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Abstract Technical analysis is useful for forecasting the
price movement through the analysis of historic data. This
sort of movement has Turn of the year effect also and useful
for short term prediction.
If the direction of price of two or more assets is same, it
becomes necessary to analyze the returns also. We first
use optimal band to predict the direction of price and
create a contingency table of the data to analyze the pattern
(movement) against returns. We use log-linear modeling for
the analysis of the contingency table. We next include the
volume of transactions as one more variable in the contin-
gency table. The table consisting of three variables, Pattern,
Returns and Volume is further analyzed by using log-linear
modeling. We test various hypotheses of association for
these variables by using Chi-square test for contingency
tables.

Keywords Contingency Table, Log-linear Modeling,
Optimal Band, Technical Analysis, Trading Band

1 Introduction

Stock market always attracts the investors to invest money
according to their choice from which large profits can be
earned. Fundamental driver behind maximizing profit is the
strategy of buying and selling of the stocks. The buying and
selling behaviour of investors is also affected by Turn of the
year [Ritter 1988]. It is well documented that turn of the year,
the average ratio of buying and selling, is more in first 9 days
of January than mid January to mid December and last 9 days
of December. Rozeff and Kinney (1976) also gave explana-
tion about the January effect that the average of returns of
stocks is higher in January month than in other months. There
are number of articles available to discuses the Turn of the
year effect. Jay R. Ritter (1988) proposed a theory based on
the tax-loss-selling named, ”parking-the proceeds” to explain
the Turn of the Year effect on the NYSE daily returns from
17 Dec 1970 to 16 Dec 1985 using t-statistic. Barber and
Odean (2008) tested the hypothesis based on attention grab-
bing stocks. These statistical tests confirm that the behaviour
of individuals and institutions differ while buying and selling

the stocks.
There are several technical indicators proposed by re-

searchers and financial experts for the prediction of pat-
tern. Some of these indicators are Bollinger Band [Bollinger
(2001)], Moving Average, Moving Average Convergence/
Divergence, Relative Strength Index, Confidence Index,
[Hoque and Gias (2009)] and Optimal Band [Vijay and
Paul (2015)], to predict this buying and selling behaviour of
stocks.

Most of these indicators are based on the past returns, their
moments and/ or volume of transactions. For the short term
investors/ traders, this analysis is important to make the de-
cision of their investments. However, if the indicators ex-
hibit similar pattern for two or more stocks, the decision is
made on the basis of return and its association with pattern.
We, here, classify the historic data as per their pattern by us-
ing optimal band [Vijay and Paul (2015)]. For each of the
categories of pattern, we further divide the whole data into
different categories of returns. If the interest lies in the clas-
sification of pattern then historic values of returns are used
to predict the same but if one is interested in forecasting the
returns then the historic value of pattern becomes more use-
ful [Vijay and Paul (2015)]. Therefore, it becomes important
to analyze the strength of dependence between the two vari-
ables, returns and pattern.

First, we use the historic data to see the buying and selling
pattern by using the optimal band [Vijay and Paul (2015)].
The pattern data is then divided into three categories, namely,
Sell(Y S), Neutral(Y N ) and Buy(Y B). This is further used to
estimate the future category of returns, High, Moderate and
Low. The whole data is then presented in the form of a 2-
dimensional contingency table by using the variables, returns
and pattern. Note that each of these variables has three cate-
gories. In technical analysis, one of the fundamental drivers
is volume of transactions. We include the volume as third
variable with its two categories, namely Up and Down. This
division of volume is primarily based on the range of historic
returns. This creates a 3-dimensional contingency table. A
partial table is the cross-classification of two of these three
variables for fixed level of the remaining one [Kateri (2014)].
Thus, there are two possible sets of partial tables correspond-
ing to the variable volume, we test different hypotheses for
these tables.

The hypotheses for 3-dimensional contingency table are
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based upon:

1. Association between buying and high-return under up-
volume and down-volume.

2. Relation between selling and high-return/ low-return
under up-volume and down-volume.

3. Relation between neutral and all categories of returns
under up and down volume.

A first sensible assumption is that the association between
pattern and returns exhibits a linear trend. The linear trend
is measured by Pearson’s correlation coefficient, defined
through their categories [Anderson (1996)]. For the purpose
of testing of hypotheses, we use observed frequency and ex-
pected frequency to find the test statistic Z(H) under hypothe-
sis (H). It is known that Z(H) follows Chi-square distribution
with degree of freedom equal to the number of unconstrained
log linear model parameters which are set to zero under H
and, at a particular level of significance [Boulesteix (2006)].
All the hypotheses of independence or conditional indepen-
dence can be equivalently represented in terms of interaction
parameters of a log-linear model. Log linear modeling is a
widely used method for the analysis of a contingency table.
Parameters of log linear model describe the interaction/ asso-
ciation among two or more variables. One of the advantages
of using log-linear model is that it goes beyond a single sum-
mary statistics and specify how the cell counts depend on the
levels of categorical variables. They model the association
and interaction pattern among categorical variables. These
are appropriate when there is no clear distinction between re-
sponse and explanatory variables, or there are more than two
responses [Vellaisamy and Vijay (2007)]. If any hypothesis
of independence is accepted then the interaction parameters
can be assumed to be zero. If the hypotheses of independence
is rejected, the values of these interaction parameters help in
analyzing the influence of different categories of variables.
The log-linear modelling, therefore, helps us identifying the
level of a variable which has strong influence on another vari-
able. Hence, this approach is not only useful for prediction
of pattern but also deals with its association with other vari-
ables. We demonstrate the process of classification of the
data in the form of a contingency table. Various hypotheses
are tested by using χ2 test of independence/ conditional in-
dependence. The association, if exists, is described by the
parameters of log-linear model.
The structure of the paper is given below:

Section-2 deals with formation of contingency tables by
using trading band approach. Section-3 presents, briefly, the
log-linear modeling for 2 and 3-dimensional contingency ta-
bles. Various hypotheses of association are also represented
in terms of interaction parameters. Analysis of contingency
tables is shown in Section-4. Conclusion and future aspects
are presented in Section-5.

2 Contingency table for Returns, Pat-
tern and Volume of transactions

Consider the series X1, X2, ..., Xn of returns of a stock.
We define the process of construction of a contingency table
for pattern and returns of the series. We first use optimal
band [Vijay and Paul (2015)] to divide the data into three
categories of pattern, namely, Sell, Neutral and Buy.

Once divided, the cardinality of each of these subsets
of the time series data will represent the count of each
category of pattern. We further divide, for each categories
of pattern, these subsets into subsets corresponding to the
returns, that is, High, Moderate and Low. We use the follow-
ing algorithm to construct a 2-dimensional contingency table.

Step-1 Define

α = Max(X1, X2, ..., Xn);

δ = Min(X1, X2, ..., Xn);

βi = Max(Xi, Xi+1, ..., Xi+4), 1 6 i 6 n− 4;

γi = Min(Xi, Xi+1, ..., Xi+4), 1 6 i 6 n− 4.

Step-2 Define the linear function [Vijay and Paul (2015)].

f = a ∗ α+ b ∗ β̄ + c ∗ γ̄ + d ∗ δ

where β̄ = mean(β1, β2, ..., βn−4)

=
1

n− 4

n−4∑
i=1

βi,

γ̄ = mean(γ1, γ2, ..., γn−4)

=
1

n− 4

n−4∑
i=1

γi

The parameters a, b, c and d are obtained in the following
step-3.

Step-3 We obtain the parameters a, b, c and d by solv-
ing the optimization problem.

Max︸ ︷︷ ︸
a, b, c, d

f(α, β̄, γ̄, δ) = a ∗ α+ b ∗ β̄ + c ∗ γ̄ + d ∗ δ

s.t f > 0

f < (α− β̄)/2

a, b, c, d ∈ R

Step-4 We next define, for 1 ≤ i ≤ n - 4,

Upper Band[UB1] = βi + f(α, β̄, γ̄, δ);

Upper Band[UB2] = βi − f(α, β̄, γ̄, δ);

Middle Layer[ML] = f(α, β̄, γ̄, δ);

Lower Band[LB1] = γi + f(α, β̄, γ̄, δ);

Lower Band[LB2] = γi − f(α, β̄, γ̄, δ).

Let us now denote by Y S , Y N and Y B , the subsets
corresponding to the categories Sell, Neutral and Buy of
pattern respectively. We have the following rule:

Xi ∈ Y S if UB1 ≤ Xi < UB2

Xi ∈ Y N if UB2 ≤ Xi < LB1

Xi ∈ Y B if LB1 ≤ Xi ≤ LB2

for 1 ≤ i ≤ n− 4.

The total cell count corresponding to the Sell, Neutral and
Buy are given by the cardinality of the sets Y S , Y N and Y B .
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Next, we divide each of the subsets Y S , Y N and Y B

into High, Moderate and Low returns.

Step-1 Consider the set Y B , and denote the maximum,
minimum and average values of the set Y B by Y B

max, Y B
min

and Y B
Ave respectively.

Define the intervals

IBH = (Y B
Ave + 0.3 ∗ Y B

max, Y
B
max)

IBM = (Y B
Ave + 0.5 ∗ Y B

min, Y
B
Ave + 0.3 ∗ Y B

max)

IBL = (Y B
min, Y

B
Ave + 0.5 ∗ Y B

min)

Step-2 The classification is defined by the following rule:
Let y ∈ Y B , then

y ∈ IBH ⇒ y ∈ Y BH

y ∈ IBM ⇒ y ∈ Y BM

y ∈ IBL ⇒ y ∈ Y BL

Here, Y BH , Y BM and Y BL are subsets of Y B corre-
sponding to the categories High, Moderate and Low of re-
turns.

Similarly, we obtain the subsets {Y SH , Y SM , Y SL} cor-
responding to Y S and {Y NH , Y NM , Y NL} corresponding
to Y N .

The 2-dimensional contingency table for the variables pat-
tern and returns is formed by the counts given by cardinality
of these subsets.

The table is represented above

Table 1. Frequency Table

Returns
Pattern High Moderate Low
Sell | Y SH | | Y SM | | Y SL |
Neutral | Y NH | | Y NM | | Y NL |
Buy | Y BH | | Y BM | | Y BL |

We next present a concrete example.
Example: We consider the Maruti Sazuki Co. daily returns
data from 23 Nov 2007 to 23 Nov 2009. The total data points
are n = 478.

Step-1 We obtain

α = 0.1597, β̄ = 0.0348,

γ̄ = −0.0305, δ = −0.0987,

where, β̄ = 1
n−4

n−4∑
i=1

βi and γ̄ = 1
n−4

n−4∑
i=1

γi.

Step-2 We now find a linear function f defined as

f = a ∗ α+ b ∗ β̄ + c ∗ γ̄ + d ∗ δ.

The initial values of the parameters are chosen as

a = 0.5, b = 0.7, c = 1, d = 1.

The estimated values are [Vijay and Paul (2015)],

â = 0.1458, b̂ = 0.5071,

ĉ = 0.4315, d̂ = 0.2084.

Note that, different initial values of parameters may give dif-
ferent estimates but the function’s value remains unchanged.
Step-3 We get

f(α, β̄, γ̄, δ) = 0.0072.

Step-4 We define the following bands:

Upper Band[UB1] = βi + 0.0072;

Upper Band[UB2] = βi − 0.0072;

Middle Layer[ML] = 0.0072;

Lower Band[LB1] = γi + 0.0072;

Lower Band[LB2] = γi − 0.0072.
This gives, the total numbers of data points in each of the
categories in Y S , Y N , and Y B as

| Y S | = 136;

| Y N | = 211;

| Y B | = 131.

Now, we divide the data for each of the categories of pattern
into the categories of returns (High, Moderate and Low). As
an example, we use the following criteria for the set Y B .
Step-1 We have

Y B
max = 0.0208

Y B
min = −0.0987

Y B
Ave = −0.0265

Therefore,

IBH = (−0.002026, 0.0208)

IBM = (−0.0161,−0.002026)

IBL = (−0.0987,−0.0161)

Step-2 The total number of data point in categories Y BH ,
Y BM and Y BL are given by

| Y BH | = 54;

| Y BM | = 71;

| Y BL | = 06.

In the similar way, we divide the data corresponding to Y S

and Y N to obtain the following 2-dimensional Table-2.
For short-term investors, another key factor is volume of

the transactions. We next include the volume of transaction
as third variable to construct a 3-dimensional contingency ta-
ble. Each subset corresponding to the categories of Pattern
and Returns is further divided into Up and Down categories
of volume.
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We define a constant q ∈ (0,1) such that the data given
in set, for example, Y BH is divided into two categories of
volume by the following relation

q ∗max(vol) < Up V olume 6 max(vol)

min(vol) 6 Down V olume 6 q ∗max(vol).

Here, q depends on the volume data. The two categories of
data denoted by Y BH

U and Y BH
D are corresponding to Up

and Down volume of transaction.

For each of the two categories of volume, we use the
process given above to obtain the 3-dimensional contingency
table. With value of q = 0.4, the range of volume of
transaction is given by.

0.04592 < Up V olume 6 0.1148

0 6 Down V olume 6 0.04592.

Using the above rule, we get the following 3-dimensional ta-
ble.

Note that if the above 3-dimensional table is marginalized
over third variable, that is, volume, we obtain the Table-2.
We next give a brief description of log-linear modeling for
analysis of contingency table. Also, we present a class of
hypotheses for the log-linear models.

3 Log linear modeling
Log-linear modeling for 2-dimensional table: Log-

linear model for a 2-dimensional table describes association
between two categorical variables. A log-linear model ex-
presses the cell counts depending on levels of the two cate-
gorical variables.

We now consider a 2-dimensional table of variables A and
B. Let the categories of A and B be respectively {1, 2, ..., I}
and {1, 2, ..., J}. Assume that xij represents observed cell
count of ith row and jth column of the table. Also, let µij =
E(xij), where, i = 1, ..., I , j = 1, ..., J .
A saturated log-linear model for 2-dimensional contingency
table is given by

ln(µij) = λ0 + λAi + λBj + λAB
ij , (1)

where i = 1, ..., I and j = 1, ...., J .
Here, λAB

ij is interaction effect of variables A and B, λAi (λBj )
is main effect of A (B) and λ is overall effect. All these pa-
rameters satisfy the following constraints(Vellaisamy and Vi-
jay (2007)).∑

i

λAi =
∑
j

λBj =
∑
i

λAB
ij =

∑
j

λAB
ij = 0.

Table 2. 2-dim frequency table of 23 Nov 07 to 23 Nov 09

B: Returns
A: Pattern High Moderate Low
Sell 09 66 61
Neutral 37 159 15
Buy 54 71 06

Table 3. 3-dim Frequency table of 23 Nov 07 to 23 Nov 09

C: Volume
A: Pattern B: Returns Up Down

Sell
High 02 07
Moderate 42 24
Low 33 28

Neutral
High 17 20
Moderate 78 81
Low 05 10

Buy
High 28 26
Moderate 44 27
Low 04 02

These parameters are estimated by using their maximum
likelihood estimators given below.

λ̂0 =
1

IJ

∑
i

∑
j

ln(µij);

λ̂i =
1

J

∑
j

ln(µij)− λ̂0;

λ̂j =
1

I

∑
i

ln(µij)− λ̂0;

λ̂ij = ln(µij)−
1

I

∑
i

ln(µij)−
1

J

∑
j

ln(µij)

+
1

IJ

∑
i

∑
j

ln(µij),

To know more about log linear modeling and effect of levels
of variables, see, Vijay (2011).

Log-linear modeling for 3-dimensional table: Log
linear model for 3-dimensional contingency table is straight
forward extension of (1), and is given by

ln(µijk) = λ0+λAi +λBj +λCk +λAB
ij +λAC

ik +λBC
jk +λABC

ijk .
(2)

Maximum likelihood estimates of the parameters are also
defined similarly. The above model is useful in explaining
several interaction effects [Vellaisamy and Vijay (2007)], for
example,

λABC
ijk = λAB

ij = 0 (∀ i, j, k) ⇔ (A ⊥ B | C),

that is, A and B are independent given C. Similarly,

λABC
ijk = λAB

ij = λAC
ik = 0 (∀ i, j, k) ⇔ (A ⊥ B,C).

All the hypotheses of independece/conditional independence
for a 3-dimensional table are presented below-

H1 : λABC
ijk = λAC

ik = 0 (C ⊥ A | B);

H2 : λABC
ijk = λAB

ij = 0 (A ⊥ B | C);

H3 : λABC
ijk = λBC

jk = 0 (B ⊥ C | A);

H4 : λABC
ijk = λAC

ik = λBC
jk = 0 (C ⊥ A,B);

H5 : λABC
ijk = λAB

ij = λBC
jk = 0 (B ⊥ C,A);

H6 : λABC
ijk = λAB

ij = λAC
ik = 0 (A ⊥ B,C);

H7 : λABC
ijk = λAC

ik = λBC
jk = λAB

ij = 0 (A ⊥ B ⊥ C).
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4 Analysis of contingency table
We consider 2-dimensional and 3-dimensional contin-

gency tables for analysis. Chi-square test statistic is used to
test whether a set of log-linear parameters is zero or equiva-
lently, to test the hypotheses of independence. If any of the
hypothesis of independence or conditional independence is
rejected, the parameters will be used to analyze the influence
of the categories of variables.

4.1 Analysis of 2-dimensional table
The 2-dimensional table of pattern and returns is created

for daily returns of Maruti Sazuki Co, using the process given
in Section-3. We use the closing price of stocks of the com-
pany from 23 Nov 2007 to 23 Nov 2009 [Table-2]. We test
the hypothesis of no association for this table by using

Z(H) = 2 ∗
∑
i

∑
j

xij(ln(xij)− ln(µij)).

The Z(H) value is 182.634 which is greater than χ2
0.95 with

degree of freedom (4).
This leads to rejection of hypothesis of independence. That
is, the variables A(Pattern) and B(Returns) are dependent on
each other[Anderson (1996) pp 27-28].
We now obtain the maximum likelihood estimates of log lin-
ear parameters. The main effect parameters are given in
Table-4 and 5. The interaction parameter is presented in
Table-6.

Table 4. Value of λ̂A
i for 2-dimensional table

λ̂Ai i=1 i=2 i=3

-0.1317 0.1367 -0.0051

Table 5. Value of λ̂B
j for 2-dimensional table

λ̂Bj j=1 j=2 j=3

0.1038 0.7999 -0.9037

Table 6. Value of λ̂AB
ij for 2-dimensional table

λ̂AB
ij j=1 j=2 j=3

i=1 -0.4550 0.1134 0.3417

i=2 0.0139 0.1169 0.1308

i=3 0.4411 -0.2303 -0.2109

Note that the parameter λ̂AB
1j and λ̂AB

2j attain the maximum
value for j=3, that is, corresponding to Low returns. This
implies that when the data exhibit selling pattern, there are
more chances that the next return will be low in comparison
to Medium and High. On the other hand, λ̂AB

3j is maximum
for j= 1 which shows that when the buying pattern is exhib-
ited, there are more chances of the next return to be high.
The main effect λ̂Ai shows that the stock remain Neutral most
of the time. λ̂Bj shows that the returns of the stock is main-
tained at Moderate returns. Similarly, one can interpret the
other values of interaction parameters.

4.2 Analysis of 3-dimensional table
We consider the returns for two different periods.

4.2.1 The analysis for returns for the period 23 Nov
2007 to 23 Nov 2009

We now divide the data given in above table as per the
intensity of volume, that is, Up and Down. This creates a 3-
dimensional Table-3 for volume of transactions (Up, Down),
pattern and returns. We test the seven hypotheses, given in
Section-3, by using the test statistic

Z(H) = 2 ∗
∑
i

∑
j

∑
k

xijk(ln(xijk)− ln(µijk)).

The following table presents the value of test statistic and
standard chi-square value to test it at 95% level of signifi-
cance.

Table 7. Hypothesis and Z(H) value table of 23 Nov07 to 23 Nov09

Hypo Z(H) Value Df χ2
0.95

H1 11.312 6 12.592
H2 132.384 6 12.592
H3 8.843 8 15.507
H4 13.546 10 18.307
H5 134.618 10 18.307
H6 137.087 8 15.507
H7 139.321 12 21.026

Clearly, H1, H3 and H4 cannot be rejected. This shows
that the volume is independent of pattern and returns. Under
H1, H3 and H4 the model contains the following non zero
parameters: λ̂AB

ij , λ̂Ai , λ̂
B
j and λ̂Ck . The Maximum likelihood

estimates for these parameters are shown in following tables.

Table 8. Value of λ̂A
i for 3-dimensional table

λ̂Ai i=1 i=2 i=3

-0.0356 0.1170 -0.0815

Table 9. Value of λ̂B
j for 3-dimensional table

λ̂Bj j=1 j=2 j=3

-0.1315 0.4250 -0.2935

Table 10. Value of λ̂C
k for 3-dimensional table

λ̂Ck k=1 k=2

-0.004 0.004

Table 11. Value of λ̂AB
ij for 3-dimensional table

λ̂AB
ij j=1 j=2 j=3

i=1 -0.4813 -0.1092 0.5905

i=2 0.0587 0.1368 -0.1955

i=3 0.4226 -0.0276 -0.3950
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Table-11 exhibits a pattern similar to that of Table-6. These
estimated values of log-linear parameters can be interpreted
similarly.

4.2.2 Data between Jan 2009- May 2009

Again, we take same company data but different period.
We now create a similar 3-dimensional table for the period of
Jan 2009 to May 2009. The contingency table is given below:

Table 12. 3-dim frequency table of Jan 09- May 09

C: Volume
A: Pattern B: Returns High Low

Sell
High 3 4
Moderate 7 18
Low 7 6

Neutral
High 3 2
Moderate 6 6
Low 2 1

Buy
High 9 11
Moderate 6 10
Low 2 2

Table-12 of test statistic with respect to the hypotheses
suggests that hypotheses H1, H3 and H4 cannot be rejected
at 95% level of significance. The non-zero interaction param-
eters are estimated and given in the below tables:

Table 13. Hypotheses and Z(H) value table of Jan 09- Mar 09

Hypo Z(H) Value Df χ2
0.95

H1 2.417 6 12.592
H2 16.391 6 12.592
H3 3.763 8 15.507
H4 5.431 10 18.307
H5 19.405 10 18.307
H6 18.060 8 15.507
H7 21.074 12 21.026

Table 14. Value of λ̂A
i for 3-dimensional table

λ̂Ai i=1 i=2 i=3

0.1609 0.0248 -0.1857

Table 15. Value of λ̂B
j for 3-dimensional table

λ̂Bj j=1 j=2 j=3

0.0025 0.2662 -0.2687

Table 16. Value of λ̂C
k for 3-dimensional table

λ̂Ck k=1 k=2

0.00005 -0.00005

Once again the tables of parameters exhibit similar pattern,
that is, when the pattern is Sell, there are more chances of
return being low. For this data we get similar results.

Table 17. Value of λ̂AB
ij for 3-dimensional table

λ̂AB
ij j=1 j=2 j=3

i=1 -0.2634 -0.0165 0.2799

i=2 -0.0527 0.0727 -0.0200

i=3 0.3161 -0.0562 -0.2599

5 Conclusion and future aspect
We analyze the relationships among pattern, returns and

volume of transactions of stock market data. The data is pre-
sented in the from of contingency tables. These tables are
analyzed by using log-linear modeling and the hypotheses of
interactions are tested by using chi-square test statistic. We
use these tables for further analysis to see the strength of re-
lationship among the variables by using the maximum like-
lihood estimates of various parameters of interaction. The
Maruti-Sazuki Co. stock data clearly shows that pattern and
returns are independent of the volume of transactions. Also,
the log-linear model parameters show that the influence of
categories of each of these variables will not depend upon
the categories of other variables uniformly. The selling pat-
tern and low value of next day return have more correlation
than the other categories. Also, this analysis is not affected
by Turn of the year effect.

One can similarly include more variables to analyze the
multi-dimensional contingency tables. The construction of
categories can also be defined by using other technical indi-
cators, such as relative strength index, principal volume os-
cillator etc. These tables may be further expanded to include
more categories of each of the variables, for example, we
have included two categories of volume and similarly three
categories of other two variables.
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