
Analyzing Reaction Times

R. Harald BAAYEN
Department of Linguistics, University of Alberta, Canada

Petar MILIN
Department of Psychology, University of Novi Sad, Serbia

Laboratory for Experimental Psychology, University of Belgrade, Serbia

Abstract

Reaction times (rts) are an important source of information in experimental
psychology. Classical methodological considerations pertaining to the sta-
tistical analysis of rt data are optimized for analyses of aggregated data,
based on subject or item means (c.f., Forster & Dickinson, 1976). Mixed-
effects modeling (see, e.g., Baayen, Davidson, & Bates, 2008) does not re-
quire prior aggregation and allows the researcher the more ambitious goal of
predicting individual responses. Mixed-modeling calls for a reconsideration
of the classical methodological strategies for analysing rts. In this study,
we argue for empirical flexibility with respect to the choice of transforma-
tion for the rts. We advocate minimal a-priori data trimming, combined
with model criticism. We also show how trial-to-trial, longitudinal depen-
dencies between individual observations can be brought into the statistical
model. These strategies are illustrated for a large dataset with a non-trivial
random-effects structure. Special attention is paid to the evaluation of in-
teractions involving fixed-effect factors that partition the levels sampled by
random-effect factors.
Keywords: reaction times, distributions, outliers, transformations, tempo-
ral dependencies, linear mixed-effects modeling.

Reaction time (rt), also named response time or response latency, is a simple and
probably the most widely used measure of behavioural response in time units (usually in
milliseconds), from presentation of a given task to its completion. Chronometric methods
that harvest rts have played an important role in providing researchers in psychology and
related fields with data constraining models of human cognition.

In 1868, F. C. Donders ran a pioneer experiment in psychology, using for the first
time rts as a measure of behavioural response, and proved existence of the three types of
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rts, differing in latency length (Donders, 1868/1969). Since that time psychologists (c.f.,
Luce, 1986, etc.) agree that there exist: simple reaction times, obtained in experimental
tasks where subjects respond to stimuli such as light, sound, and so on; recognition reaction
times, elicited in tasks with two types of stimuli, one to which subjects should respond, and
the other which serve as distractions that should be ignored (today, this task is commonly
referred to as a go/no-go task); and choice reaction times, when subjects have to select
a response from a set of possible responses, for instance, by pressing an letter-key upon
appearance of a letter on the screen. In addition, there are many others rts which can be
obtained by combining three basic experimental tasks. For example, discrimination reaction
times are obtained when subjects have to compare pairs of simultaneously presented stimuli
and are requested to press one of two response buttons. This type of rt represents a
combination of a recognition and a choice task. Similarly, decision reaction time is a mixture
of simple and choice tasks, having one stimulus at a time, but as many possible responses
as there are stimulus types.

From the 1950s onwards, the number of experiments using rt as response variable
has grow continuously, with stimuli typically obtained from either the auditory or visual
domains, and occasionally also from other sensory domains (see for example one of the
pioneering study by Robinson, 1934). Apart from differences across sensory domains, there
are some general characteristics of stimuli that affect rts. First of all, as Luce (1986) and
Piéron (1920) before him concluded, rt is a negatively decelerating function of stimulus
intensity: the weaker the stimulus, the longer the reaction time. After the stimulus has
reached a certain strength, reaction time becomes constant. To model such nonlinear trends,
modern regression offers the analyst both parametric models (including polynomials) as well
as restricted cubic splines (Harrell, 2001; Wood, 2006).

Characteristics of the subjects may also influence rts, including age, gender, hand-
edness (c.f., MacDonald, Nyberg, Sandblom, Fischer, & Backman, 2008; Welford, 1977,
1980; Boulinguez & Barthélémy, 2000). An example is shown in Figure 1 for visual lexical
decision latencies for older and younger subjects (see Baayen, Feldman, & Schreuder, 2006;
Baayen, 2010, for details).

Finally, changes in the course of the experiment may need to be taken into account,
such as the level of arousal or fatigue, the amount of previous practice, and so called trial-by-
trial sequential effects – the effect of a given sequence of experimental trials (c.f., Broadbent,
1971; Welford, 1980; Sanders, 1998).

In the present paper we highlight some aspects of the analysis of chronometric data.
Various guidelines have been proposed, almost always in the framework of factorial experi-
ments in which observations are aggregated over subjects and/or items (Ratcliff, 1979; Luce,
1986; Ratcliff, 1993; Whelan, 2008). In this paper, we focus on data analysis for the general
class of regression models, which include analysis of variance as a special case, but also
cover multiple regression and analysis of covariance (see Van Zandt, 2000, 2002; Rouder &
Speckman, 2004; Rouder, Lu, Speckman, Sun, & Jiang, 2005; Wagenmakers, van der Maas,
& Grasman, 2008, for a criticism and remedies of current practice). We address the analy-
sis of rts within the framework of mixed-effects modeling (Baayen et al., 2008), focussing
on the consequences of this new approach for the classical methodological guidelines for
responsible data analysis.
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Figure 1. Older subjects (grey) have longer response latencies in visual lexical decision than younger
subjects (black), with a somewhat steeper slope for smaller word frequencies (’stimulus intensity’),
and a smaller frequency at which the effect of stimulus intensity begins to level off. The nonlinearity
was modeled with a restricted cubic spline with 5 knots.

Methodological concerns in reaction time data analysis

Methodological studies of the analysis of reaction times point out at least two impor-
tant violations of the preconditions for analysis of variance and regression. First, distribu-
tions of rts are often positively skewed, violating the normality assumption underlying the
general linear model. Second, individual response latencies are not statistically indepen-
dent – a trial-by-trial sequential correlation is present even in the most carefully controlled
conditions. Additionally, and in relation to the first point, empirical distributions may be
characterized by overly influential values that may distort the model fitted to the data. We
discuss these issues in turn.

Reaction time distributions

There is considerable variation in the shape of the reaction time distributions, both at
the level of individual subjects and items, and at the level of experimental tasks. Figure 2
illustrates micro-variation for a selection of items used in the visual lexical decision study
of Milin, Filipović Durdević, and Moscoso del Prado Mart́ın (2009). For some words, the
distribution of rts is roughly symmetric (e.g., “zid” /wall/, “trag” /trace/, and “drum”
/road/). Other items show outliers (e.g., “plod”, /agreement/, and “ugovor”, /contract/).
For most items, there is a rightward skew, but occasionally a left skew is present (“brod”,
/ship/).

While modern visualization methods reveal considerable distributional variability (for
an in depth discussions of individual rt distributions consult Van Zandt, 2000, 2002), older
studies have sought to characterize reaction time distributions in more general terms as
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Figure 2. Estimated densities for the distributions of reaction times of selected items in a visual
lexical decision experiment.

following an Ex-Gaussian (the convolution of normal and exponential distributions), an
inverse-Gaussian (Wald), a log-normal, or a Gamma distribution (see, e.g., Luce, 1986;
Ratcliff, 1993). Figure 3 illustrates the problems one encounters when applying these pro-
posals for the reaction times in visual lexical decision elicited from 16 subjects for 52 Serbian
words. With correlation between observed and expected quantiles we can certify that the
Wald’s distribution (the Inverse Gaussian) seems to fit the data the best: r =-0.997 (t(801)
= -387.43, p = 0). The Ex-Gaussian distribution closely follows: r =0.985 (t(801) = 163.1,
p = 0), while the Log-normal and the Gamma distributions provide somewhat weaker fits:
r =0.984 (t(801) = 155.45, p = 0) and r =0.965 (t(801) = 104.89, p = 0), respectively.

Although Figure 3 might suggest the inverse normal distribution is the optimal choice,
the relative goodness of fit of particular theoretical models varies across experimental tasks,
however. To illustrate this point, we have randomly chosen one thousand rts from three
priming experiments using visual lexical decision, sentence reading and word naming. Fig-
ure 4 indicates that the Inverse Gaussian provides a better fit than the Log-Normal for the
rts harvested from the lexical decision experiment, just as observed for lexical decision in
Figure 3. However, for sentence reading, the Log-Normal outperforms the Inverse Gaussian,
while both theoretical models provide equally good fits for the naming data, where even the
Gamma distribution approaches the same level of goodness of fit (r = 0.995).
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Figure 3. Goodness of fit of four theoretical distributions to response latencies in visual lexical
decision.

Thus, it is an empirical question which theoretical model provides the best approxi-
mation for one’s data. Two considerations are relevant at this stage of the analysis. First, in
analyses aggregating over items to obtain subject means, or aggregating over subjects to ob-
tain item means, simulation studies suggest that the Inverse Gaussian may outperform the
Log-Normal Ratcliff (1993). Given the abovementioned variability across subjects, items,
and tasks, it should be kept in mind that this superiority may be specific to the assump-
tions built into the simulations – assumptions that may be more realistic for some subjects,
items, and tasks, than for others. The Ex-Gaussian distribution (Luce, 1986) is a theoret-
ically interesting alternative, and one might expect it to provide better fits given that it
has one parameter more than Inverse Normal or Log-Normal. Nevertheless, our examples
suggest it is not necessarily one’s best choice – the power provided by this extra parameter
may be redundant. Of course, for models with roughly similar goodness of fit, theoretical
considerations motivating a given transformation should be given preference.

A second issue is more practical in nature. When rts are transformed, a fitted general
linear model provides coefficients and fitted latencies in another scale than the millisecond
time scale. In many cases, it may be sufficient to report the data on the transformed
scale. However, it may be necessary or convenient to visualize partial effects on the original
millisecond scale, in which case the inverse of the transformation is required. This is no
problem for the Log-Normal and the Inverse-Gaussian transforms, but back-transforming
an Ex-Gaussian is far from trivial, as it requires Fourier transformations and division in the
Fourier domain, or Maximum Entropy deconvolution (see, e.g., Wagenmakers et al., 2008;
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Figure 4. Variation in goodness of fit of the Log-Normal and Inverse-Normal distributions across
three experimental tasks.
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Cornwell & Evans, 1985; Cornwell & Bridle, 1996; Beaudoin, 1999, and references cited
there).

Outliers

Once rts have been properly transformed, the question arises of whether there are
atypical and potentially overly influential values that should be removed from the data
set. Strictly speaking, one should differentiate between two types of influential points: the
outliers have acceptable value of the “input” variable while the value of the “response” is
either too large or too small; the extreme values are notably different from the rest of the
“input”values. Thus, influential values are those outliers or extreme values which essentially
alter the estimates, the residuals and/or the fitted values (more about these issues can be
found in Hocking, 1996). By defining rt as the measure of behavioural response we implied
that it may contain outliers and can be affected by extreme values. The question is how to
diagnose them and to put them under explicit control.

First of all, physically impossibly short rts (button presses within 5 ms of stimulus
onset) and absurdly long latencies (exceeding 5 seconds in a visual lexical decision task with
unimpaired undergraduate subjects) should be excluded. After that, more subtle outliers
may still be present in the cleaned data, however. Ratcliff (1993) distinguishes between two
kinds of outliers, short versus long response outliers. According to Ratcliff, short outliers
“stand alone” while long outliers “hide in the tail” (Ratcliff, 1993, p. 511). Even if long
outliers are two standard deviations above the mean, they may be difficult to locate and
isolate. Unfortunately, even a single extreme outlier can considerably increase mean and
standard deviation (Ratcliff, 1979).

There are two complementary strategies for outlier treatment that are worth consid-
ering. Before running a statistical analysis, the data can be screened for outliers. However,
after a model has been fitted to the data, model criticism may also help identify overly
influential outliers. A-priori screening is regular practice in psycholinguistics. By contrast,
model criticism seems to be undervalued and underused.

A-priori screening for outliers is a widely accepted practice in traditional by-subject
and by-item analyses. It simply removes all observations that are at a distance of more
than two standard deviations from the mean of the distribution. Nevertheless, there is a
risk to this procedure. If the effect “lives” in the right tail of the distribution, as Luce
(1986) discussed pointing out that the decision itself may behave as exponential – right-
hand component of the distribution, then removing longer and long latencies may in fact
reduce or cancel out the effect in the statistical analysis (see Ratcliff, 1993). Conversely, if
the effect is not in the tail, then removing long rts increases statistical power (c.f., Ratcliff,
1993; Van Zandt, 2002). For analyses using data aggregated over items or subjects, Ratcliff’s
advice is that cutoffs should be selected as a function of the proportion of responses removed.
Up to 15% of the data can be removed, but only if there is no thick right tail, in which case
no more than 5% of the data should be excluded.

We note here that much depends on whether outliers are considered before or after
transforming the reaction times. Data points that look like outliers before the transforma-
tion is applied may turn out to be normal citizens after transformation. More generally, if
the precondition of normality is well met, then outlier removal before model fitting is not
necessary.
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In analyses requiring aggregating over items and/or subjects, the question arises
whether in the presence of outliers, the mean is the best measure of central tendency.
It has been noted that as long as the distribution is roughly symmetrical, the mean will
be an adequate measure of central tendency (c.f., Keppel & Saufley Jr., 1980; Sirkin, 1995;
Miller, Daly, Wood, Roper, & Brooks, 1997). For non-symmetrical distributions, however,
means might be replaced by medians (see, for example, Whelan, 2008). The median is
much more insensitive to the skew of the distribution, but at the same time it can be less
informative. Van Zandt (2002) showed that the median is biased estimator of population
central tendency when the population itself is skewed, although this bias is relatively small
for samples of N ≥ 25. At the same time, the results of Ratcliff (1993)’s simulations showed
that the median of the untransformed rts has much higher variability compared to the
harmonic mean H = n/

∑
n

i=1

1

xi
. Unfortunately, the harmonic mean is more sensitive to

outliers and cutoffs then the median. If the noise is equally spread out across experimental
conditions and if an appropriate cutoff is used, then the harmonic mean would be a beter
choice than the median, while the median will be more stable if outliers are not distributed
proportionally across conditions.

While a-priori “agressive” screening for outliers is defendable for by-subject and by-
item anovas, critically depending on means aggregated over subjects or items, the need
for optimizing central values before data analysis disappears when the analysis targets the
more ambitious goal of predicting individual rts using mixed-effects models with subjects
and items as crossed random-effect factors. The mixed-modeling approach allows for mild
a-priori screening for outliers, in combination with model criticism, a second important
procedure for dealing with outliers.

In the remainder of this study, we provide various code snippets in the open source
statistical programming environment R (http://www.r-project.org/), which provides a
rich collection of statistical tools. The dataset that we use here for illustrating outlier treat-
ment is available in the languageR package as lexdec. Visual lexical decision latencies were
elicited for 21 subjects responding to 79 concrete nouns. Inspection of quantile-quantile
plots suggests that a Inverse-Gaussian transformation is optimal. Quantile-quantile plots
for the individual subjects are brought together in the trellis shown in Figure 5.

> qqmath(~RTinv | Subject, data = lexdec)

The majority of subjects come with distributions that do not depart from normality.
However, as indicated by Shapiro tests for normality, there are a few subjects that require
further scrutiny, such as subjects A3 and M1.

> f = function(dfr) return(shapiro.test(dfr$RTinv)$p.value)

> p = as.vector(by(lexdec, lexdec$Subject, f))

> names(p) = levels(lexdec$Subject)

> names(p[p < 0.05])

[1] "A3" "M1" "M2" "P" "R1" "S" "V"

Figure 6 presents the densities for the four subjects for which removal of a few extreme
outliers failed to result in normality. The two top leftmost panels (subjects A3 and M1) have
long and thin left tails due to a few outliers, but their removal results in clearly bimodal



REACTION TIME ANALYSIS 9

quantiles of standard normal

R
T

in
v

0.0005
0.0010
0.0015
0.0020
0.0025
0.0030

−2 0 1 2

A1 A2

−2 0 1 2

A3 C

−2 0 1 2

D

I J K M1

0.0005
0.0010
0.0015
0.0020
0.0025
0.0030

M2
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030

P R1 R2 R3 S

T1 T2 V W1

0.0005
0.0010
0.0015
0.0020
0.0025
0.0030

W2
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030

Z

Figure 5. By-subject quantile-quantile plots for the inverse-transformed reaction times (visual
lexical-decision).

distributions, as can be seen in the corresponding lower panels. The density for subject M2
shows a leftward skew without outliers, but after removing some highest and lowest values
distribution gets two modes of almost equal hight. Conversely, the density for subject V is
again bimodal before, and gently skewed to the left after the removal.

Minimal trimming for subjects A3, M1, P, R1, S resulted in a new data frame (the
data structure in R for tabular data), which we labeled lexdec2. With the trimming we
lost 2.7% of the original data, or 45 data points. For comparison, we also created a data
frame with all data points removed that exceeded 2 standard deviations from either subject
or item means (lexdec3). This data frame comes with a loss of 134 datapoints (8.1% of
the data). These data frames allow us to compare models with different outlier-handling
strategies. (In what follows, we multiplied the inversely transformed rts by −1000 so that
coefficients will have the same sign as for models fitted to the untransformed latencies, at the
same time avoiding very small values and too restricted range for the dependent variable.)

A model fitted to all data, without any outlier removal:

> lexdec.lmer = lmer(-1000 * RTinv ~ NativeLanguage + Class + Frequency +

+ Length + (1 | Subject) + (1 | Word), data = lexdec)
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Figure 6. Density plots for subjects for which the Inverse-Gaussian transform does not result
in normality (visual lexical-decision). Upper panels represent untrimmed data, while lower panels
depict the distributions for two subjects after minimal trimming.

> cor(fitted(lexdec.lmer), -1000 * lexdec$RTinv)^2

[1] 0.5171855

performs less well in terms of R2 than a model with the traditional aggressive a-priori data
screening:

> lexdec.lmer3 = lmer(-1000 * RTinv ~ NativeLanguage + Class +

+ Frequency + Length + (1 | Subject) + (1 | Word), data = lexdec3)

> cor(fitted(lexdec.lmer3), -1000 * lexdec3$RTinv)^2

[1] 0.59104

while mild initial data screening results in a model with an intermediate R2:

> lexdec2.lmer = lmer(-1000 * RTinv ~ NativeLanguage + Class +

+ Frequency + Length + (1 | Subject) + (1 | Word), data = lexdec2)

> cor(fitted(lexdec2.lmer), -1000 * lexdec2$RTinv)^2

[1] 0.5386757

Inspection of the residuals of this model (lexdec2.lmer) shows that it is stressed,
and fails to adequately model longer response latencies, as can be seen in the lower left
panel of Figure 7. To alleviate the stress from the model, we remove data points with
absolute standardized residuals exceeding 2.5 standard deviations:

> lexdec2A = lexdec2[abs(scale(resid(lexdec2.lmer))) < 2.5, ]

> lexdec2A.lmer = lmer(-1000 * RTinv ~ NativeLanguage + Class +

+ Frequency + Length + (1 | Subject) + (1 | Word), data = lexdec2A)

> cor(fitted(lexdec2A.lmer), -1000 * lexdec2A$RTinv)^2



REACTION TIME ANALYSIS 11

−3 −1 0 1 2 3

−
1

.0
0

.0
1

.0

 

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

full data

−3 −1 0 1 2 3

−
0

.5
0

.0
0

.5

 

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

agressive a−priori trimming

−3 −1 0 1 2 3

−
1

.0
0

.0
0

.5
1

.0

 

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

minimal a−priori trimming, 

no model criticism

−3 −1 0 1 2 3

−
0

.6
−

0
.2

0
.2

0
.6

 

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

minimal trimming and 

model criticism

Figure 7. Quantile-quantile plots for the models with different strategies of outlier removal.

[1] 0.5999562

The last model, which combines both mild initial data screening and model criticism,
outperforms all other models in terms of R2. Compared to the traditional aggressive data
trimming procedure, it succeeds in doing so by achieving reasonable closeness to normal-
ity, while removing fewer data points (82 versus 134). The quantile-quantile plot for the
residuals of this model is shown in the lower right panel of Figure 7.

What this example shows is that a very good model can be obtained with minimal
a-priori screening, combined with careful post-fitting model criticism based on evidence
that the residuals of the fitted model do not follow a normal distribution. If there is no
evidence for stress in the model fit, then removal of outliers is not necessary and should not
be carried out. Furthermore, there are many diagnostics for identifying overly influential
outliers, such as variance inflation factors and Cook’s distance, which may lead to a more
parsimoneous removal of data points compared to the procedure illustrated in the present
paper. It simply errs on the conservative side, but allows the researcher to quickly assess
whether or not an effect is carried by the majority of data points.

We note here that it may well be that the data points removed due to model criti-
cism reflect decision processes distinct from the processes subserving lexical retrieval, which
therefore may require further scrutiny when these decision processes are targeted by the
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Figure 8. Autocorrelation functions for the subjects in a present-to-past word naming study. Grey
horizontal lines represent the upper bound of an approximate 95% confidence interval.

experiment.

Temporal dependencies

The third issue that needs to be addressed when modeling reaction times is the tem-
poral dependencies that exist between successive trials in many experiments (Broadbent,
1971; Welford, 1980; Sanders, 1998; Taylor & Lupker, 2001, etc.). Often, rts at trial t
correlate with rt at trial t − i, for small i. This temporal auto-dependency can be quanti-
tatively expressed in terms of the autocorrelation coefficient. In the case of reaction times,
there often is an inverse relationship of the distance or lag between predecessor/successor
rt and the coefficient of autocorrelation: the longer the lag the weaker the autocorrelation.

To illustrate the phenomenon of trial-by-trial dependencies, we consider data from a
word naming study on Dutch (Tabak, Schreuder, & Baayen, 2010a), in which subjects were
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shown a verb in the present (or paste) tense and were requested to name the corresponding
past (or present) tense form. Figure 8 shows the autocorrelation functions for the time
series of rts for each of the subjects, obtained by applying acf.fnc function from the
languageR package (version 1.0), which builds on the acf function from stats package in
R and lattice graphics.

> acf.fnc(dat, group = "Subj", time = "Trial", x = "RT", plot = TRUE)

Many subjects show significant autocorrelations at short lags, notably at a lag of one.
For some subjects, such as s10 and s17, significant autocorrelations are found across a
much wider span of lags. As the generalized linear model (and special cases such as analysis
of variance) build on the assumption of the independence of observations, corrective
measures are required. In what follows, we illustrate how this temporal correlation can be
removed by taking as example results from subject s10. A regression model is fitted to
this subject’s responses, with a log-transform for the naming latencies, using a quadratic
(non-orthogonal) polynomial for word frequency, and with two covariates to bring temporal
dependencies under control: Trial and the Preceding RT. The coefficients of the fitted
model are listed in Table 1.

> exam.ols = ols(RT ~ pol(Frequency, 2) + rcs(Trial) + PrecedingRT,

+ data = exam)

The first temporal control, Trial, represents rank-order of a trial in its exper-
imental sequence. Since trials are usually presented to each participant in different,
(pseudo)randomized sequence, rank-ordering is unique between participants. In general,
this control covariate models the large-scale flow of the experiment, representing learning
(latencies becoming shorter) or fatigue (latencies becoming longer as the experiment pro-
ceeds). For the present subject (s10), responses were executed faster as the experiment
proceeded, suggesting adaptation to the task (upper left panel of Figure 9). It is worth
noting that the trial number in an experimental session may enter into an interaction with
one or more critical predictors, as in the eye-tracking study of Bertram, Kuperman, and
Baayen (2010). Figure 9 indicates that the present learning effect is greater in magnitude
than the effect of frequency.

The second temporal control covariate is the latency at the preceding trial (Preced-

ing RT). For the initial trial, this latency is imputed from the other latencies in the time
series (often as mean reaction time). The current latency and the preceding latency are
highly correlated (r = 0.46, t(250) = 8.13, p ≪ 0.0001). The effect size of Preceding RT

is substantial, and greater than the effect size of Frequency (see Figure 9). Studies in
which this predictor has been found to be significant range from speech production (picture
naming, Tabak, Schreuder, & Baayen, 2010b), and speech comprehension (auditory lexi-
cal decision, Baayen, Wurm, & Aycock, 2007; Balling & Baayen, 2008), to reading (visual
lexical decision, De Vaan, Schreuder, & Baayen, 2007; Kuperman, Schreuder, Bertram, &
Baayen, 2009; and progressive demasking, Lemhoefer et al., 2008).

A model with just Frequency as predictor has an R-squared of 0.027. By adding
Trial as predictor, the R-squared improves to 0.288. Including both Trial and Pre-

ceding RT results in an R-squared of 0.334. The lower panels of Figure 9 illustrate that
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Value Std. Error t p

Intercept 5.6850 0.4730 12.0179 0.0000
Frequency (linear) -0.1657 0.0610 -2.7179 0.0070
Frequency (quadratic) 0.0088 0.0036 2.4282 0.0159
Trial -0.0013 0.0002 -6.3415 0.0000
Preceding RT 0.2570 0.0601 4.2777 0.0000

Table 1: Coefficients of an ordinary least-squares regression model fitted to the naming latencies of
subject 19s.

including Trial as predictor removes most of the autocorrelation at later lags, but a sig-
nificant autocorrelation persists at lag 1. By including Preceding RT as predictor, this
autocorrelation is also removed.

Across many experiments, we have found that including variables such as Trial and
Preceeding RT in the model not only avoids violating the assumptions of linear modeling,
but also helps improving the fit and clarifying the role of the predictors of interest (see, e.g.,
De Vaan et al., 2007).

An example of mixed-effects modeling

Mixed-effects models offer the researcher the possibility of analyzing data with more
than one random-effect factor – a factor with levels sampled from some large population.
In psycholinguistics, typical random-effect factors are subjects (usually sampled from the
undergraduate students that happen to be enrolled at one’s university) and items (e.g.,
syllables, words, sentences). Before the advent of mixed-models, data with repeated mea-
surements for both subjects and items had to be analyzed by aggregating over items to
obtain subject means, aggregating over subjects to obtain item means, or both (see,e.g.,
Clark, 1973; Forster & Dickinson, 1976; Raaijmakers, Schrijnemakers, & Gremmen, 1999,
and references cited there). mixed-models obviate the necessity of prior averaging, and
thereby offer the researcher the far more ambitious goal to model the individual response of
a given subject to a given item. Importantly, mixed-models offer the possibility of bringing
sequential dependencies, as described in the preceding section, into the model specification.
They also may offer a small increase in power, and better protection against Type II errors.
In what follows, we discuss, a large dataset illustrating some of the novel possibilities offered
by the mixed-modeling framework building on prior introductions (here we build on prior
introductions given by Pinheiro & Bates, 2000; Baayen et al., 2008; Jaeger, 2008; Quené &
Bergh, 2008, etc.). Analyses are run with the lme4 package for R (Bates & Maechler, 2009).

The data

The dataset comprises 275996 self-paced reading latencies elicited through a web
interface from 326 subjects reading 2315 words distributed over 87 poems in the anthology
of Breukers (2006). Subjects included students in an introductory methods class, as well
as their friends and relatives. For fixed-effect factors, we made use of contrast coding, as
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Figure 9. Partial effects of Frequency, Trial, and Preceding RT (upper panels), and auto-
correlation functions for the residuals of three regression models fitted to the data of subject 19s
(left: Frequency as only predictor, center: Frequency and Trial, right: Frequency, Trial

and Preceding RT.

this allows for a more straightforward interpretation of interactions involving factors and
covariates. We made use of five kinds of predictors.

1. Properties of the words: word length (WordLength), the (log-transformed) long-
term frequency of the word, estimated from the celex lexical database (WordForm-

Frequency), the word’s number of meanings, estimated from the number of synsets in
the Dutch WordNet in which it is listed (SynsetCount), the word’s morphological fam-
ily size – the number of words in which it forms a constituent (FamilySize), the word’s
inflectional entropy, specifying an information load of its inflectional paradigm (Inflec-

tionalEntropy), the word’s count of morphemes (Nmorphemes), and whether the word
is a function word (IsFunctionWord, with reference level ’false’). (For the theoretical
framework guiding the selection of these predictors, see Baayen, 2007 and Milin, Kuperman,
Kostić, & Baayen, 2009.) Further predictors are the frequency of the word in the poem up
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to the point of reading (LocalFrequency), the frequency of the rhyme in the poem up to
the point of reading (LocalRhymeFreq), and the frequency of the word’s onset up to the
point of reading (LocalOnsetFreq). Rhymes and onsets were calculated for the last and
first syllables of the word, respectively. Onsets were defined as all consonants preceding the
vowel of the syllable, and rhymes were defined as the vowel and all tautosyllabic following
consonants. Note that these last three predictors are not available to analyses that crucially
require aggregation over subjects and/or items.
Unsurprisingly, LocalRhymeFreq and LocalOnsetFreq enter into strong correlations
with LocalFrequency (r > 0.6). We therefore decorrelated LocalRhymeFreq from
LocalFrequency by regressing LocalRhymeFreq on LocalFrequency and taking
the residuals as new, orthogonalized, predictor. The same procedure was followed for
LocalOnsetFreq. The two residualized variables correlated well with the original mea-
sures (r = 0.77 for LocalRhymeFreq and r = 0.80 for LocalOnsetFreq). Thus,
decorrelation was justified to control for the collinearity, but, moreover, it did not change
the nature of the original predictors.

2. Properties of the lines of verse: the length of the sentence (SentenceLength),
the position of the word in the sentence (Position, a fixed-effect factor with levels ’Initial’,
’Mid’, ’Final’, with ’Initial’ as reference level), whether the word was followed by a punc-
tiation mark (PunctuationMark, reference level ’false’), and the number of words the
reader is into the line (NumberOfWordsIntoLine).

3. Properties of the subject: Age (ranging from 13 to 63, median 23), Sex (187
women, 142 men), Handedness (39 left handed, 290 right handed), and two variables
elicited during a questionairre at the end of the experiment. This questionaire asked subjects
to indicate (through a four-way multiple choice) how many poems they estimated reading
on a yearly basis, this estimate was log-transformed (PoemsReadYearly). The time
required to reach this choice was also recorded, and log-transformed (ChoiceRT).

4. Longitudinal predictors: Trial, the number of words read at the point of reading
(ranging from 1 to 1270), and Preceding RT, the self-paced reading latency at the pre-
ceding word. These two predictors are not available for analyses based on aggregated data
as well.

5. Three random-effect factors: Subject, Word, and Poem. Note that we can
include more than two random-effect factors if there are multiple kinds of repeated measures
in the dat; no separate F1, F2 F3, . . . , Fn tests need to be carried out.

A model

A stepwise variable selection procedure resulted in a model that is specified as
follows, using the lmer function from lme4 package in R:

poems.lmer = lmer(

RT ~

WordLength + I(WordLength^2) +

WordFormFrequency + I(WordFormFrequency^2)+

SynsetCount + FamilySize + InflectionalEntropy +

IsFunctionWord + Nmorphemes +
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LocalFreq + LocalRhymeFreqResid + LocalOnsetFreqResid +

SentenceLength + NumberOfWordsIntoLine + Position + PunctuationMark +

Sex + Age + PoemsReadYearly + ChoiceRT +

Trial + PrecedingRT +

Position * (FamilySize + InflectionalEntropy) +

SentenceLength * SynsetCount +

Sex * (PunctuationMark + Nmorphemes + Position + WordFormFrequency) +

(1 | Poem) +

(1 + Nmorphemes + WordFormFrequency | Subject) +

(1 + ChoiceRT + Age | Word),

data= poems

)

Main effects are listed separated by a plus sign, interactions are specified by an as-
terisk. Here, we used a quadratic polynomial for, e.g., the negative decelerating trend
of WordFormFrequency. We specified the terms for the linear component and the
quadratic component (indicated by ^2) separately in order to be able to restrict an inter-
action with Sex to the linear component.

Random-effect factors are specified between parentheses. The notation (1 | Poem)

indicates that the model includes random intercepts for Poem. This allows for the pos-
sibility that some poems might be more difficult or more interesting to read, leading
to longer reaction times across all words in the poem and across all subjects. The no-
tation (1 + Nmorphemes + WordFormFrequency | Subject) specifies a more interesting
random-effects structure for the subjects. Not only do we have random intercepts for the
subjects (indicated by the 1), we also have random slopes for the number of morphemes
in the word (Nmorphemes) as well as for WordFormFrequency. Inclusion of these
random slopes relaxes the assumption that the effect of Nmorphemes or WordForm-

Frequency would be identical across subjects. The same notation for the random-effect
factor Word indicates that random intercepts and random slopes for the subject’s Age

and ChoiceRT were required.

It is important to note here that random slopes for subjects pertain to properties of
the words, and that the random slopes for word pertain to properties of the subjects. These
notational conventions provide the analyst with flexible tools for tracing how the effects
of properties of items vary across subjects, and how characteristics of subjects affect the
processing of items.

Strictly speaking, the terminology of fixed versus random effects pertains to factors.
However, in mixed-modeling terminology, covariates are often reported as part of the fixed-
effects structure of the model. We shall follow this convention in the present paper. In
what follows, we first discuss the coefficients for the fixed effects (fixed-effect factors and
covariates), and then zoom into the random-effects structure of the model.

Fixed-effects structure

Table 2 lists the estimates for the intercept, the slopes, the contrast coefficients and
their interactions in the fitted model. For the present large dataset, an absolute t-value
exceeding 2 is an excellent indicator of significance (see Baayen et al., 2008). A full discussion
of this model is beyond the scope of the present paper. Here, we call attention to a few
aspects that are of methodological interest.
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Estimate Std. Error t value

Intercept 3.7877 0.0244 155.2758

WordLength -0.0024 0.0031 -0.7789
I(WordLength^2) 0.0010 0.0002 4.7543
WordFormFrequency -0.0240 0.0058 -4.0971
I(WordFormFrequency^2) 0.0051 0.0018 2.8385
SynsetCount 0.0240 0.0045 5.3294
FamilySize -0.0042 0.0013 -3.1877
InflectionalEntropy -0.0122 0.0027 -4.4556
IsFunctionWordTRUE 0.0055 0.0061 0.8920
Nmorphemes 0.0005 0.0013 0.3923
LocalFreq -0.0048 0.0004 -11.7279
LocalRhymeFreqResid 0.0029 0.0008 3.7343
LocalOnsetFreqResid -0.0062 0.0007 -8.5043

SentenceLength -0.0016 0.0005 -2.8406
NumberOfWordsIntoLine 0.0029 0.0004 7.6266
Position = Final 0.0608 0.0061 9.8940
Position = Mid -0.0621 0.0038 -16.2994
PunctuationMark = TRUE 0.1496 0.0031 48.8943

Sex = Male -0.0516 0.0149 -3.4612
Age 0.0034 0.0005 6.2285
PoemsReadYearly -0.0111 0.0060 -1.8456
ChoiceRT 0.0543 0.0087 6.2233

Trial -0.0002 0.0000 -73.1891
PrecedingRT 0.3957 0.0017 234.5453

FamilySize : Position = Final 0.0028 0.0013 2.2295
FamilySize : Position = Mid 0.0035 0.0008 4.4843
InflectionalEntropy : Position = Final 0.0140 0.0027 5.1897
InflectionalEntropy : Position = Mid 0.0077 0.0021 3.7411
SynsetCount : SentenceLength -0.0023 0.0004 -5.7932
PunctuationMark = TRUE : Sex = Male -0.0291 0.0040 -7.3039
Nmorphemes : Sex = Male -0.0024 0.0013 -1.9004
Position = Final : Sex = Male -0.0144 0.0044 -3.2749
Position = Mid : Sex = Male -0.0121 0.0031 -3.8598
WordFormFrequency : Sex = Male 0.0110 0.0045 2.4410

Table 2: Estimated coefficients, standard errors, and t-values for the mixed-model fitted to the
self-paced reading latencies elicited for Dutch poems.
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First, it is noteworthy that the two coefficients with the largest absolute t-values
are two control predictors that handle temporal dependencies: Trial and PrecedingRT.
Their presence in the model not only helps satisfy to a better extent the independence
assumption of the linear model, but also contribute to a more precise model with a smaller
residual error. Simply stated, these predictors allow a more precise estimation of the con-
tributions of the other, theoretically more interesting, predictors.

Second, our model disentangles the contributions of long-term frequency (as gauged
by frequency of occurrence in a corpus) from the contribution of the frequency with which
the word has been used in the poem up to the point of reading. Long-term frequency
(WordFormFrequency) emerged with a negative decelerating function, with diminishing
facilitation for increasing frequencies. Short-term frequency (LocalFreq) made a small
but highly significant independent contribution. We find it remarkable that this short-term
(i.e., episodic) frequency effect is detectable in spite of massive experimental noise.

Independently of short-term frequency, the frequency of the rhyme (Local-

RhymeFreqResid) and the frequency of the onset (LocalOnsetFreqResid) reached
significance, with the local frequency of the rhyme emerging as inhibitory, and the local
frequency of the onset as facilitatory. Thus two classic poetic devices, end-rhyme and al-
literation, emerge with opposite sign. The facilitation for alliteration may arise due to
cohort-like preactivation of words sharing word onset, the inhibition for rhyming may re-
flect an inhibitory neighborhood density effect, or a higher cognitive effect such as attention
to rhyme when reading poetry. Crucially, the present experiment shows that in the mixed-
modeling framework effects of lexical similarity can be studied not only in the artificial
context of controlled factorial experiments, but also in the natural context of the reading of
poetry.

Third, the present model provides some evidence for sexual differentiation in lexical
processing. Ullman and colleagues (Ullman et al., 2002; Ullman, 2007) have argued that
females have an advantage in declarative memory, while males might have an advantage
in procedural memory. With respect to the superior verbal memory of females (see also
Kimura, 2000), note that the negative decelerating effect of long-term frequency (Word-

FormFrequency) is more facilitatory for females than for males: for males, the linear
slope of WordFormFrequency equals −0.0240 + 0.0110 = −0.0130 while for females it
is −0.0240. In other words, the facilitation from word frequency is almost twice as large for
females compared to males.

There is also some support for an interaction of the morphological complexity (Nmor-

phemes) by Sex. While for females, Nmorphemes has zero slope (β̂ = 0.0005, t = 0.39),
males show slightly shorter reading times as the number of morphemes increases (β̂ =
0.0005 − 0.0024 = −0.0019, t = −1.90, p < 0.05, one-tailed test). This can be construed as
evidence for a greater dependence on procedural memory for males. The evidence, however,
is weaker than the evidence for the greater involvement of declarative memory for females.
We will return to these interactions in more detail below.

Random-effects structure

The random-effects structure of our model is summarized in Table 3. There are three
random-effect factors, labeled as ‘Groups’: Word, Subject, and Poem. For each, the table
lists the standard deviation for the adjustments to the intercepts. For Word and Subject,
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standard deviations are also listed for the adjustments to two covariates: ChoiceRT and
Age to Word, and NMorphemes and WordFormFrequency to Subject. (For tech-
nical reasons, these covariates were centered, see (Pinheiro & Bates, 2000).) For each of
these two pairs of covariates, correlation parameters have been estimated, two pertaining
to correlations of random slopes with random intercepts, and one pertaining to correlations
between random slopes.

Groups Name Standard Correlations Correlations
Deviation with Intercept between Slopes

Word Intercept 0.063
ChoiceRT 0.012 0.840
Age 0.001 -0.905 -0.779

Subject Intercept 0.130
Nmorphemes 0.005 0.379
WordFormFrequency 0.039 -0.637 -0.212

Poem Intercept 0.024

Residual 0.287

Table 3: Summary of the random-effects structure in the model fitted to the self-paced reading
latencies (number of observations: 275996, groups: Word, 2315; Subject, 326; Poem, 87).

In what follows, we first assess whether the large number of parameters (7 standard
deviations, excluding in this count the residual error, and 6 correlations) is justifiable in
terms of a significant contribution to the goodness of fit of the model. Then, we discuss
how this random-effects structure can be interpreted. Finally, some conclusions will be
given with illustrating the consequences of modeling random effects for the evaluation of
the significance of the fixed-effects coefficients.

Evaluation of significance. A sequence of nested models was built, with increased
complexity of the random-effects structure that required the investment of more parame-
ters. For each successive pair of models, the results of a likelihood ratio test were applied,
evaluating whether the additional parameters provide a better fit of the model to the data.
The specifications for the lmer function of the random effects for these models are as follows:

random intercepts only (1|Word) + (1|Subject) + (1|Poem)

random intercepts and slopes (1|Word) + (0+Age|Word) + (0+ChoiceRT|Word) +

+ (1|Subject) + (0+Nmorphemes|Subject) +

+ (0+WordFormFreq|Subject) + (1|Poem)

by-word correlations added (1+Age+ChoiceRT|Word) + (1|Subject) +

+ (0+Nmorphemes|Subject) +

+ (0+WordFormFreq|Subject) + (1|Poem)

by-subject correlations added (1+Age+ChoiceRT|Word) +

(1+Nmorphemes+WordFormFreq|Subject) + (1|Poem)
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The first model has random intercepts only, the second has both random intercepts
and random slopes, but no correlation parameters. The third model adds in the by-word
correlation parameters. The fourth model is our final model, with the full random-effects
structure in place. In particular, the notation (1+WordFormFreq|Subject) instructs the al-
gorithm to estimate a correlation parameter for the by-subject random intercepts and the by-
subject random slopes for WordFormFrequency. Conversely, the notation (1|Subject)

+ (0+WordFormFreq|Subject) specifies that the by-subject random intercepts should be
estimated as independent of the by-subject random slopes for WordFormFrequency,
i.e., without investing a parameter for their correlation.

Table 4 summarizes the results of the likelihood ratio tests for the sequence of nested
models (including also log-likelihood, aic and bic values). The test statistic follows a
chi-squared distribution, with the difference in the number of parameters between the more
specific and the more general model as the degrees of freedom. The chi-squared test statistic
is twice the ratio of the two log-likelihoods. As we invest more parameters in the random-
effects structure (see the column labeled ‘df’, which lists the total number of parameters,
including the 34 fixed-effects coefficients), goodness of fit improves, as witnessed by decreas-
ing values of aic and bic, and increasing values of the log likelihood. For each pairwise
comparison, the increase in goodness of fit is highly significant. Other random slopes were
also considered, but were not supported by likelihood ratio tests.

df aic bic log-likelihood χ2 dfχ2 p
random intercepts only 38 104893 105293 -52408
random intercepts and slopes 42 101103 101545 -50509 3797.9 4 ≪ 0.0001
by-word correlations added 45 101029 101503 -50470 79.4 3 ≪ 0.0001
by-subject correlations added 48 100880 101386 -50392 155.2 3 ≪ 0.0001

Table 4: Likelihood ratio tests comparing models with increasingly complex random-effects structure:
a model with random intercepts only, a model with by-subject and by-word random intercepts and
slopes, but no correlation parameters, a model adding in the by-word correlation parameters, and
the full model with also by-subject correlation parameters. (df: the number of parameters in the
model, including the coefficients of the fixed-effect part of the model.)

Interpretation of the random effects structure. Given that the present complex
random-effects structure is justified, the question arises how to interpret the parameters.
Scatterplot matrices, as shown in Figure 10, often prove to be helpful guides. The left
matrix visualizes the random effects structure for words, the right matrix that for sub-
jects, where in the left matrix each dot represents a word, and in the right matrix a dot
represents a subject. For each pair of covariates, the blups (the best linear unbiased pre-
dictors) for the words (left) and subjects (right) are shown. The blups can be understood
as the adjustments required to the population estimates of intercept and slopes to make the
model precise for a given word or subject. Correlational structure is visible in all panels, as
expected given the 6 correlation parameters in the model specification.

First consider the left matrix in Figure 10. It shows much tighter correlations, which
arise because in this experiment words were partially nested under poem and subject. With
limited information on the variability across subjects and in respect to words’ processing
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Figure 10. Visualization of the correlation structure of the random intercepts and slopes for Word

(left) and Subject (right) by means of scatterplot matrices.

difficulty, estimated correlations are tight. In the first row of the left panel, differences in the
intercept (on the vertical axis) represent differences in the baseline difficulty of words. Easy
words (with short self-paced reading latencies) have downward adjustments to the intercept,
difficult words (with long latencies) have upward adjustments. These adjustments for the
intercept correlate positively with the adjustments for the slope of the ChoiceRT, the time
required for a subject to complete the final multiple choice question about the number of
poems read on a yearly basis. The estimated population coefficient for this predictor is
β̂ = 0.0543 (c.f., Table 2): Careful, slow respondents are also slow and careful readers.
Across words, the adjustments to this population slope for Choice RT give rise to word-
specific slopes ranging from 0.022 to 0.109. The positive correlation of the by-word intercepts
and these by-word slopes indicates that for difficult words (large positive adjustments to
the intercept), the difference between the slow and fast responders to the multiple choice
question is more pronounced (as reflected by upward adjustments resulting in even steeper
positive slopes). Conversely, for words with the larger downward adjustments to the slope
of ChoiceRT, the easy words, the difference between the slow (presumably careful and
precise) and fast (more superficial) responders is attenuated.

Next, from the fixed-effects part of the model, we know that older subjects are char-
acterized by longer reaction times (β̂ = 0.0034). The effect of Age is not constant across
words, however. For some words (with maximal downward adjustment for Age), the effect
of Age is actually cancelled out, while there are also words (with positive adjustments) for
which the effect of Age is felt even more strongly. The negative correlation for the by-word
adjustments to the slope for Age and the by-word adjustments to the intercept indicates
that it is for the more difficult words that the effect of Age disappears, and that it is for
the easier words that the effect of Age manifests itself most strongly.

The negative correlation for Age and Choice RT indicates that the words for which
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greater Age leads to the longest responses are also the words for which elongated choice
behavior has the smallest processing cost. The three correlations considered jointly indicate
that the difficult words (large positive adjustments to the intercept) are the words where
careful choice behavior is involved, but not so much Age, whereas the easy words (downward
adjusted intercepts) are those where differences in age are most clearly visible, but not choice
behavior.

The scatterplot matrix in the right panel of Figure 10 visualizes the less tight corre-
lational structure for the by-subject adjustments to intercept and slopes. The adjustments
to the intercept position subjects with respect to the average response time. Subjects with
large positive blups for the intercept are slow subjects, those with large negative blups are
fast responders.

The population slope for the count of morphemes in the word (Nmorphemes) is 0
for females and -0.002 for males. By-subject adjustments range from -0.008 to +0.008,
indicating substantial variability exceeding the group difference. Subjects with a more
negative slope for Nmorphemes tend to be faster subjects, those with a positive slope tend
to be the slower subjects.

The linear coefficient of WordFormFrequency estimated for the population is
−0.024 for females and −0.013 for males. For different female subjects, addition of the
adjustments results in slopes ranging from −0.178 to 0.051, for males, this range is shifted
upwards by 0.011. For most subjects, we have facilitation, but for a few subjects there is no
effect or perhaps even an“anti-frequency”effect. The negative correlation for the by-subject
adjustments to the intercept and to the slope of frequency indicates that faster subjects,
with downward adjustments for the intercept, are characterized by upward adjustment for
WordFormFrequency slopes. Hence, these fast subjects have reduced facilitation or
even inhibition from WordFormFrequency. Conversely, slower subjects emerge with
stronger facilitation.

Interestingly, the correlation of the adjustments for WordFormFrequency and
Nmorphemes is negative, indicating that subjects who receive less facilitation from fre-
quency obtain more facilitation from morphological complexity and vice versa.

Consequences for the fixed-effects coefficients. Careful modeling of the correlational
structure of the random effects is important not only for tracing cognitive trade-offs such
as observed for storing (WordFormFrequency) and parsing (Nmorphemes), it is also
crucial for the proper evaluation of interactions with fixed-effect factors partitioning sub-
jects or items into subsets. Consider the interaction of Sex by WordFormFrequency

and Sex by Nmorphemes. In the full model, the former interaction receives good sup-
port with t = 2.44, while the latter interaction fails to reach significance (t = −1.90).
However, in models having only random intercepts for subjects, t-values increase to 7.73
and −1.99 respectively. These models are not conservative enough, however. They over-
value the interactions in the fixed-effects part of the model, while falling short with respect
to their goodness of fit, which could have been improved substantially by allowing into
the model individual differences between subjects with respect to WordFormFrequency

and Nmorphemes. In other words, when testing for interactions involving a group variable
such as Sex, the interaction should survive inclusion of random slopes, when such random
slopes are justified by likelihood ratio tests. In the present example, the interaction of
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Sex by WordFormFrequency survives inclusion of random slopes for WordFormFre-

quency, but the interaction with Nmorphemes does not receive significant support.

Model Criticism

To complete the analysis, we need to examine our model critically with respect to
potential distortions due to outliers. Before modeling, the data were screened for artificial
responses (such as those generated by subjects holding the spacebar down to skip poems
they did not like), but no outliers were removed. As the presence of outliers may cause
stress in the model, we removed datapoints with absolute standardized residuals exceeding
2.5 standard deviations (2.7% of the data). The trimmed model was characterized by
residuals that approximated normality more closely, as expected.

Model criticism can result in three different outcomes for a given coefficient. A coef-
ficient that was significant may no longer be so after trimming. If we recall the difference
between the outliers and the extreme values, in this case it is likely that a few extreme values
are responsible for the effect. Given that the vast majority of data points do not support
the effect, we then conclude that there is no effect. Conversely, a coefficient that did not
reach significance may be significant after model criticism. In that case, a small number of
outliers was probably masking an effect that is actually supported by the majority of data
points. In this case we conclude there is a significant effect. Data trimming may also not
affect the significance of a predictor in case the influential values have little leverage with
respect to that particular predictor.

For the present data, model criticism did lead to a revision of the coefficients for
the interactions of Sex by Nmorphemes and Sex by WordFormFrequency. For both,
evidence for a significant interaction increased. The t-value for the coefficient of the inter-
action of Sex by WordFormFrequency increased from 2.44 to 2.71, and the coefficient
for Sex by Nmorphemes showed absolute increase from −1.90 to −2.77. We note that
trimming does not automatically result in increased evidence for significance. For instance,
the support for the predictor PoemsReadYearly decreased after trimming, as indicated
by the t-value, with decreased absolute values from −1.85 to −1.75.

In the light of these considerations, we conclude that this data set provides evidence
supporting the hypothesis of Ullman and colleagues that the superior declarative memory of
women affords stronger facilitation from word frequency, whereas males show faster process-
ing of morphologically complex words, possibly due to a greater dependence on procedural
memory. Although these differences emerge as significant, over and above the individual
differences that are also significant, they should be interpreted with caution, as the effect
sizes are small. The facilitation from WordFormFrequency, evaluated by comparing the
effects for the minimum and maximum word frequencies, was 67 ms for females and 40 ms
for males; an advantage of 27 ms for females. The advantage in morphological processing for
males is 16 ms (a 10 ms advantage for males compared to a 6 ms disadvantage for females).

Concluding remarks

The approach to the statistical analysis of reaction time data that we have outlined is
very much a practical one, seeking to understand the structure of experimental data without
imposing a-priori assumptions about the distribution of the dependent variable, the nature
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and source of the influential values, the mechanisms underlying temporal dependencies,
or the functional shape of regressors. While anticipating that more specific well-validated
theory-driven assumptions will allow for improvements at all stages of analysis, we believe
that many of the classical methodological concerns can be addressed more effectively and
more parsimoniously in the mixed-modeling framework. Furthermore, what we hope to
have shown is that mixed-modeling offers new and exciting analytical opportunities for
understanding many of the different forces that simultaneously shape the reaction times,
which inform theories of human cognition.
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Milin, P., Filipović Durdević, D., & Moscoso del Prado Mart́ın, F. (2009). The simultaneous effects
of inflectional paradigms and classes on lexical recognition: Evidence from serbian. Journal
of Memory and Language, 60 (1), 50–64.
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