − X{i,j}(t)
) (27)

γ = β× \ exp
{(
\ f rac

{
F{best}(t) + ε

}{
F{i,j}(t) + ε

})}
, ; ε = 0.05 (28)

where the position of the ith search agent in the jth cluster is represented by Xij, the best
agent in the jth cluster is denoted by Xj,best, and the global best particle in the entire
population is represented by Xbest. Moreover, r1 and r2 are two random values in the range
[0, 1], t is the current iteration, F is a flag used for diversification purposes and changes the
direction of the solution, γ indicates the ability of the ith particle in the jth cluster to interact
with other agents in its cluster, a represents the impact of other gases on the ith particle, β is
fixed as β = 1, Fi,j is the fitness of the ith particle in the jth cluster, and F{best} is the fitness of
the best particle.

Escape from local optimum: To avoid stagnation in local optima, all the particles are
evaluated, and the worst Nw agents are selected and reinitialized using the following equation:

Nw = N × (rand(c2 − c1) + c1), ; c1 = 0.1 ; and ; c2 = 0.2 (29)

where N is the population size. Moreover, c1 and c2 are constants that define the percentage
of worst particles.

2.3.6. Equilibrium Optimizer (EO)

Control volume mass balance models, which are used to estimate both dynamic and
equilibrium states, serve as an inspiration for the Equilibrium Optimizer (EO), a recently
proposed physics-inspired algorithm [34]. The particles are considered to be the solutions,
and their positions map the concentration of the particles. This algorithm constructs an
equilibrium pool of five reference solutions (four best so-far particles and one arithmetic
mean of them) called equilibrium candidates. Each particle updates its position with
reference to a randomly selected candidate from the pool. The algorithm is aided by two
carefully designed parameters called the exponential term (F) and the generation rate
(G). Moreover, a concept of memory saving is used, which allows a solution to update its
concentration only if it improves as compared to its previous concentration. The exploration,
exploitation, and the balance between them are controlled through these parameters: the
equilibrium pool and the generation probability.

Appl. Sci. 2023, 13, 906 9 of 19

EO uses a mass-balance equation to describe the conservation of mass within a system.
The generic mass-balance equation is given as:

V
dC
dt

= QC{eq} −QC + G (30)

where V dC
dt represents the rate of change of mass in a control volume, Q is the flow rate,

the concentration at an equilibrium state is denoted by QC{eq}, and G mimics the mass

generation rate. Here, dC
dt can also be solved in terms of Q

V and Q
V denoted by λ or the

turnover rate (i.e., λ = Q
V). Therefore, the above equation can be reconstructed as:

dC
λC{eq} − λC + G

V
= dt (31)

By taking the integration of the above equation, we obtain:

C = C{eq} +
(

C0 − C{eq}

)
F +

G
λV

(1− F) (32)

which is used as an updating rule for each particle, where F is calculated as follows:

F = exp[−λ(t− t0)] (33)

where t0 and C0 represent the initial start time and concentration. In this algorithm, each
particle is a solution, and its position represents its concentration. The mathematical
formulation of EO is discussed in the following steps.

Initialization and function evaluation: The first step is to initialize the particles’ con-
centration according to the following equation:

X{init}
{m} = X{min} + randm(X{max}−X{min})

(34)

where X{init}
{m} represents the initial concentration of the mth particle, X{max} shows the

maximum, and X{min} shows the minimum values.
Equilibrium pool and candidates Xe: In this algorithm, four equilibrium candidates

(good solutions) are determined to guide other particles and promote exploration. More-
over, a particle constructed by taking the arithmetic mean of all these candidates is also
used, which promotes exploitation. These candidates are then assembled to form an equilib-
rium pool. Each particle updates its position with respect to a randomly selected candidate
from the pool.

Exponential term (E): This term is used in position updating to balance exploration
and exploitation. The exponential term is computed as follows:

E = e{−{λ}(t−t0)} (35)

where t and t0 are computed by following equations, respectively:

t =
(

1− Iter
Max _ iter

){(a2Iter
Max _ iter)}

(36)

t0 =
1
λ

ln
(
−a1sign({r} − 0.5)

[
1− e{−{λ}t}

])
+ t (37)

In the above equation, a large value of a1 promotes exploration, and a large value
of a2 promotes exploitation. The sign({r} − 0.5) controls the direction of exploration and
exploitation. Using the above equations, E is computed as follows:

E = −a1sign({r} − 0.5)[e{−{λ}t} − 1]) (38)

Appl. Sci. 2023, 13, 906 10 of 19

Generation rate: In this algorithm, this term is used as a solution finder by taking
short steps. The generation rate control parameter shows the probability of the generation
term in the updating process. The generation probability is used to calculate the number of
particles that employ the generation term to readjust their state. The final position updating
of EO based on all the above steps is formulated below:

X = {X}{eq} +
(
{X} − {X}{eq}

)
.{E}+ R

{λ}V (1− E) (39)

3. Results and Discussion

In this section, the performance of the previously discussed algorithms is compared
on six well-known datasets. All the algorithms are implemented in MATLAB v2019. The
experiments are run on a Windows platform with an Intel(R) Core (TM) i7 CPU @3.40 GHz
and 24 GB RAM.

3.1. Datasets

To evaluate the performance of the algorithms, six datasets, namely, breast cancer,
German, heart, ionosphere, ovarian cancer, and sonar are used. To evaluate the performance
from different aspects, we have tried to include mixed types of datasets, including small-
featured (heart disease) to large-featured (ovarian cancer) and small-sized (sonar) to large-
sized (German) datasets. The details regarding all datasets are given in Table 1.

Table 1. Datasets selected for this study.

Dataset Symbol Number of Instances Number of Features Source

Breast cancer DS1 569 30
https://archive.ics.uci.edu/ml/datasets/

breast+cancer+wisconsin+(diagnostic),
accessed on 12 September 2022

German DS2 1000 24
https://archive.ics.uci.edu/ml/datasets/

statlog+(german+credit+data), accessed on 12
September 2022

Heart DS3 303 13 https://archive.ics.uci.edu/ml/datasets/
heart+Disease, accessed on 12 September 2022

Ionosphere DS4 351 34 https://archive.ics.uci.edu/ml/datasets/
ionosphere, accessed on 12 September 2022

Ovarian cancer DS5 216 4000 Conrads et al. [35]

Sonar DS6 208 60
https://archive.ics.uci.edu/ml/datasets/
Connectionist+Bench+(Sonar,+Mines+vs.
+Rocks), accessed on 12 September 2022

Breast cancer dataset: In this dataset, fine needle aspirate of a breast mass digital
image is used to calculate features. The image’s cell nuclei are characterized in terms of
their appearance and location [36]. The diagnosis, i.e., the response parameter, is binary
(M = malignant, B = benign).

German dataset: Prof. Hofmann created the original dataset, which consists of
1000 entries and 20 categorical/symbolic attributes. Each record in this dataset is an
individual who has been extended credit by a financial institution. People are ranked as
either “good credit risks” or “bad credit risks” based on several factors.

Heart dataset: Cleveland, Hungary, Switzerland, and the Long Beach V database are
the four parts of this 1988 dataset. It has a total of 76 traits, including the response attribute,
but only 14 have been used in any of the published trials. Whether or not the patient has
a cardiac disease is what is being targeted in the “target” section. Zero (0) indicates the
absence of disease, and a value of 1 indicates the presence of disease.

Ionosphere dataset: The radar equipment that gathered this data is located in Goose
Bay, Labrador. The total transmitted power of this system is on the order of 6.4 kilowatts,
and it is generated via a phased array of sixteen high-frequency antennas. Radar returns
with a clear ionospheric structure are considered to be of high quality. Those that do not are

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/ionosphere
https://archive.ics.uci.edu/ml/datasets/ionosphere
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)

Appl. Sci. 2023, 13, 906 11 of 19

considered “bad” returns, since their transmissions are unable to attenuate the ionosphere.
All of the 34 features are continuous.

Ovarian cancer dataset: There are a total of 216 patients included in this dataset, 121
of whom have ovarian cancer and 95 of whom do not. There are almost 4000 individual
spectroscopic readings provided for each patient, each of which expresses a biomarker.
Patients are likely to share many genes and biomarkers due to the substantial correlation
between high-dimensional biological and genetic datasets.

Sonar dataset: The 111 patterns in this dataset were created by reflecting sonar sounds
off a metal cylinder at different angles and in different environments. It includes 97 more
patterns discovered in rocks exposed to the same conditions. The sonar signal being sent
out is a frequency-modulated chirp that gradually increases in pitch. For the cylinder, the
dataset includes signals collected at angles spanning 90 degrees, and for the rock, signals
were collected at angles spanning 180 degrees.

3.2. Parameter Settings

No algorithm may perform well without optimizing its parameters. However, finding
the right parameters for an algorithm is itself an optimization problem. To obtain the
maximum of each algorithm, several combinations of parameters were tried, in addition
to using the combinations suggested by the authors of these algorithms in their original
papers. It was also kept in mind that the number of iterations or function evaluations
remains the same for all algorithms. The parameter settings used for each algorithm are
presented in Table 2.

Table 2. Parameter settings of all algorithms.

Algorithm Parameter Value

Common for all algorithms

k 5
Maximum iterations (tmax) 200
Number of search agents (N) 30
Number of independent runs 20
Ratio of validation data 0.2

Simulated Annealing Cooling rate (c) 0.93
Initial temperature (T0) 100

Gravitational Search Algorithm Initial gravitational constant (G0) 100
Constant, (α) 20

Sine Cosine Algorithm Constant, (α) 2

Atom Search Optimization Depth weight, (α) 50
Multiplier weight, (β) 0.2

Henry Gas Solubility Optimization

Number of gas types 2
K 1

Influence of other gas, (α) 1
β 1
l1 0.05
l2 100
l3 0.01

Equilibrium Optimizer

a1 2
a2 1

Generation probability 0.5
V 1

To assure consistency in results, each algorithm was run 20 times in a row on all
datasets. Furthermore, each dataset was split into training and test sets, where 80% of
samples were used for training, and 20% of samples were used for testing. For classification,
the k-Nearest Algorithm (KNN) was used. The KNN classifier is a well-liked wrapper
method due to its straightforward implementation and the fact that, in comparison to other
classifiers, it only requires one parameter, k. The value of k is tuned by performing several
experiments, and it was found that k = 5 is the most suitable value.

Appl. Sci. 2023, 13, 906 12 of 19

3.3. Performance Evaluation

To evaluate and compare the performance of each algorithm, different experiments
were performed, and the performance in terms of fitness, accuracy, mean feature subsets,
and convergence was compared.

3.3.1. Fitness Comparison

The fitness of a solution is the value that is returned by the objective function against
that solution. It measures how good or bad a solution is. The best fitness attained by each
algorithm for each dataset is presented in Table 3. As can be seen from the results, EO
outperformed all the other algorithms in five cases. However, the performance of HGSO
was comparable in some cases (DS1 and DS5) and was even better in the case of DS4. Based
on collective performance, EO can be given the first rank, and HGSO can be given the
second rank.

Table 3. Best fitness values of all algorithms.

Dataset SA GSA SCA ASO HGSO EO

DS1 0.01869 0.01758 0.0198 0.01157 0.0198 0.01157
DS2 0.22692 0.20258 0.20092 0.19268 0.19888 0.18153
DS3 0.13662 0.08635 0.10285 0.08712 0.11781 0.06985
DS4 0.08574 0.04419 0.02946 0.05951 0.01532 0.01591
DS5 0.02798 0.00453 0.00001 0.00407 0.00001 0.00001
DS6 0.07777 0.00333 0.02515 0.02665 0.04863 0.02515

To have a clear picture and better understanding, the average fitness and standard
deviation of each algorithm on all datasets are compared in Figure 2. The average depicts
a slightly different picture. The average fitness of EO is no longer at rank 1 on DS1, DS3,
and DS6; however, EO retained its rank in the case of DS2 and DS5. Furthermore, EO
secured the first rank for the DS4, on which HGSO was better in the case of best fitness.
On the contrary, HGSO could not maintain its performance. However, ASO maintained
its performance on DS1 and outperformed the other algorithms on DS6. It is important to
mention here SA was the worst performer in nearly all cases.

3.3.2. Comparison of Classification Accuracy

In this subsection, the classification accuracy and the average number of features
selected by each algorithm are compared. The accuracy is the percentage of correctly
classified test samples, and the average features selected (AFS) is the average number of
features to which an algorithm reduces the dimensions of a dataset. AFS is computed
by taking the average of the number of features selected by an algorithm in all 20 runs.
The best accuracies obtained by each algorithm on all datasets are presented in Table 4.
It is evident from the results that EO outperformed all other algorithms on all datasets.
However, ASO performed equally well in three cases: DS1, DS5, and DS6. Simulated
Annealing, on the other hand, was the worst performer on all datasets. It is important
to note that the easiest dataset to classify was DS5, because all algorithms attained 100%
on this dataset; however, SA was the only one that had an accuracy of less than 100% on
this dataset. In this analysis, DS2 remained the toughest benchmark, on which the best
performer could not obtain more than 82% accuracy.

In addition to comparing best accuracies, the average accuracy of all runs along
with standard deviations are compared in Figure 3. When comparing best accuracies, EO
outperformed on all datasets, but due to inconsistent performance in different runs and
a slightly higher standard deviation, EO was no longer the best performer on DS1, DS3,
and DS6. However, its performance was comparable. On the other hand, ASO managed
to outperform EO on DS1 and DS6, and both were equally good at DS2. Moreover, the
performance of GSA was noticeably the best on DS3, whereas SA was still the worst
performer on all datasets.

Appl. Sci. 2023, 13, 906 13 of 19

Table 4. Best classification accuracy of all algorithms.

Dataset SA GSA SCA ASO HGSO EO

DS1 0.98561 0.98561 0.98561 0.99281 0.98561 0.99511
DS2 0.775 0.8 0.8 0.81 0.805 0.82
DS3 0.86667 0.91667 0.9 0.91667 0.88333 0.93333
DS4 0.91429 0.95714 0.97143 0.94286 0.98571 0.98571
DS5 0.97674 1 1 1 1 1
DS6 0.92683 1 0.97561 0.97561 0.95122 0.97561

Appl. Sci. 2023, 12, x FOR PEER REVIEW 13 of 20

Figure 2. Average fitness and standard deviation of all algorithms on all selected datasets.

3.3.2. Comparison of Classification Accuracy

In this subsection, the classification accuracy and the average number of features se-

lected by each algorithm are compared. The accuracy is the percentage of correctly classi-

fied test samples, and the average features selected (AFS) is the average number of fea-

tures to which an algorithm reduces the dimensions of a dataset. AFS is computed by

taking the average of the number of features selected by an algorithm in all 20 runs. The

best accuracies obtained by each algorithm on all datasets are presented in Table 4. It is

evident from the results that EO outperformed all other algorithms on all datasets. How-

ever, ASO performed equally well in three cases: DS1, DS5, and DS6. Simulated Anneal-

ing, on the other hand, was the worst performer on all datasets. It is important to note that

the easiest dataset to classify was DS5, because all algorithms attained 100% on this da-

taset; however, SA was the only one that had an accuracy of less than 100% on this dataset.

In this analysis, DS2 remained the toughest benchmark, on which the best performer

could not obtain more than 82% accuracy.

Table 4. Best classification accuracy of all algorithms.

Dataset SA GSA SCA ASO HGSO EO

DS1 0.98561 0.98561 0.98561 0.99281 0.98561 0.99511

DS2 0.775 0.8 0.8 0.81 0.805 0.82

DS3 0.86667 0.91667 0.9 0.91667 0.88333 0.93333

DS4 0.91429 0.95714 0.97143 0.94286 0.98571 0.98571

DS5 0.97674 1 1 1 1 1

DS6 0.92683 1 0.97561 0.97561 0.95122 0.97561

In addition to comparing best accuracies, the average accuracy of all runs along with

standard deviations are compared in Figure 3. When comparing best accuracies, EO out-

performed on all datasets, but due to inconsistent performance in different runs and a

slightly higher standard deviation, EO was no longer the best performer on DS1, DS3, and

DS6. However, its performance was comparable. On the other hand, ASO managed to

outperform EO on DS1 and DS6, and both were equally good at DS2. Moreover, the per-

formance of GSA was noticeably the best on DS3, whereas SA was still the worst per-

former on all datasets.

Figure 2. Average fitness and standard deviation of all algorithms on all selected datasets.

Finally, the average number of features selected by each algorithm (AFS) along with
their standard deviations are presented in Table 5. As shown by the results, HGSO and
SCA provided a minimum average number of features on two datasets each, whereas
GSA and EO gave minimum AFS on one dataset each. However, if we also relate these
results with the best accuracies, then the gain in terms of AFS of a few algorithms does not
compensate for their low accuracies. For example, HGSO gave the minimum AFS on DS3,
but its accuracy as compared to EO on DS3 was significantly low. Similarly, HGSO also
gave the minimum AFS on DS6, but its accuracy was 2.5% lower than SCA, whereas the
difference in AFS of both algorithms was just 0.2.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 14 of 20

Figure 3. Average classification accuracy and standard deviation of all algorithms on all selected

datasets.

Finally, the average number of features selected by each algorithm (AFS) along with

their standard deviations are presented in Table 5. As shown by the results, HGSO and

SCA provided a minimum average number of features on two datasets each, whereas GSA

and EO gave minimum AFS on one dataset each. However, if we also relate these results

with the best accuracies, then the gain in terms of AFS of a few algorithms does not com-

pensate for their low accuracies. For example, HGSO gave the minimum AFS on DS3, but

its accuracy as compared to EO on DS3 was significantly low. Similarly, HGSO also gave

the minimum AFS on DS6, but its accuracy was 2.5% lower than SCA, whereas the differ-

ence in AFS of both algorithms was just 0.2.

Table 5. Mean selected feature subsets of all algorithms and their standard deviations.

Dataset SA GSA SCA ASO HGSO EO

DS1
AFS

Std.

5.4

2.07364

3.6

0.54772

4.8

0.44721

4.2

0.83666

3.8

0.83666

4.8

0.83666

DS2
AFS

Std.

9.6

1.81659

10.2

2.16795

6

1.41421

11.8

1.30384

9.4

3.91152

8.4

1.14018

DS3
AFS

Std.

4.4

1.67332

4.4

0.54772

4

1.41421

4.8

1.09545

3.4

0.89443

4.2

0.83666

DS4
AFS

Std.

11.6

4.92950

10

2.91548

3.4

0.89443

10.6

3.43511

3.6

1.14018

5

0.70711

DS5
AFS

Std.

1986.6

37.35371

1891.8

73.07667

18

28.53945

1682.6

107.37225

77.2

60.95654

3.4

0.54772

DS6
AFS

Std.

25.8

5.84808

23.8

4.14729

8

2.91548

17.8

3.11448

7.8

5.01996

11.4

4.15933

Amazingly, ASO, which gave some good results in terms of best accuracy, was una-

ble to minimize dimensions as superbly as the other algorithms did. ASO frequently pro-

vided double the AFS as the best AFS provided by any other algorithm, as seen in DS2,

DS4, DS5, and DS6.

Figure 3. Average classification accuracy and standard deviation of all algorithms on all selected datasets.

Appl. Sci. 2023, 13, 906 14 of 19

Table 5. Mean selected feature subsets of all algorithms and their standard deviations.

Dataset SA GSA SCA ASO HGSO EO

DS1 AFS
Std.

5.4
2.07364

3.6
0.54772

4.8
0.44721

4.2
0.83666

3.8
0.83666

4.8
0.83666

DS2 AFS
Std.

9.6
1.81659

10.2
2.16795

6
1.41421

11.8
1.30384

9.4
3.91152

8.4
1.14018

DS3 AFS
Std.

4.4
1.67332

4.4
0.54772

4
1.41421

4.8
1.09545

3.4
0.89443

4.2
0.83666

DS4 AFS
Std.

11.6
4.92950

10
2.91548

3.4
0.89443

10.6
3.43511

3.6
1.14018

5
0.70711

DS5 AFS
Std.

1986.6
37.35371

1891.8
73.07667

18
28.53945

1682.6
107.37225

77.2
60.95654

3.4
0.54772

DS6 AFS
Std.

25.8
5.84808

23.8
4.14729

8
2.91548

17.8
3.11448

7.8
5.01996

11.4
4.15933

Amazingly, ASO, which gave some good results in terms of best accuracy, was unable to
minimize dimensions as superbly as the other algorithms did. ASO frequently provided double
the AFS as the best AFS provided by any other algorithm, as seen in DS2, DS4, DS5, and DS6.

3.3.3. Convergence Analysis

Convergence is the arrival of a stable point at which the solution stops improving any
further. However, if an algorithm converges in very early iterations at a poor suboptimal
point, then it is called premature convergence. In this section, we compare these algorithms
based on how well they can converge, how well they can avoid premature convergence,
and how quickly they can converge. The convergence curves of all these algorithms against
each dataset are plotted in Figure 4. First of all, if we discuss the convergence capability,
then all algorithms converged in less than the first half of the iterations for all datasets. If we
talk about premature convergence, then SA converged prematurely in most cases; however,
SCA on DS1, HGSO on DS3, and GSA on DS5 also converged prematurely. Finally, if we
analyze their convergence speed, then EO demonstrated very good convergence speed on
DS4, DS5, and DS6. In addition to that, ASO also demonstrated good speed on DS1 and
DS3, and SCA was better than all the other algorithms on DS2. If we rank these algorithms
based on the convergence capabilities, then EO secured the first rank, SCA was the second
best, and SCA managed the third-best position.

The convergence speed of all algorithms is also measured in the average number of
seconds. The average computational time along with standard deviations are presented
in Figure 5. The results showed that SA took the least amount of time to converge on all
datasets, which is obviously due to its premature convergence. Another reason may be that
it is a single-solution algorithm. Similarly, GSA was the second-fastest algorithm on five
out of six datasets. However, if we talk about the computational time taken by the best
performers such as EO and ASO, then ASO took much less time than EO on all datasets
except DS5.

3.3.4. Overall Performance Analysis

To find the overall best algorithm, we computed the ranks of all algorithms from
three perspectives: average fitness, average accuracy, and average features selected (AFS).
Once the ranks were determined, the average rank of each algorithm was computed on
all datasets. The overall ranks and average rank of all algorithms on each dataset are
presented in Table 6. As the results illustrate, the best rank was attained by EO, which was
1.88. However, the second-best position was shared by SCA and HGSO. It is important to
mention that SA was the worst performer on the list.

Appl. Sci. 2023, 13, 906 15 of 19

Appl. Sci. 2023, 12, x FOR PEER REVIEW 15 of 20

3.3.3. Convergence Analysis

Convergence is the arrival of a stable point at which the solution stops improving

any further. However, if an algorithm converges in very early iterations at a poor subop-

timal point, then it is called premature convergence. In this section, we compare these

algorithms based on how well they can converge, how well they can avoid premature

convergence, and how quickly they can converge. The convergence curves of all these

algorithms against each dataset are plotted in Figure 4. First of all, if we discuss the con-

vergence capability, then all algorithms converged in less than the first half of the itera-

tions for all datasets. If we talk about premature convergence, then SA converged prema-

turely in most cases; however, SCA on DS1, HGSO on DS3, and GSA on DS5 also con-

verged prematurely. Finally, if we analyze their convergence speed, then EO demon-

strated very good convergence speed on DS4, DS5, and DS6. In addition to that, ASO also

demonstrated good speed on DS1 and DS3, and SCA was better than all the other algo-

rithms on DS2. If we rank these algorithms based on the convergence capabilities, then EO

secured the first rank, SCA was the second best, and SCA managed the third-best position.

Figure 4. Convergence curves of all algorithms on all selected datasets i.e., (a) Breast cancer (DS1)

dataset, (b) German (DS2) dataset, (c) Heart (DS3) dataset, (d) Ionosphere (DS4) dataset, (e) Ovar-

ian cancer (DS5) dataset, (f) Sonar (DS6) dataset.

Figure 4. Convergence curves of all algorithms on all selected datasets i.e., (a) Breast cancer (DS1)
dataset, (b) German (DS2) dataset, (c) Heart (DS3) dataset, (d) Ionosphere (DS4) dataset, (e) Ovarian
cancer (DS5) dataset, (f) Sonar (DS6) dataset.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 16 of 20

The convergence speed of all algorithms is also measured in the average number of

seconds. The average computational time along with standard deviations are presented

in Figure 5. The results showed that SA took the least amount of time to converge on all

datasets, which is obviously due to its premature convergence. Another reason may be

that it is a single-solution algorithm. Similarly, GSA was the second-fastest algorithm on

five out of six datasets. However, if we talk about the computational time taken by the

best performers such as EO and ASO, then ASO took much less time than EO on all da-

tasets except DS5.

Figure 5. Average computational time and standard deviation of all algorithms on all selected da-

tasets.

3.3.4. Overall Performance Analysis

To find the overall best algorithm, we computed the ranks of all algorithms from

three perspectives: average fitness, average accuracy, and average features selected (AFS).

Once the ranks were determined, the average rank of each algorithm was computed on

all datasets. The overall ranks and average rank of all algorithms on each dataset are pre-

sented in Table 6. As the results illustrate, the best rank was attained by EO, which was

1.88. However, the second-best position was shared by SCA and HGSO. It is important to

mention that SA was the worst performer on the list.

Table 6. Average rank of all averages (Fitness, accuracy, and AFS).

Dataset Stats SA GSA SCA ASO HGSO EO

DS1

Avg. fitness rank

Avg. accuracy rank

AFS rank

5

5

6

3

3

1

6

6

4

1

1

3

4

4

2

2

2

4

DS2

Avg. fitness rank

Avg. accuracy rank

AFS rank

6

6

4

5

5

5

3

3

1

2

2

6

4

4

3

1

1

2

DS3

Avg. fitness rank

Avg. accuracy rank

AFS rank

6

6

4

1

1

4

5

5

2

3

3

6

4

4

1

2

2

3

DS4 Avg. fitness rank
6

5

4

4

3

3

5

5

2

2

1

1

Figure 5. Average computational time and standard deviation of all algorithms on all selected datasets.

Appl. Sci. 2023, 13, 906 16 of 19

Table 6. Average rank of all averages (Fitness, accuracy, and AFS).

Dataset Stats SA GSA SCA ASO HGSO EO

DS1
Avg. fitness rank

Avg. accuracy rank
AFS rank

5
5
6

3
3
1

6
6
4

1
1
3

4
4
2

2
2
4

DS2
Avg. fitness rank

Avg. accuracy rank
AFS rank

6
6
4

5
5
5

3
3
1

2
2
6

4
4
3

1
1
2

DS3
Avg. fitness rank

Avg. accuracy rank
AFS rank

6
6
4

1
1
4

5
5
2

3
3
6

4
4
1

2
2
3

DS4
Avg. fitness rank

Avg. accuracy rank
AFS rank

6
5
6

4
4
4

3
3
1

5
5
5

2
2
2

1
1
3

DS5
Avg. fitness rank

Avg. accuracy rank
AFS rank

6
6
6

5
5
5

1
1
2

4
4
4

3
3
3

1
1
1

DS6
Avg. fitness rank

Avg. accuracy rank
AFS rank

6
6
6

3
3
5

4
4
2

1
1
4

5
5
1

2
2
3

Avg. Rank 5.61 3.66 3.11 3.33 3.11 1.88

3.4. Comparison with Other Methods from the Literature

In this section, the top three physics-inspired metaheuristic algorithms are compared
with the state of the art. For this comparison, results from other KNN-metaheuristic
comminations reported by Elminaam et al. [37] were chosen. The metaheuristics chosen
for comparison draw their metaphor inspiration from various sources. For example,
the Grey Wolf Optimizer (GWO) and Whale Optimization Algorithm (WOA) may be
classified as mammal inspired, whereas moth Flame Optimization (MFO) and the Butterfly
Optimization Algorithm (BFO) are insect inspired. Similarly, Harris Hawk Optimization
(HHO) and the Marine Predator Algorithm (MPA) are inspired by preying behavior seen
in nature. Additionally, results based on popular ML algorithms such as Naive Bayes,
Logistic Regression, Random Forest, Support Vector Machine (SVM), K-NN, Decision
Tree, and Stochastic Gradient Descent (SGD) are also compared, along with their principal
component analysis (PCA)-enhanced versions.

In terms of classification accuracy (Table 7), in two out of the three datasets compared,
EO outperformed all the other methods. In fact, for the breast cancer dataset and ionosphere
dataset, EO was on average 12.75% and 7.12% better, respectively, than the metaheuristics
presented in [37]. In the sonar dataset, too, EO and SCA were within 2.5% of the best
solution reported in [37]. Additionally, when compared with the ML algorithms, the EO
solution for the breast cancer dataset was on average 17.89% better. An average superiority
of 5.68% was seen for EO when compared with the PCA-ML methods reported in [38].

The average features selected for the breast cancer, ionosphere, and sonar datasets by the
various metaheuristics are reported in Table 8. It can be observed that the feature reductions by
the current physics-inspired metaheuristics are much higher. For the breast cancer, ionosphere,
and sonar datasets, the average percent feature reduction achieved by the three physics-
inspired algorithms was 85.11%, 88.24%, and 84.89%, respectively, and for the metaheuristic
algorithms from [37], it was only 67.62%, 64.71%, and 67.14%, respectively.

Thus, from the comprehensive comparisons shown so far, it is clear that the cur-
rent KNN hybridized physics-inspired metaheuristic algorithms (especially EO, SCA, and
HGSO) are superior to those reported in the literature. Moreover, it is seen that even solu-
tions by hybridized ML algorithms (for example, by dimensionality reduction techniques
such as PCA) were inferior to current solutions. This is worth highlighting, since the current
wrapper methods are much simpler in terms of computational complexity as compared to
the PCA-hybridized ML methods.

Appl. Sci. 2023, 13, 906 17 of 19

Table 7. Comparison of classification accuracy with literature results.

Method Breast Cancer % Improvement & Ionosphere % Improvement Sonar % Improvement

EO 0.995 Best Solution 0.986 Best Solution 0.976 2.46%
SCA 0.986 0.91% 0.971 1.54% 0.976 2.46%
HGSO 0.986 0.91% 0.986 Best Solution 0.951 5.15%
GWO [37] 0.970 2.58% 0.951 3.68% 0.970 3.09%
MFO [37] 0.605 64.46% 0.774 27.39% 0.547 82.82%
WOA [37] 0.973 2.26% 0.957 3.03% 0.976 2.46%
SSA [37] 0.982 1.32% 0.985 0.10% 1.000 Best Solution
BOA [37] 0.903 10.19% 0.901 9.43% 0.881 13.51%
HHO [37] 0.929 7.10% 0.929 6.14% 0.833 20.05%
MPA [37] 0.982 1.32% 0.985 0.10% 0.976 2.46%
Naive Bayes [38] 0.845 17.75% - - - -
Logistic Regression [38] 0.879 13.20% - - - -
Random Forest [38] 0.995 Best Solution - - - -
SVM [38] 0.620 60.48% - - - -
K-NN [38] 0.900 10.56% - - - -
Decision Tree [38] 0.880 13.07% - - - -
SGD [38] 0.903 10.19% - - - -
PCA-Naive Bayes [38] 0.975 2.05% - - - -
PCA-Logistic Regression [38] 0.975 2.05% - - - -
PCA-Random Forest [38] 0.962 3.43% - - - -
PCA-SVM [38] 0.942 5.63% - - - -
PCA-K-NN [38] 0.921 8.03% - - - -
PCA-Decision Tree [38] 0.905 9.94% - - - -
PCA-SGD [38] 0.916 8.62% - - - -

& % improvement achieved by the best solution with respect to the compared algorithms.

Table 8. Comparison of AFS with literature results.

Method Breast Cancer % Feature
Reduction & Ionosphere % Feature

Reduction Sonar % Feature
Reduction

EO 4.8 84% 5 85% 11.4 81%
SCA 4.8 84% 3.4 90% 8 87%
HGSO 3.8 87% 3.6 89% 7.8 87%
GWO [37] 7 77% 4 88% 11 82%
MFO [37] 6 80% 23 32% 31 48%
WOA [37] 8 73% 7 79% 26 57%
SSA [37] 11 63% 14 59% 16 73%
BOA [37] 12 60% 20 41% 26 57%
HHO [37] 12 60% 10 71% 20 67%
MPA [37] 12 60% 6 82% 8 87%

& % Feature reduction is calculated as 100% minus the ratio of AFS by each algorithm and maximum features in
the corresponding dataset. A higher value of % feature reduction is desired.

4. Conclusions

In this paper, six well-cited physics-inspired metaphor algorithms were employed for
feature selection. Feature selection is one of the major challenges being faced in the field of
data mining and machine learning. The objective of this research was to identify the most
promising physics-inspired algorithms for the problem of feature selection. To accomplish
this, six small- to large-sized datasets were used. The performance of EO was found to be
superior on most of the datasets, and the metrics that were used for the comparative analysis
were taken from the literature and included accuracy, fitness, the average number of features
selected, and convergence analysis. The current physics-inspired metaphor algorithms,
especially EO, SCA, and HGSO comprehensively outperformed other metaheuristics, as
well as the ML-based solutions seen in recent literature. Based on our findings, we highly
recommend using EO for the feature selection problem.

Author Contributions: Conceptualization, R.Č. and K.K.; Data curation, J.P., M.P. and M.J.; Formal
analysis, J.P., M.P. and M.J.; Investigation, J.P., M.P. and M.J.; Methodology, R.Č. and K.K.; Software,
R.Č. and K.K.; Validation, J.P., M.P. and M.J.; Visualization, J.P., M.P. and M.J.; Writing—original draft,
J.P., M.P. and M.J.; Writing—review and editing, R.Č. and K.K. All authors have read and agreed to
the published version of the manuscript.

Appl. Sci. 2023, 13, 906 18 of 19

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available through email upon
request to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Köppen, M. The curse of dimensionality. In Proceedings of the 5th Online World Conference on Soft Computing in Industrial

Applications (WSC5), Online, 4–18 September 2000; Volume 1, pp. 4–8.
2. Ikotun, A.M.; Almutari, M.S.; Ezugwu, A.E. K-Means-Based Nature-Inspired Metaheuristic Algorithms for Automatic Data

Clustering Problems: Recent Advances and Future Directions. Appl. Sci. 2021, 11, 11246. [CrossRef]
3. Khalid, S.; Khalil, T.; Nasreen, S. A survey of feature selection and feature extraction techniques in machine learning. In

Proceedings of the Science and Information Conference (SAI), London, UK, 27–29 August 2014; pp. 372–378.
4. Porkodi, R. Comparison of filter based feature selection algorithms: An overview. Int. J. Innov. Res. Technol. Sci. 2014, 2, 108–113.
5. Jović, A.; Brkić, K.; Bogunović, N. A review of feature selection methods with applications. In Proceedings of the 2015 38th

International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija,
Croatia, 25–29 May 2015; pp. 1200–1205.

6. Brezočnik, L.; Fister, I.; Podgorelec, V. Swarm Intelligence Algorithms for Feature Selection: A Review. Appl. Sci. 2018, 8, 1521.
[CrossRef]

7. Askari, Q.; Saeed, M.; Younas, I. Heap-based optimizer inspired by corporate rank hierarchy for global optimization. Expert Syst.
Appl. 2020, 161, 113702. [CrossRef]

8. Rahman, A.; Sokkalingam, R.; Othman, M.; Biswas, K.; Abdullah, L.; Kadir, E.A. Nature-Inspired Metaheuristic Techniques for
Combinatorial Optimization Problems: Overview and Recent Advances. Mathematics 2021, 9, 2633. [CrossRef]

9. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
10. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
11. Passino, K.M. Bacterial foraging optimization. Int. J. Swarm Intell. Res. (IJSIR) 2010, 1, 1–16. [CrossRef]
12. Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [CrossRef]
13. Storn, R. On the usage of differential evolution for function optimization. In Proceedings of the North American Fuzzy Information

Processing, Berkeley, CA, USA, 19–22 June 1996; pp. 519–523.
14. Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
15. Askari, Q.; Younas, I.; Saeed, M. Political Optimizer: A novel socio-inspired meta-heuristic for global optimization. Knowl.-Based

Syst. 2020, 195, 105709. [CrossRef]
16. Fadakar, E.; Ebrahimi, M. A new metaheuristic football game inspired algorithm. In Proceedings of the 2016 1st Conference on

Swarm Intelligence and Evolutionary Computation (CSIEC), Bam, Iran, 9–11 March 2016; pp. 6–11.
17. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
18. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [CrossRef]
19. Zerigat, D.H.; Benasla, L.; Belmadani, A.; Rahli, M. Galaxy-based search algorithm to solve combined economic and emission

dispatch. UPB Sci. Bull. Ser. C Electr. Eng. 2014, 76, 209–220.
20. Abualigah, L.M.; Khader, A.T.; Hanandeh, E.S. A new feature selection method to improve the document clustering using particle

swarm optimization algorithm. J. Comput. Sci. 2018, 25, 456–466. [CrossRef]
21. Zakeri, A.; Hokmabadi, A. Efficient feature selection method using real-valued grasshopper optimization algorithm. Expert Syst.

Appl. 2019, 119, 61–72. [CrossRef]
22. Mafarja, M.M.; Mirjalili, S. Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. Neurocomputing

2017, 260, 302–312. [CrossRef]
23. Vijayanand, R.; Devaraj, D. A Novel Feature Selection Method Using Whale Optimization Algorithm and Genetic Operators for

Intrusion Detection System in Wireless Mesh Network. IEEE Access 2020, 8, 56847–56854. [CrossRef]
24. Kelidari, M.; Hamidzadeh, J. Feature selection by using chaotic cuckoo optimization algorithm with levy flight, opposition-based

learning and disruption operator. Soft Comput. 2021, 25, 2911–2933. [CrossRef]
25. Zawbaa, H.M.; Emary, E.; Parv, B.; Sharawi, M. Feature selection approach based on moth-flame optimization algorithm.

In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016;
pp. 4612–4617.

26. Selvakumar, B.; Muneeswaran, K. Firefly algorithm based feature selection for network intrusion detection. Comput. Secur. 2019,
81, 148–155.

27. Abdel-Basset, M.; Ding, W.; El-Shahat, D. A hybrid Harris Hawks optimization algorithm with simulated annealing for feature
selection. Artif. Intell. Rev. 2021, 54, 593–637. [CrossRef]

28. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]

http://doi.org/10.3390/app112311246
http://doi.org/10.3390/app8091521
http://doi.org/10.1016/j.eswa.2020.113702
http://doi.org/10.3390/math9202633
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.4018/jsir.2010010101
http://doi.org/10.1007/BF00175354
http://doi.org/10.1109/TEVC.2008.919004
http://doi.org/10.1016/j.knosys.2020.105709
http://doi.org/10.1016/j.ins.2009.03.004
http://doi.org/10.1016/j.ins.2012.08.023
http://doi.org/10.1016/j.jocs.2017.07.018
http://doi.org/10.1016/j.eswa.2018.10.021
http://doi.org/10.1016/j.neucom.2017.04.053
http://doi.org/10.1109/ACCESS.2020.2978035
http://doi.org/10.1007/s00500-020-05349-x
http://doi.org/10.1007/s10462-020-09860-3
http://doi.org/10.1109/4235.585893

Appl. Sci. 2023, 13, 906 19 of 19

29. Too, J.; Liang, G.; Chen, H. Memory-based Harris hawk optimization with learning agents: A feature selection approach. Eng.
Comput. 2021, 38, 4457–4478. [CrossRef]

30. Bertsimas, D.; Tsitsiklis, J. Simulated annealing. Stat. Sci. 1993, 8, 10–15. [CrossRef]
31. Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
32. Zhao, W.; Wang, L.; Zhang, Z. Atom search optimization and its application to solve a hydrogeologic parameter estimation

problem. Knowl.-Based Syst. 2019, 163, 283–304. [CrossRef]
33. Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-

based algorithm. Future Gener. Comput. Syst. 2019, 101, 646–667. [CrossRef]
34. Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based

Syst. 2020, 191, 105190. [CrossRef]
35. Conrads, T.P.; Fusaro, V.A.; Ross, S.; Johann, D.; Rajapakse, V.; Hitt, B.A.; Steinberg, S.M.; Kohn, E.C.; Fishman, D.A.; Whitely, G.; et al.

High-resolution serum proteomic features for ovarian cancer detection. Endocr.-Relat. Cancer 2004, 11, 163–178. [CrossRef]
[PubMed]

36. Street, W.N.; Wolberg, W.H.; Mangasarian, O.L. Nuclear feature extraction for breast tumor diagnosis. In Proceedings of the
IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, San Jose, CA, USA, 31 January–5
February 1993; Volume 1905, pp. 861–870.

37. Elminaam, D.S.A.; Nabil, A.; Ibraheem, S.A.; Houssein, E.H. An Efficient Marine Predators Algorithm for Feature Selection. IEEE
Access 2021, 9, 60136–60153. [CrossRef]

38. Ibrahim, S.; Nazir, S.; Velastin, S.A. Feature Selection Using Correlation Analysis and Principal Component Analysis for Accurate
Breast Cancer Diagnosis. J. Imaging 2021, 7, 225. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s00366-021-01479-4
http://doi.org/10.1214/ss/1177011077
http://doi.org/10.1016/j.knosys.2015.12.022
http://doi.org/10.1016/j.knosys.2018.08.030
http://doi.org/10.1016/j.future.2019.07.015
http://doi.org/10.1016/j.knosys.2019.105190
http://doi.org/10.1677/erc.0.0110163
http://www.ncbi.nlm.nih.gov/pubmed/15163296
http://doi.org/10.1109/ACCESS.2021.3073261
http://doi.org/10.3390/jimaging7110225
http://www.ncbi.nlm.nih.gov/pubmed/34821856

	Introduction
	Methodology
	Wrapper Method for Feature Selection
	Fitness Function
	Physics-Inspired Metaphor Algorithms
	Simulated Annealing
	Gravitational Search Algorithm
	Sine Cosine Algorithm
	Atom Search Optimization
	Henry Gas Solubility Optimization
	Equilibrium Optimizer (EO)

	Results and Discussion
	Datasets
	Parameter Settings
	Performance Evaluation
	Fitness Comparison
	Comparison of Classification Accuracy
	Convergence Analysis
	Overall Performance Analysis

	Comparison with Other Methods from the Literature

	Conclusions
	References

