
Analyzing Reliability in Hybrid Compute Units

Muhammad Z.C. Candra, Hong-Linh Truong, Schahram Dustdar

Distributed Systems Group, Vienna University of Technology

{m.candra,truong,dustdar}@dsg.tuwien.ac.at

Abstract—Modern development of computing systems caters
the collaboration of human-based resources together with
machine-based resources as active compute units. Those units can
be dynamically provisioned on-demand for solving complex tasks,
such as observed in collaborative applications, crowdsourced
applications, and human task workflows. Such collaborations
involve very diverse compute units, which have different capa-
bilities and reliability. While the reliability analysis for machine-
based compute units has been widely developed, the reliability
analysis for the hybrid human-machine collaborations has not
been extensively studied. In this paper we present models and
a framework for analyzing the reliability of hybrid compute
units (HCU), which represent on-demand collectives of humans
collaboration supported by machines (hardware and software
units) for performing tasks. We present the implementation of
our models and study the reliability of HCUs in a simulated
system for infrastructure maintenance scenarios. Our evaluation
shows that the proposed framework is effective for measuring
the reliability of the collaboration collectives, and beneficial to
obtain insights for improvements.

Keywords—reliability analysis, hybrid human-machine collabo-
ration, human computation.

I. INTRODUCTION

In the past, we saw mostly machine-based compute units,
i.e., hardware and software, providing computing services
consumed by human. However, recently many approaches
have been developed for intertwining collaborative human-
based and machine-based compute units, e.g., [1], [2], to
solve complex problems that require creativity and intelligence,
where human-created solutions are a must. We use the no-
tion of hybrid compute units (HCUs) [3] as an abstraction
representing the composition of collaborative human-based
and machine-based compute units that applications need to
execute a complex computing task. In today’s Internet-based
computing landscape, such HCUs can be dynamically provi-
sioned on-demand from, e.g., online collaboration platforms
and crowdscourcing marketplaces for human-based units, and
cloud-based services provisioning for machine-based units.

Reliability is one of the important quality measures of a
system. In a traditional machine-only computation, reliability
is typically defined as the ability of a system to function cor-
rectly over a specified period of time, mostly under predefined
conditions [4]. However, in the context where human-based
units are involved, the reliability property is used with different
quantifications and interpretations, e.g., the reliability property
can be interpreted as (i) the probability of human errors so that
such errors can be mitigated to obtain a high level of safety
environment [5], [6], e.g., in healthcare, and transportation

The work mentioned in this paper is partially supported by the EU FP7
FET SmartSociety (http://www.smart-society-project.eu/). The first author of
this paper is partially supported by the Vienna PhD School of Informatics.

sector, (ii) the ratio of successful task executions in a workflow
or a business process, e.g., [7], [8], or (iii) the quality of results
or contents, e.g., [9], [10], [11].

A set of tools for modeling and analyzing the reliability of
HCUs is useful, e.g., (i) for application designers to design,
evaluate, and improve collaboration components for executing
tasks, (ii) for resource platform providers to deliver more
reliable machine-based and human-based compute units such
as by providing a reliability-aware discovery and composition
service, and (iii) for task owners to tune the task specification
to achieve the required reliability.

However, analyzing the reliability of HCUs introduces
many challenges. The diversity of the compute units and
their individual reliability models brings forth different failure
characteristics that must be taken into account when measuring
the reliability. The complexity of the collaboration’s structures
and the large scale of the involved units also contribute to the
complexity of the reliability analysis.

Our work presented in this paper tackles the above-
mentioned challenges. Our goal is to provide a toolset that
can be utilized for analyzing the reliability of HCUs. We adopt
models to measure the reliability of individual machine-based
and human-based units and introduce a model that can be used
for describing the complex structure of collaborations, i.e., a
collective dependency model. Furthermore, to deal with the
large scale of the collaboration landscape, we introduce the
notion of virtual standby units that abstracts the group of units
available from the pool of computing resources. These models
are then utilized to perform the reliability analysis.

The salient contributions of this paper are threefold:

(a) We introduce models to describe the dependencies in
the running collaborations and to abstract large pools of
computing resources.

(b) We propose a framework for HCUs reliability analysis.
(c) We present an implementation of a tool for simulating

collaborative human-based and machine-based computing
and analyzing the reliability of the composed HCUs.

Furthermore, we verify our approach by presenting some
reliability analyses using infrastructure maintenance use cases
and we simulate and study the variability of the reliability that
may be gained by employing different scenarios.

The rest of this paper is organized as follows. Section II
discusses the notion of HCU and our motivation. In Section III,
we present models as a basis for our reliability analysis.
Section IV discusses the HCU reliability analysis framework.
Section V presents the prototype implementation and experi-
ments to exemplify the HCU reliability analysis. Section VI
discusses some related works. Finally, Section VII concludes
the paper.

Infrastructures

Sensing

Smart

City Maintenance

Platform

Human-Based

Computing

Platform

Dedicated

Inspectors

HCU Collective

Sensors

N/W

Stream

Analytic

Citizens on the Cloud

Fulfillment

Coordination

Resources

pools

Fig. 1: Infrastructure Maintenance Scenario

II. MOTIVATION

A. Background - Hybrid Compute Units

In a hybrid collaboration, a collective consisting of diverse
compute units is composed to execute a complex computing
task, i.e., a task that requires active collaboration of humans
assisted by machines or software services, given by a consumer
process or application. This notion of HCU collective (or
HCU for short) constitutes a construct for loosely coupled,
and nimble group of human-based and machine-based compute
units, which can be composed, deployed, and dissolved on-
demand.

The manifestation of HCUs can be seen in various comput-
ing systems. For example, human-based services, either stand-
alone or collaborative, can be utilized in a mixed orchestration
with software-based services as people activities in business
processes, e.g., [1], [12]. In the cloud, we have also seen
various sources of human-based compute units, such as crowd-
sourcing marketplaces, e.g., [13], [2], and social networks,
e.g., [14], [15] being utilized as pools of active compute
units. The machine-based counter part, such as software-based
services, can be provisioned in-house or on-demand from the
cloud, for example using cloud based service composition tech-
niques, [16]. Furthermore, diverse collaborative compute units
are also utilized in new methodologies for solving complex
problems that requires both human knowledge and machine
capabilities, such as in smart-city management, traffic control,
and urban planning [17], [18].

Many factors affect the reliability of an HCU. The relia-
bility of the underlying resources, as well as the dependencies
among them are some of the main factors. Moreover, unlike
the traditional reliability analysis, which deals with a priori
knowledge of a defined set of units with a certain structure [4],
in HCU we deal with on-demand provisioning of dynamic
collaboration collectives that may have different compositions
for each instances. Hence, different provisioning strategies may
yield different reliability of the system.

B. Motivating Scenario

To motivate the importance of the reliability analysis for
HCUs, we discuss a scenario where a collaborative system
for infrastructure maintenance is utilized in smart-buildings or
smart-cities. The system can be employed, for example, by

a corporation for maintaining large building complexes. The
maintenance is conducted pro-actively by analyzing a possible
facility breakdown as shown in Fig. 1. For this system to work,
sensors are installed on the monitored facilities to capture
occurring events, which are streamed through sensor networks
to a data processing center running stream analytics.

In many cases, installing sensors on every facilities is not
always feasible and adequate. One traditional way to handle
this issue is to send dedicated inspectors for regular inspec-
tions. However, such approach can be in-effective for a large
maintenance area. Therefore, collaborative citizens are also
engaged for revealing issues in places where hardware sensors
are not feasible. These so-called human sensing services are
coordinated by a human-based computing platform, e.g., a
crowdsourcing platform. This platform generates human-based
tasks, such as data collections and assessments, and dissemi-
nates the tasks to the participating citizens according to their
availabilities and locations. An example of such crowdsourcing
system has been presented in CrowdSC platform [18]. For
places where citizen participations are high, we may no longer
need to employ professional inspectors. Hence, the provision-
ing of human-based collaborations can be made on-demand.

In this scenario, we can define an HCU as a set of
collaborative compute units for detecting a particular facility
breakdown, which is fulfilled from the available resources
pools. Hence, an HCU for a particular building may consist of
a set of sensors, participating citizens who live or work in the
building, a standby dedicated inspector, and a stream analytic
service. In this context, HCUs are said to be reliable when
they correctly detect breakdowns.

Here, a reliability analysis is very important and useful for
improving the reliability of the collaboration. For example,
we can use the reliability analysis to identify whether the
increase of citizen participations due to particular incentives is
really beneficial. Also, we can identify which HCU formation
strategy is more effective to obtain more reliable HCUs.

C. Research Problems

a) Background and Scopes: In machine-based compu-
tation, failures are typically caused by natural- or design-
faults [4]. However, for human compute units the nature of
the faults is different. Humans are prone to execution error [5].
When a human performs a task, it is natural he/she performs
an error, which leads to failure. Also, same tasks executed by
the same worker on different times may give different results.

In general, reliability models can be categorized into black
box and white box models [4]. For human compute units, it is
complex to model the internal functioning of a human work
using a white box model. Black box models, such as based
on interpolation or parameter estimation using historical data,
can be used for predicting the individual reliability. Various
influencing factors, such as trust, skills, connectedness of the
collaboration, as well as past success rates, may affect the
reliability of individuals. However, problems may arise for a
new unit with no historical data. To this issue we point to
approaches for predicting reliability based on similarity such
as found in [19]. Our work presented in this paper focuses on
the issues of the reliability analysis for mix human-machine

collaborations using black-box models with a priori known
factors.

b) Problem 1: Traditionally, the notion of reliability is
expressed as a function in a continuous time space. However,
for human-based computing, this approach is not suitable,
since most human-based compute units do not operate con-
tinuously. For HCUs, where human-based compute units are
involved, we need to model the reliability on a task basis. In
Section III-A, we discuss this issue.

c) Problem 2: The reliability of a system depends
largely on the inter-dependencies between its elements. In
HCUs, the dependencies can be inferred explicitly from the
process model, e.g., a workflow, if it is available. However, in
many cases the collaboration inside an HCU can be ad hoc.
Hence, we need a model to describe the dependency in an
HCU in a more agile and flexible way. We approach this issue
in Section III-B and use it for HCUs reliability analysis in
Section IV.

d) Problem 3: With the advent of the cloud computing,
the provisioning of both machine-based and human-based
compute units can be made on-demand from a virtually large
pool of available resources [20]. In most cases, when a failure
occurred on a running unit, another unit can be selected from
the cloud to replace. The reliability analysis for cloud-based
HCUs must take into account this provisioning model. We
propose a solution for this issue in Section IV-A2.

III. MODELS

A. Reliability of Individual Units

a) Reliability of Machine-Based Units: Measuring the
reliability of machine-based units is a well-researched prob-
lem [21], [22], [23]. Generally, it can be summarized as fol-
lows. Let T be a continuous random variable that represents the
time elapsed until the first failure occurs. And let f(t) be the
probability density function of T , and F (t) be the cumulative
distribution function of T . Traditionally, F (t) represents the
unreliability of the system, i.e., the probability that the system
fails in time interval [0, t]. The reliability, R(t), of the unit is
the complement of F (t), i.e., R(t) = 1− F (t) [21].

b) Reliability of Human-Based Units: In human-based
tasks, we do not deal with the exact time when a particular
human-based compute unit fails, instead we are more interested
in whether a particular task execution is likely successful.
Furthermore, in the execution of human-based tasks, the active
execution time of the human-based compute units is not
continuous, i.e., people may take a break, eat, and sleep.
Therefore, in our model, we approach the reliability of human-
based compute units using a discrete time space.

Let K be a discrete random variable which represents
the number of consecutive successful task executions by a
particular human-based compute units until a first failure
occurs. Let f(k) be the probability density function of K
which also represents the probability of the first failure occurs
at k-th task execution. Let F (k) be the cumulative distribution
function of K. F (k) represents the unreliability of the human-
based compute unit, i.e., the probability that the unit fails at
least once in execution [1, k]. The reliability, R(k), defines the

reliability of the human-based compute units for the execution
of all k tasks. Hence, we have

f(k) = Pr(K = k)
= Pr{taskk fails | task1, task2, ...taskk−1 succeed}.

(1)

Depending on the problem domain and the underlying
human-computing systems, different discrete distributions can
then be employed to define f(k). Note that the distribution
parameters of such failure probability may also dynamically
change from time to time, e.g., due to human skill evo-
lutions [24]. To exemplify this model, in our experiments
described in Section V-B, we approach f(k) using a geometric
distribution with non-dynamic parameters.

This model extends models proposed in human reliability
analysis and task quality measurement techniques, e.g., [5],
[6], [7], [8], [11], where the reliability property, e.g., with
respect to the failure/success probability, can be taken for
granted. However, instead of using only a single value of
failure/success probability for the next human task execution,
our model allows the estimation of the reliability as a cumu-
lative probability of failure/success within a set of consecutive
task executions. Hence, together with the traditional reliability
measurement of machine-based units we could derive the
reliability of HCUs in a discrete time space.

B. Collective Dependencies

Members of an HCU depend on each others in order to
collaborate effectively. When running a particular task, each
member units participate in a certain role by executing the
assigned activity. In our work, we propose a model based on
the the dependencies among units while performing activities
to define the interrelationships between units.

To define these dependencies, we introduce the notion
of inter-dependent collective activities (c-activities for short)
on which participating roles perform their actions. Each c-
activities provides a deliverable that can be consumed by
other c-activities. Hence, each c-activity depends on all of its
dependencies so that it can be successfully accomplished. Fur-
thermore, we also introduce alternate dependencies, where a c-
activity can be accomplished after at least n of its dependencies
have provided the required deliverables.

We define a collective dependency graph as an acyclic
graph G = (A, E), where A is the set of c-activities executed
by the HCU, and E is the set of dependencies between c-
activities in A. Furthermore, for each c-activity we define the
roles associated to the c-activity, and for each role we define
the units assignments. Similarly with an alternate dependency,
an alternate assignment can also be defined, where at least m
assigned units must successfully perform the role.

The mechanism to obtain the collective dependency for a
particular system is domain-specific. The application designer
can define the collective dependency from the ground up, but
it can also more practically be implied from the application
design. For example, in a process-based application, such de-
pendency can be inferred from the workflow. In a crowsdource-
based application, the dependency can be deduced from the
relationships between the microtasks, e.g., [25].

Sensor Network

Hardware

Sensing

Stream

Analytics

Collecting

Data

Assessing

Data

Coordinating

People Sensors

Infrastructure

Management

Citizens on the Cloud

Sensor devices

Stream Analytic

Server

Human-based

Computing Platform

Infrastructure

Management Platform

(1)

Surveyors

(1)

(1)

Dependency

Assignment

(n)

Alternate Dependency

(n)

Alternate Assignment

Role

Collector

Role

Assessor

Role

Sensor

Role

Comm.

Provider

Role

Stream

Analyzer

Role

Human Comp.

Platform

Role

Infrastructure

Manager

Fig. 2: Collective Dependency

Returning to our previous scenario in infrastructure main-
tenance, in Fig. 2 we show an example of a collective depen-
dency for detecting facility breakdown as well as the associated
roles and possible units assignments. As we will show later,
this collective dependency is useful to obtain the execution
spanning tree for reliability analysis (Section IV-B2).

C. Reliability of HCU Collective

We define the reliability of an HCU as the reliability of
the task execution performed by the HCU, i.e., the probability
that the HCU successfully execute tasks. As discussed in the
following section, the reliability of an HCU to execute a task
depends on the reliability of the individual units involved
and the structure of the HCU represented by the collective
dependency.

IV. RELIABILITY ANALYSIS FRAMEWORK

Here we present a framework that provides features to
evaluate the reliability of HCUs. The goal of our framework
is to measure the reliability of the system consisting HCU
instances to execute tasks. More specifically, given a set of
k consecutive tasks T = {t1, t2, ..., tk}, we measure the
reliability of all HCUi provisioned by the system to execute
ti ∈ T . This framework takes the following as inputs: the
profiles of the units [9] to determine their individual reliability
(Section III-A), and the collective dependency of the task
type (Section III-B). Our proposed analysis approach yields
the reliability of HCUs provided by the system to execute
a particular task type. We retain the aggregation analysis to
measure the overall system reliability for various task types as
a future work.

A. System Overview

1) HCU Provisioning: In hybrid collaborations, we deal
with HCUs provisioned on-demand to execute tasks. Here we
introduce a generic HCU provisioning model, as shown in
Fig. 3, upon which we could perform a reliability analysis.

...

...

People

Machines and Software Services

Discovery

Pool of resources

Standby Resources

H

C

U

C

o

l

l

e

c

t

i

v

e

L

a

y

e

r

Composition

Act

1

Act

2

Act

3

Act

4

Role

A

Req A

Role

B

Req B

Role

C Req

C

Assignment

T

a

s

k

L

a

y

e

r

VSU

A

Req

A

VSU

B

Req

B

...

...

...

Req

C

StaticSet

C

Role

C

Req

C

Role

B

Req

B

Role

A

Req

A

R

e

s

o

u

r

c

e

s

L

a

y

e

r

Static Resources

Task execution (according to Collective Dependency)

Active Collective

Fig. 3: HCU Provisioning Overview

The requested task contains a set of required roles, Rolex,
which need to be fulfilled. Each roles execute certain c-
activities for the task, Actx, according to the collective de-
pendency described in Section III-B. For each role, a set of
requirements, Reqx, can be defined to guide the provisioning
of the units. For example, the requirements may contain a
set of qualifications for discovering units. Qualified units are
composed to form an HCU to fulfill each roles defined in
the task request. Our previous work in [20] discusses some
methodologies for this composition.

Units qualified to perform a particular role are discovered
from diverse resources pools. These discovered units may
represent a static set of resources, e.g., in the case of in-house
provisioning. However, in the case of on-demand provision-
ing, e.g., cloud-based services provisioning or crowdsourced
human-based units provisioning, the discovered units represent
a set of virtually standby units, V SUx (Section IV-A2), which
can be assigned to a particular role on-demand.

2) Virtual Standby Units: One of the main challenges in a
cloud-based hybrid collaboration is to deal with large numbers
of units. For example, the number of people participating in
a crowdsourcing platform can be very large (e.g., in a smart
city). However, since HCUs are task-oriented and provisioned
on-demand, we can abstract these large pools of units that will
likely be included in the assembled HCU. We call these sets
of units as Virtual Standby Units (VSUs). Hence, an VSU is
a subset of the units pool consisting units qualified to perform
a particular role.

With this approach, only compute units providing resources

required for the process of concern are considered for analysis.
However, the construction of VSUs should consider not only
static profiles, but also the dynamic changes of functional
and non-functional properties of the units. For example, in
our infrastructure maintenance scenario, we may want to
analyze the reliability of the facility sensing capability against
a particular building at a particular time slot; therefore, we can
utilize the participants profiles such as time availability and
location history to decide whether he/she should be included
in the VSU for that particular task.

More formally, let t be a task with a set of functional
and non-functional requirements Rt. Given a set of all units
U , we can define the VSU for t as V SUt = {ui|ui ∈
U ∧ Sim(Rt,Pui

)}, where Pui
is the profile of ui, and Sim

is a predicate representing a similarity match. Details of the
similarity matching are domain-specific and beyond the scope
of this paper. An example of such matching is provided in [26].

B. Reliability Calculation

We employ the following procedures to estimate the relia-
bility of HCUs:

1) We calculate the reliability of individual units based on
their profiles (see Section III-A).

2) We determine the reliability for each group of units
assigned for a particular role. The assigned groups of units
can be in the form of static sets of units (or a single unit)
or in the form of virtual standby units (VSUs).

3) We calculate the reliability of the executions of task
instances for a particular task type based on the reliability
of the group of units assigned for each task roles.

In the following we discuss these procedures in detail.

1) Reliability of Role Assignments: Before we can measure
the reliability of the task executions, we need to measure
the reliability of the units assigned for a particular role. The
reliability for each role assignments in an HCU is defined
according to the reliability of the set of units assigned for
the role. The member units of a role can be fulfilled either (i)
from a static set of units (e.g., as in Role Stream Analyzer, Role
Human Computing Platform, Role Infrastructure Manager, and
Role Communication Provider in Fig. 2) or (ii) from an VSU
(e.g., as in Role Collector, Role Assessor, and Role Sensors).

a) Reliability of Static Sets of Units: A static set of units
may employ only a single unit (simplex), or a certain basic
structure such as the parallel structure, where we distribute a
task in parallel and expect at least one unit returns a result,
or the series structure, where we expect all assigned units
provide results correctly. A more complex structure can also
be formed from these basic structures. A static set of units
may also employ a static redundancy for masking faults. One
of well-known approaches for a static redundancy is the M-
of-N redundancy, which consists of N units and requires at
least M of them to function properly. For example, in human-
based computing, this M-of-N redundancy can be in the form
of assignments of the same task role to N people, where we
expect at least M people provide the correct result reliably.
The calculation of the reliability of such static structures are
well known and can be found in [23].

b) Reliability of VSUs: When a role of a task is fulfilled
using units from an VSU, it resembles the structure of a set
of active units accompanied by standby spare units. If any
of the active units fails, a standby unit is activated for a
replacement. This resilience approach is traditionally called
hybrid redundancy (or simply dynamic redundancy when only
a single unit is active), where we dynamically detect (or
predict) faults and reconfigure the structure of the running
HCU to correct (or anticipate) the faults. In this case, we also
need to take the reliability of the detection and reconfiguration
component into account.

If the active units from an VSU are assembled to use M-
of-N redundancy approach, we would need at least M units to
function properly. Let L be the number of standby spare units,
the reliability of the VSU is given by the probability that at
least M units out of L + N units are functioning correctly.
Hence, given the reliability of the detection and reconfiguration
component RDR and the uniform reliability of each units Ru

the reliability of an VSU is given by

RV SU = RDR ·
L+N
∑

i=M

(

L+N

i

)

Ri
u (1−Ru)

L+N−i
.

For non-uniform Ru, an analytical probability calculation
based on each individual unit reliability can be performed.

2) Reliability of Task Executions: When an HCU is as-
sembled, its assigned units form a configuration that fulfills a
set of required dependencies as defined by the task’s collective
dependency model. Due to the flexibility of HCUs, i.e., defined
by alternate dependencies and alternate assignments in the
collective dependency model, different HCU configurations
may be composed for different task instances. We use the
concept of execution spanning tree (EST) to identify various
possible HCU configurations for the task type.

We define that an EST contains the inter-dependent static
sets of units and/or VSUs such that its vertices (the static sets
of units/the VSUs) are capable to execute a set of required
c-activities. That is, given a collective dependency graph G =
(A, E) and static sets of units/VSUs V , we can have an EST
S = (V ′, E ′), where V ′ ⊆ V and E ′ is the dependency of V ′

according to E , such that V ′ and E ′ encompass one possible
alternative dependency set in G.

To obtain ESTs, we could derive the dependencies between
the units from the collective dependency. Algorithm 1 presents
a procedure to transform a collective dependency into a set of
ESTs. For example, let the sensors (Se), citizens (Cz), and
inspectors (In) in our infrastructure maintenance scenario are
constituted as VSUs, and both citizens and inspectors may
provide services for collector (Coll) and assessor (Asses)
roles, hence we have the following VSUs: V SUSe, V SUColl

Cz ,
V SUAsses

Cz , V SUColl
In , V SUAsses

In . Let us assume that the
Infrastructure Management Platform (IMP), the Stream An-
alytic Server (SAS), the Human-based Computing Platform
(HCP), and Sensors Network (SN) are static sets of units.
Then, given a collective dependency graph in Fig. 2, we can
obtain a set of possible ESTs as follows:

• IMP, SAS, V SUSe, SN

• IMP,HCP, V SUColl
Cz , V SUAsses

Cz

Algorithm 1 EST Generation Algorithm

1: function GENERATEEST(dependencyGraph)
2: ESTList← ∅
3: for all root ∈ dependencyGraph.getRoots() do
4: est← GENERATE(root)
5: ESTList← COMBINE(ESTList, est)

6: return ESTList
7:

8: function GENERATE(node)
9: ESTList← node.generateResourcesEST ()

10: for all branch ∈ node.getBranches() do
11: if branch.isAlternating() then
12: childESTList← ∅
13: for all altNode ∈ branch.getAltNodes() do
14: alternateEST ← GENERATE(altNode)
15: childESTList.add(alternateEST)

16: else
17: branchNone← branch.getNode()
18: childESTList← GENERATE(branchNone)

19: ESTList← COMBINE(ESTList, childESTList)

20: return ESTList
21:

22: function COMBINE(list1, list2)
23: if list1 = ∅ then
24: return list2
25: else if list2 = ∅ then
26: return list2
27: else
28: resultList← ∅
29: for all s1 ∈ list1 do
30: for all s2 ∈ list2 do
31: resultList.add(s1 + s2)

32: return resultList

• IMP,HCP, V SUColl
Cz , V SUAsses

In

• IMP,HCP, V SUColl
In , V SUAsses

Cz

• IMP,HCP, V SUColl
In , V SUAsses

In

For an HCU to execute a task reliably, at least one EST
must successfully accomplish the task. The failures of all
possible ESTs result to the failure of the HCU to execute the
task. Therefore, given a task t and its set of EST St, we can
define the reliability to execute the task t, Rt, as the probably
of having at least one EST of St working properly:

Rt = Pr{∃EST,EST ∈ St ∧ EST works properly}.

Let Ei be the event that ESTi ∈ S
t operates properly, then

the reliability to execute the task t is given by

Rt = Pr

|St|
⋃

i=1

Ei

. (2)

The calculation of probability of such events should con-
sider the fact that Ei may be correlated, i.e., the inclusion of
VSUs in ESTs are not exclusive. Several works, e.g., [27],
[28], propose some techniques to calculate such probability.

V. IMPLEMENTATION AND EXPERIMENTS

A. Implementation

We have prototyped our reliability framework and inte-
grated it into our platform, Runtime and Analytics for Hybrid
Computing Systems (RAHYMS) 1. This platform is open-
sourced and implemented using Java and provides tools for
simulating hybrid collaboration based on GridSim toolkit [29].

The platform features the following capabilities:

• Simulate a pool of machine-based and human-based
compute units with statistically distributed profiles,
e.g., to resemble a crowdsourcing marketplace or a
social network.

• Simulate the generation of task requests with their
associated requirements, e.g., skill requirements, cost
limit, deadline, and units’ connectedness.

• Provide various strategies for the formation of HCUs.
Several formation strategies are provided based on
our previous work [20], e.g., greedy approach, and
optimized formations using Ant Colony Optimization.
Further formation strategies can be implemented and
plugged into the platform.

• Provide a tool for performing reliability analysis on
the running HCU, which can then be aggregated to
represent overall system’s reliability.

The tool can be configured using user-defined JSON con-
figurations, which allow different scenarios to be simulated.
These configurations can be specified to govern the generation
of the pool of compute units with profiles that are statistically
distributed. For example, in the infrastructure maintenance
scenarios as depicted in Fig. 1, we simulate a pool of citi-
zens participating in the process for detecting infrastructure
breakdown. In this process, some citizens can be nominated to
have data collection capability while others may be credited
for their assessment skills. Fig. 4 shows a snippet of a
configuration for generating citizens as compute units, which
provide DataAssessment service and have a set of generated
skills and properties.

Also, configurations for the tasks generator allow cus-
tomization of the task requests, e.g., to define roles and
collective dependencies. They can also be used to define statis-
tically distributed functional and non-functional requirements
of the tasks. During the formation of the HCU collective for
executing the task, these requirements will be matched with
the profiles of the generated compute units. We include some
pre-configured scenarios in the above-mentioned source code
repository.

B. Experiments

In the following, we apply our model by exemplifying
some reliability analyses on different scenarios. Our goal here
is to show how our model can be used to measure the reliability
of task executions, Rtask, and how we can get insights from
the reliability analysis. The purpose of this experiment is not to
model a true-to-life scenario. However, we want to show how

1https://github.com/tuwiendsg/RAHYMS

Fig. 4: Configuration snippet for units generator

our tool can be used to model and tune different scenarios,
and how the reliability analysis can be used as a feedback for
improvements.

In our experiments, we use the infrastructure maintenance
scenario as depicted in Fig. 1 and Fig. 2. We define the task
in our experiments as the task for sensing facility breakdown.
Each instantiation of a task is implicitly associated with an
occurring breakdown event. A task execution is said to be
successful when the breakdown is correctly detected.

Without loss of generality, in this experiments we model
the probability of failed executions of each individual unit
in discrete time space using the geometric distribution. Let p
be the failure probability of executions by an individual unit.
Assuming that p is constant and independent of the execution
time, we could have

f(k) = (1− p)k−1p , and

F (k) = 1− (1− p)k , therefore

R(k) = (1− p)k.
(3)

An estimation of the distribution parameter p can be
derived from the task execution data of each individual units.
For a known unit u, let e = e1, e2, ..., en be a set of result
execution samples. The value of ei may be a binary, 1 for
a successful execution and 0 for a failure execution, or a
floating number [0..1], which represents the result quality of
the execution. The distribution parameter p of unit u can be
estimated by

p̂u = 1−

∑n

i=1 ei

n
. (4)

a) Experiments Setup: Assuming the Infrastructure
Management Platform (IMP), the Stream Analytic Server
(SAS), the Human-based Computing Platform (HCP), and
Sensors Network (SN) are static sets of units (Fig. 2), we

Scenarios Goals: to study Configurations Variants

Exp. 1 reliability

changes

over time or

executions

Ncitizens = 200
Ninspectors = 10
Nsensors = 50
p̄citizens = 0.3
p̄inspectors = 0.05
λ̄sensors = 0.02
λDR = 0.001

k = [1..10000]

Exp. 2 effect of

different sizes of

resources pools

on reliability

p̄citizens = 0.3
p̄inspectors = 0.05
λ̄sensors = 0.02
λDR = 0.001
k = 2500

Ncitizens = [0..300]
Ninspectors = [0..20]
Nsensors = [0..250]

Exp. 3 effect of

different HCU

formation strate-

gies on reliabil-

ity

Ncitizens = 200
Ninspectors = 10
Nsensors = 50
p̄citizens = 0.3
p̄inspectors = 0.05
λ̄sensors = 0.02
λDR = 0.001
k = 2500

strategies:

- uniform distribution

- fastest response

- greedy (cost optimized)

TABLE I: Experiment scenarios

focus our experiments on studying the variability of VSUs
configuration of machine-based sensors, as-well-as human
citizens, and human inspectors in fulfilling sensor, collector,
and assessor roles. Citizens and inspectors may be assigned to
the collector and assessor role, while machine-based sensors
are assigned to fulfill the sensor role. Each machine unit
(i.e., a sensor) has a randomly generated continuous failure
rate λ, and the reliability at a particular time t is given by
R(t) = e−λt [21]. Each human unit (i.e., a citizen or an
inspector) has a randomly generated probability of failure p,
and the reliability at a particular execution k can be measured
using Equation 3. We perform three sets of experiments to
study different aspects of reliability in HCUs with different
configurations as shown in Table I. These experiments are
discussed as follows.

b) Experiment 1: In this experiment, we study how
the reliability of the task executions changes over time. We
generate a fix number of units and generate statistically dis-
tributed failure probabilities and failure rates for each units
as shown in Table I. We employ fix reliability configurations:
for citizens, when they are assigned to a task, at least 2 of
3 assigned citizens must be working properly; for inspectors
and sensors, we require only 1 working unit. We simulate the
detection and reconfiguration of faulty units using software-
based components with a failure rate λDR = 0.001. We
generate 10,000 tasks with a task rate of 30 tasks per time
unit. For each task instance, members of the VSUs are then
assigned and activated for executing the task.

During the experiment we measure the average reliability
of individual units, as well as the reliability of VSUs and the
aggregated reliability of the task executions, Rtask (given by
equation 2), as shown in Fig. 5. The reliability of VSUs are
affected by the number of units as well as the reliability of each
units. RV SUcollectors is higher than RV SUassessors because in
our experiments the number of generated units qualified for
doing data collection task is around 50% more than the the
number of data assessment qualified units. Furthermore, the
average reliability of sensor units is calculated as a function
of t; hence, the slope of its reliability is also affected by the
task rate, here (as well as in other experiments) we use t = k

30 ,
i.e., 30 tasks per time unit.

����

����

����

����

����

����

����

��	�

��
�

����

����

� ����� ����� ����� ����� ����� ����� 	����
���� ����� ������

�

�

�

�

�

�

����� ��������������� �������������� ������������

������� � !���" ������ ��#������" �������������"

Fig. 5: Reliability on task executions, R(k)

The reliability of VSUs are significantly higher then the
average reliability of individual units, since VSUs employ
dynamic/hybrid redundancy. The reliability of any computing
systems always decreases over time. However, the decrement
slope of an VSU is not as steep as its individual units. On
low k value, the reliability of the whole system and VSUs
are mainly affected by RDR. In fact, in this setup if we
simulate a perfect detection and reconfiguration component,
i.e., λDR = 0, we will have Rtask ≃ 1 until k ≈ 1000. And
Rtask will drop below the average reliability of all individual
units when λDR > 0.0058.

Therefore, to design reliable HCUs, we posit that the
application designer should pay attention not only to the
reliability of individual units, but also consider the structure
of standby units, e.g., how they can be effectively discovered,
and also the size of the available standby units. Furthermore,
it is also important to design a highly reliable detection and
reconfiguration component, otherwise the redundancy structure
of the standby units will render useless.

c) Experiment 2: Compute units in HCUs may come
from different pools of resources with varying quality and
sizes. Our next experiments study how Rtask is affected by
the size of resources pools. Such experiments may assist the
resource platform providers to decide whether adding more
resources is beneficial to improve the reliability of the HCUs.

We use the same values of p and λ, and employ the
similar reliability configurations as the previous experiments.
We experiment with 2500 generated tasks, i.e., k = 2500.
Fig. 6 depicts how Rtask changes with the varying number of
citizens, inspectors, and sensors.

In these figures we can see that Rtask values have upper
limits due to the fact that other unit types (as well as other
static components) are not being improved. By studying these
Rtask, we could recognize the sweet spots on which adding
more units could effectively increase Rtask. For example, the
increment of the number of citizens between 80 to 220 on our
setup effectively improve Rtask, while adding more citizen
units beyond 220 is fruitless. Hence, the importance of adding
more units to increase the reliability (e.g., recruiting more
citizens) must be balanced out with the recruitment cost.

As shown on Fig. 6a and Fig. 6b, the effect on Rtask is
greatly determined by the failure rate or failure probability. We
require less additional recruitments of inspectors to improve
the reliability due to p̄inspectors ≪ p̄citizens. However, the

����

����

����

����

����

� �� ��� ��� ��� ��� 	��

�

��������	�
������

(a) Reliability on varying number of citizens

����

����

����

����

����

� � � � � 	� 	� 	� 	� 	� ��

�
�

��������	�
��������

(b) Reliability on varying number of inspectors

����

����

����

����

����

����

� �� ��� ��� ��� ���

�
�

��������	�
��
��

(c) Reliability on varying number of sensors

Fig. 6: Reliability on varying size of resources pools

structure of the corresponding VSUs also impacts the changes
of Rtask. In our setup, the role of the dedicated inspectors
in V SUcollectors and V SUassessors can also be replaced by
citizens. Hence, we don’t need many inspectors additions,
compared to sensors additions, to improve Rtask.

d) Experiment 3: Different systems may employ dif-
ferent strategies for the formation of HCUs collaboration,
which eventually affect the reliability of the HCUs as well
as their non-functional properties. Here we experiment with
three formation strategies: (i) the uniform distribution strategy,
where the tasks are uniformly assigned to qualified units, (ii)
the fastest response strategy, where the tasks are assigned to
the qualified units that provide fastest response times (e.g.,
depending on the unit’s job queue and performance rating),
and (iii) the greedy strategy, where we employ a greedy
optimization algorithm to minimize the execution cost of the
HCU [20]. The performance rating and the execution cost of
each individual unit are statistically distributed during units
generation based on the generator configurations.

����

����

����

����

����

����

� ��� ���� ���� ���� ���� 	��� 	��� ���� ���� ����

�
��
�

�

��������������������

����������������

������������� !����

Fig. 7: Reliability on different HCU formation strategies

HCU Formation Strategies avg(cost) avg(response times)

Uniform distribution 7.20 13.585

Fastest response 7.92 11.775

Greedy (cost-optimized) 6.60 12.276

TABLE II: HCU cost and response times

We use similar configurations as in the first experiment
with 5000 tasks. As we can see on Fig. 7, the reliability of
the fastest response strategy and the greedy (cost-optimized)
strategy are similar. However, we observe that the reliability
of the uniform distribution strategy is lower than the other two,
especially on higher k. This is due to the fact that the fastest
response strategy and the greedy (cost-optimized) strategy tend
to select a particular set of units with better performance rating
and cheaper cost, respectively; hence, they yield more standby
units with less utilization. On the individual level, a unit with
less utilization has a higher reliability for the next assigned
task, i.e., for each unit i, Ri(ki) > Ri(ki+x), ∀x ∈ R | x > 0.
Therefore, the reliability of the VSUs will also be higher, and
consequently that yields higher HCU reliability.

Furthermore, different HCU formation strategies also result
different non-functional properties of the formed HCU. In
Table II, we show the average cost and response time of the
HCUs obtained from the three strategies. Here, the cost is
defined as the sum of the execution cost of all members units
in each HCU, while the response time is defined as the duration
since the task is assigned to the created HCU until all members
units of the HCU finish their roles. In these experiments, the
greedy (cost-optimized) strategy provides 16.70% and 8.35%
cheaper HCUs compared to the fastest response strategy and to
the uniform distribution strategy respectively. For the response
time, the HCUs provided by the fastest response strategy
perform the tasks 13.32% and 4.08% faster compared to the
HCUs provided by the uniform distribution strategy and the
greedy (cost-optimized) strategy respectively.

Each problem domain has its own requirements with
respect to the non-functional properties. Such analysis with
different HCU formation strategies help application designers
to decide the desirable trade-offs between the reliability and
other non-functional properties gained by certain strategies.

VI. RELATED WORK

a) Quality-Aware Human-Based Computing: The qual-
ity control has become one of the challenging obstacles in the
human-based computing, especially in the advent of crowd-
sourcing models [9]. Many approaches have been proposed
to improve the reliability of human-based computing systems,
especially with respect to the quality of results, e.g., [30], [31],
[11], [30]. These works deal with the reliability-improving
approaches for simple tasks that can be assigned to individuals.

Our work focuses on more complex tasks executed by a
collective of humans and machines, and how to measure the
reliability of the task execution.

In the context of processes with human tasks, several
techniques have been proposed to measure reliability property.
In [7] and [8], the authors proposed a mathematical model to
compute the quality of services by applying reduction rules to
a workflow until an atomic task is obtained. This value only
provides an estimation of reliability for the next task execution,
while our approach provides a mechanism to estimate the
reliability in a discrete time space. Furthermore, our framework
allows reliability analysis for hybrid compute units obtained
from a large pool of resources.

b) Reliability of Human Resources: Several techniques
for Human Reliability Analysis (HRA) have been developed
in other disciplines such as safety and ergonomic engineering
using a probabilistic model, e.g., [5], or using a cognitive
theory, e.g., [6]. More advance approaches, e.g., [32], pro-
pose techniques to measure human performance reliability in
real-time and on-line manner. Several works have also been
conducted to formally model human behavior in computing
systems, e.g., [33]. In our proposed framework, we use a tech-
nique to measure the reliability of individual units on a task-
basis using probability distributions with certain parameters.
These parameters can be obtained from these HRA techniques.

c) Reliability of Large Scale Systems: Research on
the reliability of large scale systems, such as grid systems,
e.g., [28], [34], and cloud services, e.g., [35], [36], has gained
a lot of interest. These works proposed some models to
analyze the reliability of hardware and software systems and
proposed techniques to improve systems’ fault tolerance. Some
algorithms have also been proposed, e.g., [27], [28], to solve
non-trivial reliability equations as discussed in Section IV-B2.

Several techniques have also been proposed to improve
the reliability of large scale systems. For example, in [37], a
combination of game-theoretic approach and classical voting
approach is proposed to improve the reliability of Internet-
based master-worker computations, so that to enable a master
to reliably obtain a result despite of the coexistence of unreli-
able workers.

To the best of our knowledge, currently there are no
published works that provide models for the reliability analysis
of hybrid human-machine systems as proposed in this paper.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we present our approach to analyze the reli-
ability of collaborations that consists of human- and machine-
based compute units to execute tasks. Our framework is capa-
ble to deal with the reliability measurement of collaboration
collectives, i.e., Hybrid Compute Units (HCUs), which are
dynamically provisioned on-demand using various strategies
from large-scale Internet-based human and machine resources
pools. We first discuss models for measuring the reliability of
individual units on a task basis. Then we present the underlying
models of HCUs. Based on these models we propose a
framework to measure the reliability of HCU.

Our approach centers around the structure of collaborations
modeled using the collective dependency. Such dependency

can be defined by the application designer from the ground
up, or it can also be inferred from the application design, e.g.,
from the workflow structure. This implies that our approach
is suitable for collaborations that have known structures. We
retain problems of analyzing the reliability of unstructured
collaborations as future works.

We present our HCU simulation tool, and exemplify our
reliability analysis approach using infrastructure maintenance
scenarios. The results of our experiments show that our
framework is beneficial for hybrid collaborative application
stakeholders, e.g., application designers, resource providers,
and task owners, to measure the reliability of the collaborations
and to obtain insights for improving the collaboration quality.
Although our tool currently focuses on off-line reliability
simulation, we aim to have an online reliability measurement
tool based on the proposed reliability analysis framework.

Our work presented in this paper is part of our ongoing
research on dependable hybrid human-machine computing.
Future works include modeling other dependability metrics
such as availability, performance, and quality of results.

REFERENCES

[1] A. Agrawal et al., “WS-BPEL extension for people (BPEL4People)
version 1.0,” 2007.

[2] Y. Pan and E. Blevis, “A survey of crowdsourcing as a means of collab-
oration and the implications of crowdsourcing for interaction design,”
in Collaboration Technologies and Systems (CTS), 2011 International

Conference on. IEEE, 2011, pp. 397–403.

[3] H.-L. Truong, H. K. Dam, A. Ghose, and S. Dustdar, “Augmenting
complex problem solving with hybrid compute units,” in Service-

Oriented Computing–ICSOC 2013 Workshops. Springer, 2014, pp.
95–110.

[4] I. Eusgeld, F. Freiling, and R. H. Reussner, Dependability Metrics.
Springer, 2008, vol. 4909.

[5] J. Williams, “Heart–a proposed method for assessing and reducing
human error,” in 9th Advances in Reliability Technology Symposium,

University of Bradford, 1986.

[6] E. Hollnagel, Cognitive reliability and error analysis method (CREAM).
Elsevier Science, 1998.

[7] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut, “Quality
of service for workflows and web service processes,” Web Semantics,
vol. 1, no. 3, pp. 281–308, 2004.

[8] P. Bocciarelli, A. D’Ambrogio, A. Giglio, and E. Paglia, “Simulation-
based performance and reliability analysis of business processes,” in
Simulation Conference (WSC), 2014 Winter. IEEE Press, 2014, pp.
3012–3023.

[9] M. Allahbakhsh, B. Benatallah, A. Ignjatovic, H. Motahari-Nezhad,
E. Bertino, and S. Dustdar, “Quality control in crowdsourcing systems:
Issues and directions,” IEEE Internet Computing, vol. 17, no. 2, 2013.

[10] P. Ipeirotis, F. Provost, and J. Wang, “Quality management on amazon
mechanical turk,” in Proceedings of the ACM SIGKDD workshop on

human computation. ACM, 2010, pp. 64–67.

[11] S.-W. Huang and W.-T. Fu, “Enhancing reliability using peer consis-
tency evaluation in human computation,” in Proceedings of the 2013

conference on Computer supported cooperative work. ACM, 2013,
pp. 639–648.

[12] OMG, “Business process model and notation 2.0,” 2011.

[13] “Amazon mechanical turk,” Website, 2015, http://www.mturk.com/.

[14] C. Petrie, “Plenty of room outside the firm [peering],” Internet Com-

puting, IEEE, vol. 14, no. 1, pp. 92–96, 2010.

[15] J. G. Breslin, A. Passant, and S. Decker, “Social web applications in
enterprise,” in The Social Semantic Web. Springer, 2009, pp. 251–267.

[16] S. Dustdar and W. Schreiner, “A survey on web services composition,”
International journal of web and grid services, vol. 1, no. 1, pp. 1–30,
2005.

[17] F. Giunchiglia, V. Maltese, S. Anderson, and D. Miorandi, “Towards
hybrid and diversity-aware collective adaptive systems,” 2013.

[18] K. Benouaret, R. Valliyur-Ramalingam, and F. Charoy, “Crowdsc:
Building smart cities with large-scale citizen participation,” Internet

Computing, IEEE, vol. 17, no. 6, pp. 57–63, 2013.

[19] Z. Zheng and M. R. Lyu, “Collaborative reliability prediction of service-
oriented systems,” in Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering-Volume 1. ACM, 2010, pp. 35–
44.

[20] M. Z. Candra, H.-L. Truong, and S. Dustdar, “Provisioning quality-
aware social compute units in the cloud,” in Service-Oriented Comput-

ing. Springer, 2013, pp. 313–327.

[21] I. Eusgeld, B. Fechner, F. Salfner, M. Walter, and P. Limbourg,
“Hardware reliability,” Dependability metrics, pp. 59–103, 2008.

[22] I. Eusgeld, F. Fraikin, M. Rohr, F. Salfner, and U. Wappler, “Software
reliability,” Dependability metrics, pp. 104–125, 2008.

[23] I. Koren and C. Krishna, Fault-tolerant systems. Morgan Kaufmann,
2010.

[24] B. Satzger, H. Psaier, D. Schall, and S. Dustdar, “Stimulating skill
evolution in market-based crowdsourcing,” in Business Process Man-

agement. Springer, 2011, pp. 66–82.

[25] A. Kulkarni, M. Can, and B. Hartmann, “Turkomatic: automatic recur-
sive task and workflow design for mechanical turk,” in ACM SIG CHI

’11. ACM, 2011.

[26] M. Maybury, R. D’Amore, and D. House, “Expert finding for collab-
orative virtual environments,” Communications of the ACM, vol. 44,
no. 12, pp. 55–56, 2001.

[27] X. Zang, H. Sun, and K. Trivedi, “A bdd-based algorithm for reliability
analysis of phased-mission systems,” Reliability, IEEE Transactions on,
vol. 48, no. 1, pp. 50–60, 1999.

[28] Y. Dai, M. Xie, and X. Wang, “A heuristic algorithm for reliability
modeling and analysis of grid systems,” Systems, Man and Cybernetics,
vol. 37, no. 2, pp. 189–200, 2007.

[29] R. Buyya and M. Murshed, “Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid
computing,” Concurrency and computation: practice and experience,
vol. 14, no. 13-15, pp. 1175–1220, 2002.

[30] L. R. Varshney, A. Vempaty, and P. K. Varshney, “Assuring privacy and
reliability in crowdsourcing with coding,” in Information Theory and

Applications Workshop (ITA), 2014. IEEE, 2014, pp. 1–6.

[31] R. Blanco, H. Halpin, D. M. Herzig, P. Mika, J. Pound, H. S. Thompson,
and T. Tran Duc, “Repeatable and reliable search system evaluation
using crowdsourcing,” in Proceedings of the 34th international ACM SI-

GIR conference on Research and development in Information Retrieval.
ACM, 2011, pp. 923–932.

[32] W. J. Kolarik, J. C. Woldstad, S. Lu, and H. Lu, “Human performance
reliability: on-line assessment using fuzzy logic,” IIE transactions,
vol. 36, no. 5, pp. 457–467, 2004.

[33] R. Rukšėnas, J. Back, P. Curzon, and A. Blandford, “Formal modelling
of salience and cognitive load,” Electronic Notes in Theoretical Com-

puter Science, vol. 208, pp. 57–75, 2008.

[34] S. Guo, H. Huang, Z. Wang, and M. Xie, “Grid service reliability
modeling and optimal task scheduling considering fault recovery,”
Reliability, vol. 60, no. 1, pp. 263–274, 2011.

[35] T. Thanakornworakij, R. F. Nassar, C. Leangsuksun, and M. Păun, “A
reliability model for cloud computing for high performance computing
applications,” in Euro-Par 2012. Springer, 2013, pp. 474–483.

[36] N. Yadav, V. Singh, and M. Kumari, “Generalized reliability model
for cloud computing,” International Journal of Computer Applications,
vol. 88, no. 14, pp. 13–16, 2014.

[37] E. Christoforou, A. Fernandez Anta, C. Georgiou, M. Mosteiro et al.,
“Algorithmic mechanisms for reliable master-worker internet-based
computing,” Computers, IEEE Transactions on, vol. 63, no. 1, pp. 179–
195, 2014.

