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Abstract

Recurrent event data are frequently encountered in longitudinal follow-up studies. In statistical
literature, noninformative censoring is typically assumed when statistical methods and theory are
developed for analyzing recurrent event data. In many applications, however, the observation of
recurrent events could be terminated by informative dropouts or failure events, and it is unrealistic
to assume that the censoring mechanism is independent of the recurrent event process. In this
article we consider recurrent events of the same type and allow the censoring mechanism to be
possibly informative. The occurrence of recurrent events is modeled by a subject-specific
nonstationary Poisson process via a latent variable. A multiplicative intensity model is used as the
underlying model for nonparametric estimation of the cumulative rate function. The multiplicative
intensity model is also extended to a regression model by taking the covariate information into
account. Statistical methods and theory are developed for estimation of the cumulative rate
function and regression parameters. As a major feature of this article, we treat the distributions of
both the censoring and latent variables as nuisance parameters. We avoid modeling and estimating
the nuisance parameters by proper procedures. An analysis of the AIDS Link to Intravenous
Experiences cohort data is presented to illustrate the proposed methods.
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1. INTRODUCTION

Recurrent event data are frequently encountered in longitudinal follow-up studies. In such a
study, the observation of recurrent events could be terminated at or before the end of the
study. For example, the recurrent events could be multiple occurrences of hospitalizations
from a group of patients, and the observation of the repeated hospitalization process could
be terminated by the end of the study, patient dropout, loss to follow-up, or patient death.

To analyze recurrent event data, the focus can be placed on time-between-events or time-to-
events models. When time between events is the variable of interest, various approaches
have been proposed for survival function estimation based on multiple events of different
types (Visser 1996; Wang and Wells 1997; Huang and Louis 1998; Lin, Sun, and Ying
1999;), or same type (Wang and Chang 1999), and for regression analysis (Gail, Santner,
and Brown 1980; Prentice, Williams, and Peterson 1981; Chang and Wang 1999, Huang
2000). In this article we consider recurrent events of the same type and focus on time-to-
events models. In the literature, time-to-events models were studied in the important articles
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of Prentice et al. (1981) and Andersen and Gill (1982) under either a Poisson-type process
assumption or the requirement that the event history be a part of the conditional statistics of
the occurrence probability of recurrent events. The independent increment assumption of the
Poisson-type process was relaxed by Lawless and Nadeau (1995) in the estimation of the
cumulative rate function, and by Pepe and Cai (1993) and Lin et al. (2000) for robust
inferences of semiparametric regression models. The methodological procedures considered
by these authors are based on the concept of risk sets where independent censoring is
required for the validity of the methods. In many applications, however, censoring could be
caused by informative dropouts or failure events, and it is unrealistic to assume
independence between the censoring mechanism and the recurrent event process. A
successful attempt to resolve the informative censoring problem was made by Lancaster and
Intrator (1998). Using panel data to motivate the research, they considered joint parametric
modeling of recurrent event and survival data and illustrated their methods with an analysis
of data from a human imunodeficiency virus (HIV) study. Examples motivated by
econometric applications can be found in the book by Lancaster (1990) and references
therein.

In this article we model the occurrence of recurrent events by a subject-specific
nonstationary Poisson process via a latent variable. In Section 2 we introduce a
multiplicative intensity model as the underlying model for nonparametric estimation of the
cumulative rate function. The multiplicative intensity model is extended to a semiparametric
regression model by taking the covariate information into account. We develop statistical
methods and theory for estimating the cumulative rate function and regression parameters in
Sections 3 and 4. As a major feature of this article, we treat both the distributions of the
censoring and latent variables as nuisance parameters. We avoid modeling and estimating
the nuisance parameters by the proposed procedures. In Sections 5 and 6 we present
simulation and an analysis of data from the AIDS Link to Intravenous Experiences (ALIVE)
cohort study as a means of illustrating the proposed methods. We conclude with a discussion
in Section 7.

2. INFORMATIVE CENSORING MODELS

Suppose that research interest is focused on the occurrence rate of recurrent events in the
time interval [0, T0], where the constant T0 > 0 is determined with the knowledge that
recurrent events could potentially be observed up to T0. Let N(t) denote the number of
recurrent events occurring at or before t, t ≥ 0. The rate function (RF) of a continuous
recurrent event process at t, t ∈ [0, T0], is defined as

The RF is conceptually and quantitatively different from the intensity function of a point
process; the RF is defined as the occurrence rate of recurrent events unconditional on the
event history, whereas the intensity function is the occurrence rate conditional on the event
history. In general, the RF gives more direct interpretations for identifying risk factors, and
the use of it is preferred over the intensity function in many applications. Further, define the

cumulative rate function (CRF) as . Let Y* be the censoring time at which
the observation of the recurrent event process is terminated. Because only the occurrence
rate in the time interval [0, T0] is of interest, recurrent event data beyond T0 will not be
useful in the analysis. Thus further define Y = min(Y*, T0) as the new censoring time to be
used in the proposed models and methods.
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Model A. Consider a multiplicative intensity model, termed Model A, which assumes the
following conditions:

A1. There exists a nonnegative valued latent variable Z so that, conditioning on Z = z,
N(t) is a nonstationary Poisson process with the intensity function zλ0(t), where the
baseline intensity λ0(t) is a continuous function.

A2. Conditioning on z, N(·) is independent of Y.

Model A is partly motivated by the model introduced by Lancaster and Intrator (1998), who
established inferences with parametric modeling of recurrent event and survival data. In
contrast to their parametric inferences, our intention here is to develop nonparametric and
semiparametric inferences of recurrent event data under the specified models.

Assumption A1 assumes a multiplicative intensity model in which the latent variable Z acts
as a multiplicative random effect or frailty. Under A1, a large value of z implies frequent
occurrences of recurrent events, and a small z implies less frequent occurrences of events.
Conditional on z, the intensity function is the same as the RF because of the independent
increment property of Poisson processes. Unconditonal on z, the RF is λ(t) = E[Zλ0(t)] =
μzλ0(t), with μz = E[Z], and the CRF is Λ(t) = μzΛ0(t). Under A2, the censoring time Y is
allowed to depend on the latent variable Z, and this substantially relaxes the usual
requirement that N be independent of Y in an independent censoring model. Although A2
specifies only a simple structure of informative censoring, it is generally enough to handle
the situation when the censoring is caused by two types of mechanisms. For instance,

suppose that  represents a noninformative censoring time (such as time to the end of

study) that is independent of N(·), and  represents an informative censoring time that is

independent of N(·) given Z = z. Then both  and Y = min(Y*, T0) are
independent of N(·) given Z = z.

Assumptions A1 and A2 form the basic model for one-sample estimation of Λ(t) that we
consider in Section 3. In some applications RF would be preferred over CRF, because it
describes the instantaneous risks of recurrent events. Under A1 and A2, nonparametric
estimation of the RF can be developed by smoothing techniques, such as the kernel methods
(Chiang and Wang 2000).

Model B. Let X be a 1×p vector of covariates. To explore the association between X and
N(·), we extend model A to model B. In Section 4 we study estimation procedures with this
extended model. Model B assumes the following conditions:

B1. There exists a nonnegative valued latent variable Z so that, conditioning on (x, z),
N(t) is a nonstationary Poisson process with the intensity function zλ0(t)exβ, where β is a
p x 1 vector of parameters and the baseline intensity λ0(t) is a continuous function. The
latent variable Z satisfies E[Z|x] = 1.

B2. Conditioning on (x, z), N(·) is independent of Y.

Assumption B1 implies the marginal proportional rate function,

(1)

Note that Assumption B1 can be equivalently stated as follows:

B1*. There exists a nonnegative valued latent variable Z so that, conditioning on (x, z), N(t)
is a nonstationary Poisson process with intensity function zλ0(t)exθ1, where θ1 is a p×1
vector of parameters and the baseline intensity λ0(t) is a continuous function. The expected
value of Z given x is E(Z|x) = exθ2 with θ2 a 1×p vector of parameters.
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Under the alternative statement B1*, the validity of (1) follows because λ(t|x) =
E[Zλ0(t)exθ1|x] = λ0(t)exβ, where β = θ1 + θ2. For ease of discussion, we use the
parameterization under B1 and B2 rather than B1* and B2. Note that, similar to the structure
of model A, conditional on z, the intensity function zλ0(t)exβ is also the rate function.
Further, it can be easily shown that the parameters θ1 and θ2 are not identifiable, but that β =
θ1 + θ2 is identifiable.

The marginal proportional rate function in (1) was studied by Pepe and Cai (1993) and Lin
et al. (2000) in independent censoring models subject to different levels of model
assumptions. The proportional rate function in (1) is the focus of interest for our regression
inferences. This function has the direct interpretation as the average occurrence rate of
recurrent events at t conditional only on x; for instance, x could be a treatment indicator, and
(1) is used to identify the population-average treatment effect.

3. MODEL A: ESTIMATING THE CUMULATIVE RATE FUNCTION

Assume the validity of model A. For subject i, i = 1, 2, …, n, let yi denote the observed
censoring time and let ti1 ≤ … ≤ ti, mi be the observed event times with mi defined as the
index for the last event occurring at or before yi. Assume that the observations from the n
subjects are iid copies generated by model A.

In an independent censoring model, a risk set at t can be defined as {i : yi ≥ t}; that is, the
class of subjects who are under observation at t. Let R(t) be the number of subjects in the
risk set at t. Because the censoring is independent of the recurrent event process, the risk set
at t forms a random sample from the risk population, and thus Λ(t) can be estimated by the
empirical measure of event times with R(t) serving as the time-dependent sample size:

(2)

This estimator was studied by Nelson (1988) and Lawless and Nadeau (1995). Although the
assumptions required to validate this estimator are rather unrestrictive, independent
censoring is necessary in the estimation procedures. Under A1 and A2, because the sampling
of the risk sets is allowed to depend on the value of of zi, the risk sets could be biased for the
estimation of marginal parameters, and thus the estimator in (2) is inappropriate for
estimating the CRF. In this section we propose a bias-adjusted method for estimating the
CRF.

Define the density function

as the normalized function for both the baseline intensity, λ0(t), and the subject-specific
intensity, zi λ0(t), when zi > 0. This density function, or the corresponding cumulative
distribution function F(t), can be thought of as a shape function in the model.

If we consider a fully parameterized model in which the parametric forms of λ0 and the joint
distribution of (Z, Y) are specified, then the full likelihood can be used for the estimation of
model parameters. Here we consider the model under A1 and A2, where the distributions of
Z and Y are treated as nuisance parameters and λ0 is left as an unspecified continuous
function. With the involvement of the nuisance parameters, the full likelihood approach is

Wang et al. Page 4

J Am Stat Assoc. Author manuscript; available in PMC 2013 November 05.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



generally difficult for both computation and inferences. Instead of the full likelihood
approach, a conditional likelihood will be useful in the estimation procedures. For subject i,
conditional on (Yi, Zi, mi), the event times (ti1, ti2, …, ti, mi) are the order statistics of a set of
iid random variables with the density function f(t)I(0 ≤ t ≤ yi)/F(yi) (Ross 1983). The
conditional likelihood function can be derived as

(3)

The conditional likelihood Lc involves only the shape function F (or f) and does not require
information of the unobserved {zi}. The likelihood function Lc in (3) is a particular case of
nonparametric likelihood for right-truncated data where the truncation time for tij is yi. The
distribution function F(t) can be estimated by the nonparametric maximum likelihood
estimator F(̂t). Under regularity conditions, the estimator F(̂t) is known to have a simple
product-limit representation,

(4)

where {s(l)} are the ordered and distinct values of the event times {tij}, d(l) is the number of
events occuring at s(l), and N(l) is the total number of events with event time and censoring
time satisfying tij ≤ s(l) ≤ yi.

The CRF Λ(t) is related to F through the formulation Λ(t) = F(t)Λ(T0), where the parameter
Λ(T0) can be interpreted as the average number of recurrent events occurring in [0, T0]. The
CRF can be estimated nonparametrically, as discussed later. Conditioning on (yi, zi), the
number of the observed events, mi, has expected value ziΛ0(yi). The ratio of mi to F(Yi)
projects the the number of events in [0, T0], and the expected value of the projected number
is Λ(T0):

Substituting F(̂t) for F(̂t), estimators for Λ(T0) and Λ(t) can be constructed as

(5)

and

(6)

Although it is straightforward to derive F(̂t) from the conditional likelihood Lc, the existing
asymptotic properties of the truncation product-limit estimator (Woodroofe 1985; Wang,
Jewell, and Tsai 1986, among others) were developed for independent truncation data and
are not readily applicable to correlated recurrent event data. An independent truncation
model typically involves a failure time and a truncation time, where the failure time variable
is independent of the truncation time variable. For recurrent event data, the model setting
apparently changes, and thus different considerations must be integrated into the large-
sample theory. In the Appendix we derive an asymptotic representation of F(̂t) and use this
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representation to study the asymptotic properties of Λ̂(T0) and Λ̂(t). The properties of the
nonparametric estimators in (5) and (6) are stated in Theorem 1. The details of the proof of
Theorem 1 are included in the Appendix.

Let W represent the joint distribution function of (Y, Z) and define G(u) = ∫ zI(y ≥ u)dW(y,
z).

Theorem 1. Assume that (a) Λ0(T0) > 0, (b) Pr(Y* ≥ T0, Z > 0) > 0, and (c) G(u) is a
continuous function for u ∈ [0, T0]. As n → ∞, n1/2{Λ̂(T0) − Λ(T0)} converges weakly to a

normal distribution with mean 0 and variance , where ci is as defined in the Appendix.
As n →∞, for inf{y : Λ0(y) > 0} < t ≤ T0, n1/2{Λ̂(t) − Λ(t)} converges weakly to a normal

distribution with mean 0 and variance  where di(t) is as defined in the Appendix.

4. MODEL B: MARGINAL REGRESSION

Assume that model B holds. In this section we consider estimation of the parameter β of the
marginal proportional rate function in (1). Under model B, the density function

remains as the shape function for the subject-specific intensity, ziλ0(t)exiβ, when zi > 0.
Similar to the earlier argument, the conditional likelihood Lc is the probability density of
{(ti1, ti2, …, ti, mi)} given {(mi, yi, zi, xi)}:

Conditioning on (xi, yi, zi), the expected value of mi is ziΛ0(yi)exp(xiβ). Thus

with β0 = Λ0(T0). A class of unbiased estimating equations can be defined as

(7)

where xī = (1, xi), γt = (lnβ0, βt), and wi is a weight function depending on (xi, γ, F).

In the case where F is known, the optimal weight for achieving finite-sample or large-
sample efficiency is wi = exīγ/E[(miF

−1(yi) − exīγ)2]. In the special case where Zi = 1 and
Pr(Yi = T0) = 1, the optimal weight is wi = 1 because the expectation and variance of mi are
the same for the Poisson distribution. In this case, (7) coincides with the likelihood score

equation for Poisson count data; that is, . Under model B, the
distribution function F is unknown, and thus we replace F in (7) by F.̂ A class of estimating
equations for estimating γ is defined as
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(8)

In the Appendix we show that the solution of (8), γ̂, has the property that 
converges weakly to the multivariate normal (MVN) distribution,

(9)

where ψ and Σ are as specified in the Appendix. Based on the formulation F(t) = Λ0(t)/β0,
the baseline CRF can be estimated by Λ̂0(t) = exp(γ̂1) F(̂t). When

 converges weakly to a normal distribution. Details of the
derivation of the asymptotic normality are given in the Appendix.

As an alternative procedure, an estimating equation can be written as

This estimating equation is constructed through the steps used for forming (8), but instead of
using count information only at {yi}, it collects information from all of the event times {tij},
because at these points the values of F and Ni could change. Although this approach might
produce more efficient estimation results, it is not explored here because computationally
and inferentially it is much more complicated than (8).

5. MONTE CARLO SIMULATION

We examine the finite-sample properties of the proposed estimators through a Monte Carlo
simulation. In particular, we generate data with structure similar to the inpatient care data
from the AIDS Link to Intravenous Experiences (ALIVE) cohort study (Vlahov et al. 1991).

Let {Xi} be iid Bernoulli random variables. Conditioning on xi, the latent variable Zi is

defined as , where  is distributed with density

where I(·) is an indicator function. It can be verified that E[Zi|xi] = 1.

Two simulations are conducted: (a) Pr(Xi = 0) = 1 and (b) Pr(Xi = 1) = Pr(Xi = 0) = .5. For
each simulation, data are repeatedly generated 500 times, and each simulated data set
consists of information from 400 independent nonstationary Poisson processes {Ni(t)}, t ∈
[0, 10], with the corresponding intensity function ziλ0(t)exp(xi), where

Therefore, the marginal proportional rate model is given by
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with β = 1. Here the baseline intensity function λ0(t) is chosen to simulate the situation
where the occurrence rate of recurrent events increases over time. Conditioning on (xi, zi),
the censoring time Yi is designed to be independent of Ni(·) and is distributed as a truncated
distribution of the exponential distribution exp(zi/10). This truncated distribution ranges
from 1 to 10 and has density

Under simulation model (a), note that Λ(t) = Λ0(t). The estimated CRF, Λ̂(t), is computed
based on simulated data. For simulation (b), the estimated curve, Λ̂0(t), and the estimates β̂0,
and β̂ are computed. Based on 500 simulated datasets, the average of the estimated CRF Λ̂(t)
from simulation (a) is shown in Figure 1(a), and the average of the estimated baseline CRF,
Λ̂0(t), from data of simulation (b) is presented in Figure 1(b). Note that the two estimates are
close to each other, and each serves as a good estimate of Λ̂0(t). Also, the averages of the
estimates β̂0 and β̂ are 5.35 and 1.01, which are close to the true parameters β 0 = 5.28 and β
= 1.00, with standard errors of .6448 and .0993. To evaluate the validity of the estimators,
95% bootstrap confidence intervals for Λ0(t), β0, and β1 are produced based on 200 bootstrap
replications. Table 1 summarizes the empirical coverage probabilities of 95% bootstrap
intervals for Λ0(t), computed over the 500 simulated samples, at selected time points. The
empirical coverage probabilities 95% bootstrap intervals for β̂0 and β̂1 are .924 and .948.
These coverage probabilities are generally close to the nominal level.

6. A DATA EXAMPLE

The dataset considered here is from the ALIVE cohort study, which includes the information
of inpatient admissions, race, and HIV status collected from a group of intravenous drug
users in Baltimore. Repeated hospitalizations were systematically recorded since July 16,
1993. In this section we analyze hospitalization data collected after August 1, 1993, to
ensure better quality of data. In particular, we use hospitalization data observed between
August 1, 1993, and December 31, 1997, from 715 intravenous drug users in the analysis.
Each subject is labeled by black or nonblack and by HIV-negative or HIV-positive defined
at 0 (August 1, 1993). Those HIV-negative drug users defined at 0 who became HIV-
positive during the study period (21 in total) are excluded from our data analysis.

The main objective here is to estimate the CRF Λ(t) of hospitalization over time, and the
effects of race and HIV status on the occurrence rate function. Let tij, i = 1, …, 715, j = 1,
…, mi be the time from August 1, 1993, to the jth inpatient admission. Let yi denote the time
of the last visit recorded by the study before December 31, 1997, let T0 denote the maximum
time of yi’s, let xi1 denote the black–nonblack indicator, and let xi2 denote the HIV status
with 1 indicating HIV-positive and 0 indicating HIV-negative drug users. Here Λ0(t) is
interpreted as the baseline CRF for the nonblack and HIV-negative drug users, and β = (β1,
β2) are regression parameters for the black–nonblack and HIV status indicators in the
proportional rate function, (1).

Before fitting the data by model B, we compute the non-parametric estimates of CRF in (2)
and (6) for HIV-positive and HIV-negative drug users. The estimator in (2) is referred to as
the “risk-set method” and that in (6) as the “proposed method.” Figure 2 shows the
estimated CRF for these two groups. Clearly, the hospitalization rate estimated by the
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proposed method is much higher than that estimated by the risk-set method for HIV-positive
drug users. The two estimates produce similar curves for the HIV-negative drug user group.
Also, HIV-positive drug users appear to have a higher hospitalization rate than HIV-
negative drug users under both approaches. The result suggests the possibility of heavy
informative censoring from the HIV-positive users. Moreover, the ALIVE investigators
indicated that the censoring among HIV-positive users is likely to be caused by informative
dropouts from sicker HIV-positive users.

In the marginal proportional rate model, the estimated β̂1 and β̂2 are −.0510 and .4955 with
the corresponding 95% bootstrap percentile confidence intervals (−.3115, .2554) and (.
3185, .7209). The regression result suggests that the race indicator is not associated with the
hospitalization pattern of drug users. The hospitalization occurrence rate of HIV-positive
drug users is about 1.64 [≈ exp(.4955)] times as much as the rate of HIV-negative drug
users. This is consistent with the observation from the CRF estimates. Figure 3 shows the
estimated CRF Λ̂0(t) with 95% bootstrap percentile confidence intervals for the baseline
CRF Λ0(t) for the nonblack and HIV-negative drug users. This estimated CRF is close to a
straight line, suggesting that the occurrence rate function λ0(t) approximates a constant over
time.

7. DISCUSSION

In this article we have developed nonparametric and semiparametric methods for estimating
the CRF and regression parameters based on recurrent event data in informative censoring
models. We adopted a multiplicative intensity function as the underlying model for the
proposed methodologies.

Marginal parameters such as the CRF or the proportional rate function in (1) are particularly
useful in analysis for identifying treatment-effect or population-based risk factors. We used
a latent variable in models A and B to characterize the heterogeneity among subjects, but
treated the latent variable itself as a nuisance. The inferences that we have developed here
focus on marginal parameters induced from models A and B.

While serving as a nonstringent model for informative censored data, the multiplicative
intensity model, A1 (and B1), relies on two conditions: a subject-specific Poisson process
assumption and invariance of the shape function f. To apply the proposed methodologies,
one should examine both conditions with care. Generally, for continuous event times, model
A1 (B1) would be approximately valid when the latent variable zi (and exiβ) influences the
intensity function multiplicatively and zi is the only factor that explains the heterogeneity
from different subjects (besides xi). There are of course situations in which the indicated
conditions are not satisfied and an alternative model serves as a better choice. For instance, a
possible alternative model would be to replace the multiplicative intensity function in A1 by
an additive intensity function, zi + λ0(t), with zi denoting a latent variable; or, as a more

general version of A1, one could consider the subject-specific intensity model ,

where  is a pair of nonnegative valued latent variables. In the latter case, both the
magnitude and shape of the intensity function vary with subjects. For future research, it will
be of interest to explore rigorous methods to verify the validity of the proposed models.

The proposed models for informatively censored data certainly have their competitors. In
particular, at the price of fully parameterizing the model, the likelihood approach of
Lancaster and Intrator (1998) would lead to inferences of the joint structure of recurrent and
survival events. Or, in a semiparametric setting, an alternative way to deal with the problem
of informative censoring is to model the censoring time using observable covariate
information and adopt local efficient estimation techniques of Bickel, Klaassen, Ritov, and
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Wellner (1993) and Robins and Rotnitzky (1992). At the price of modeling the censoring
mechanism with proper covariate information, this approach is expected to achieve optimal
estimation efficiency subject to the specified models. In our case, given the complexity of
recurrent event data, we suspect that it will be difficult to find or study such estimation
procedures. In practice, using the techniques of Bickel et al. might be difficult because the
computation usually involves all of the underlying nonparametric and parametric
parameters. In contrast, our estimators have simplicity, robustness, and decent efficiency,
although they might not be the optimal choices.

The proposed methodologies have pros and cons compared to the “risk-set methods”
mentioned in Section 3. In independent censoring models, the risk-set approaches are more
efficient for analyzing recurrent event data. These approaches require less restrictive
assumptions and allow for time-dependent covariates in the marginal proportional rate
model (Lin et al. 2000). Regardless of the advantages, however, the validity of the risk-set
methods relies heavily on the independent censoring assumption, which may not hold in
some studies. In contrast, the proposed methods have the advantage of handling informative
censoring without specifying distributional assumptions on the censoring and latent
variables.
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APPENDIX: PROOFS

Proof of Theorem 1

We first derive an iid representation of . Based on this representation and

the delta method, we can prove the asymptotic normality properties of 

and . Recall that

and define

and

Note that Q(̂u) and R(̂u) are unbiased estimators for Q(u) and R(u), because
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and

Further,

Note that assumptions (a) and (b) imply that R(T0) > 0. Thus for any constant τ > inf{y :
Λ0(y) > 0}, one has R(u) > 0 for τ ≤ u < T0. As n → ∞, Q(̂u) and R(̂u) converge almost
surely to Q(u) and R(u) uniformly in u ∈ [τ, T0]. Thus, by approximation techniques for
product-limit estimators and the inequality 0 < − ln(1 − u−1)−u−1 < u−1 (u − 1) −1, for u > 1,
we can derive

Further, for t ∈ [τ, T0],

and
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where

and it can be seen from the foregoing formulation that bi(t) has zero expectation and

Further observe

Let H be the joint probability measure of (m, y) and let Ĥ be the corresponding empirical
measure for H. Then

Let

Then ci has zero expectation and . Thus

 is asymptotically normally distributed with mean 0 and variance .
For t ∈ [τ, T0],
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where di(t) = F(t){ci + Λ(T0)bi(t)}. It can be shown that di(t) has zero expectation for each t

∈ [0, T0]. By the central limit theorem,  converges weakly to the normal

distribution with mean 0 and variance .

Proof of (9)

The estimating function on the left side of (8) can be expressed as

where V is the joint probability measure of (w, x,̄ m, y) and

Then, by standard procedures, we can show that  with ψ
= E[−∂ei/∂γ]. Therefore,  converges weakly to the multivariate normal
distribution with mean 0 and variance-covariance matrix ψ−1Σ(ψt)−1, where Σ represents the
variance-covariance matrix of ei.
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Asymptotic Normality of 

The asymptotic normality of  relies on nomality properties of F(̂t) and γ̂1.
Using similar steps as in the proof of Theorem 1, by substituting Z exp(Xβ) for the latent

variable Z in the definition of G, the iid representation of  remains the same
as F(̂t) − F(t) = n−1 ∑i F(t)bi(t) + op(n−1/2). Thus

where fi is the first entry of the vector function ψ−1ei. It follows that 
converges weakly to the normal distribution with variance F2(t) exp(2γ1)E[(fi + bi (t))

2].
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Figure 1.
(a) The Real CRF Λ(t) (———), Estimated CRF Λ̂ (t) (– – – – –), and 95% Bootstrap
Confidence Intervals (……), (b) The Real Baseline CRF Λ0(t) (———), Estimated Baseline
CRF Λ̂0(t) (– – – – –), and 95% Bootstrap Confidence Intervals (……).
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Figure 2.
The Estimated CRF for HIV-Positive and HIV-Negative User Groups With 95% Bootstrap
Confidence Intervals for (……) Risk-Set Method; –––– Proposed Method.
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Figure 3.
The Estimated Baseline CRF, Λ̂0(t), With 95% Bootstrap Confidence Intervals.
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