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Abstract: The application of Time Petri net modelling and analysis techniques to safety-critical real-time 

systems is explored and procedures described which allow analysis of safety, recoverability, and fault- 

tolerance. These procedures can be used to help determine software requirements, to guide the use of 

fault detection and recovery procedures, to determine conditions which require immediate mitigating 

action to prevent accidents, etc. Thus it is possible to establish important properties during the syn- 

thesis of the system and software design instead of using guesswork and costly a po~teriori analysis. 

Introduction 

Computers are increasingly being used as passive (monitoring) and active (controlling) components 

of real-time systems, e.g. air traffic control, aerospace, aircraft, industrial plants, and hospital patient 

monitoring systems. The problems of safety become important when these applications include systems 

where the consequences of failure are serious and may involve grave danger to human life and property. 

Although in a batch system it is reasonable to abort execution and attempt to fix the problem 

when a failure occurs, control usually cannot be abandoned abruptly in an embedded system. Therefore, 

responses to hardware failures, software faults, human error, and undesired and perhaps unexpected 

environmental conditions must be built into the system. These responses can take three basic forms: 

1) a fault.tolerant system continues to provide full performance and functional capabilities in the pres- 

ence of operational faults. 

2) a fail-8oft system continues operation but provides only degraded performance or reduced functional 

capabilities until the fault is removed. 

3) a fail-safe system attempts to limit the amount of damage caused by a failure. No attempt is made 

to satisfy the functional specifications except where necessary to ensure safety. 

These responses are, for most situations, in the order of decreasing desirability although when the func- 

tional and safety requirements of the system are not identical (and especially when they are conflicting), 

they are not necessarily of decreasing importance. 

The area of system safety is well-established, and procedures exist to identify and analyze elec- 

tromechanieal hazards along with techniques to eliminate or limit hazards in the final product (for a 

summary, see Malasky (1982)). Unfortunately, much more is known about how to engineer safe mechan- 

ical systems than safe software systems. With the increased use of software in safety-critical components 

of complex systems, government certification agencies and contractors are increasingly including require- 

ments for software hazard analysis and verification of software safety (e.g. see MIDSTD-882b: System 

tThis work was partially supported by a MICRO grant co-funded by the State of California and Hughes Aircraft Co. 
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Safety Program P~equiromeatS)o Modelling and analysis tools are desperately needed to aid m these 

tasks. This paper explores the application of Petri net modelling and analysis techniques to the design of 

safety-critical real-time systems. Because timing is crucial with respect to the control of real-time sys- 

tems, Time Petri nets are used. 

The next section describes the general approach to be taken. Following that, procedures are out- 

lined for eliminating hazards from the system design. Then potential failures are added to the analysis 

procedures. 

Safety Analysis 

Whereas system reliability deals with the problems of ensuring that a system, including all 

hardware and software subsystems, performs a required task or mission for a specified time in a specified 

environment, system sa/ety is concerned only with ensuring that a mishap does not occur in the process. 

Usually there are many possible system failures which have relatively little "cost" associated with them. 

Others have such drastic consequences that an attempt must be made to avoid them at all costs, 

perhaps even at the cost of attaining some or all of the goals of the system, t For example, an amuse- 

ment park ride may have to be temporarily stopped because conditions are such (e.g. a foreign object is 

on the tracks) that a derailment is possible. Thus the response to a safety critical failure may focus on 

reduction of risk rather than attainment of mission [Leveson (1984)]. 

While software itself cannot be unsafe, it can issue commands to a system it controls which place 

the system in an unsafe state. Furthermore, the controlling software should be able to detect when fac- 

tors beyond the control of the computer (e.g. environmental conditions) place the system in a hazardous 

state and to take steps to eliminate the hazard or, if that is not possible, initiate procedures to minimize 

the hazard. This then is the problem of software safety. 

If software safety is to be studied and used as a measure of software quality, then some definitions 

are necessary. A mishap is an event or series of events which results in death, injury, illness, or damage 

to or loss of property or equipment. A hazard or unsafe ~tate is a condition or state of the system with 

the potential for (i.e. some non-zero probability of) leading to a mishap. Hazards can be categorized by 

the aggregate probability of the occurrence of the individual conditions which make up the hazard and 

by the seriousness of the resulting mishap. Together these constitute risk. 

The first step in a safety analysis is to identify the system hazards and assess their severity and 

probability (i.e. risk). The next step is to design the system so as to eliminate hazards or (if that is not 

possible) to minimize the risk by altering the design so that there is very little probability of the hazard 

occurring. This can be accomplished by first ensuring that the system as specified is safe, i.e. given that 

the specifications are correctly implemented and no failures occur, operation of the system will not result 

in a mishap. The next step in the design process is to identify and eliminate (by using fault tolerance 

techniques) single point failure modes which can lead to a hazard. Finally, techniques are used to ensure 

that the probability of multiple sequences of failures leading to a hazard is sufficiently low. If it is 

impossible to completely eliminate the possibility of a hazard, a design goal may be to minimize the 

effects of the hazard should it occur, tn this case the system should detect the hazard and attempt to 

eliminate it, if possible; otherwise an attempt should be made to minimize any possible effects. In either 

case, in order to reduce risk, the ezposttre time (length of time of occurrence) of the hazardous conditions 

must be minimized. The goal of the techniques presented in this paper is to develop formal procedures 

to aid in this safety analysis process. 

system whose sole purpose is the sustaining of life, e.g. a pacemaker, these conflicts between safety and other system re- 

quirements do not occur. 
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It is important to stress the "system" nature of the problem. Software does not harm anyone -- 

only the instruments which it controls can do damage. Therefore, software safety procedures cannot be 

developed in a vacuum, but must be considered as part of the overall system safety. For example, a par- 

ticular software error may cause a mishap only if there is a simultaneous human and/or hardware 

failure. Alternatively, an environmental event or failure may be involved in the software error. Mishaps 

are often the result of multiple failure sequences which involve hardware, software, and human failures. 

One modelling technique which has the potential for analyzing software for real-time systems within a 

system viewpoint is Time Petri nets. By combining hardware, software, and human components within 

one model, it is possible to determine, for example, the effects of a failure or fault in one component on 

another component. It is also possible to use the model to determine software safety and fault tolerance 

requirements. Writing correct software requirements is a difficult problem for which there are few 

analytical tools available. Techniques such as Failure Modes and Effects Analysis (FMEA) and Prelim- 

inary Hazard Analysis (PHA) [Malasky (1982)] have been developed to determine the system safety 

requirements. However, there is a need to be able to go from the system safety requirements to the 

software safety requirements. Using the hazardous states which have been identified in the PHA, it may 

be possible to work backward to the software interface using Petri net analysis techniques and thus to 

derive the software safety requirements. 

Formal Definitions 

A Petri net is composed of a set of places P, a set of transitions T, an input function I, an output 

function O, and an initial marking #0" The input function I is a mapping from the transition t i to a bag 

of places I(ti) where a bag is a generalization of a set which allows multiple occurrences of an element. 

Similarly, the output function O maps a transition t i to a bag of places O(ti). The initial placement of 

tokens on the places of the net is specified by P0 [Peterson (1981)]. Formally, this is written: 

Definition: A Petri net structure, cI,, is a five-tuple, ~=(P,T,I,O,#0). 

P={pl,P2,..,pn} is a finite set of places, n>_O. 

T={tl,t2,... ,tm} is a finite set of transitions, m>_O. The set of places and the set of transitions are 

disjoint, PNT= 0. 

I:T _+pOe is the input function, a mapping from transitions to bags of places. 

O: T-~POe is the output function, a mapping from transitions to bags of places. 

Finally, #0:P -~ N is the initial marking for the net where Y is the set of non-negatlve integers. 

Definition: The multiplicity of an input place Pi for a transition tj is the number of occurrences of 

the place in the input bag of the transition, denoted #(Pi,I(tj)). The multiplicity of an output 

place is defined similarly and denoted #(Pi,O(tj)). 

A graph structure is often used for illustration of Petri nets where a circle " C) " represents a place and 

a bar " ] " represents a transition. Figure 1 shows a petri net. An arrow from a place to a transition 

defines the place to be an input to the transition. Similarly, an output place is indicated by an arrow 

from the transition to the place. 

The dynamic aspects of Petri net models are denoted by markings which are assignments of tokens 

to the places of a Petri net. Markings may change during ezeeution of a Petri net. 

Definition: A marking p of a Petri net q~ is a function from the set of places P to the nonnegative 

integers N, p: P-~N. 

The execution of a Petri net is controlled by the number and distribution of tokens in the Petri net. 

Definition: A transition tj is enabled if and only if each of its input places contains at least as many 

tokens as there exists ares from that place to the transition, i.e. #(pi ) > #(Pi,I(t:)) for all Pi E P. 
J 
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When a transition fires, all enabling tokens are removed from its input places, and a token is deposite4 

in each of its output places. Transition firings continue as long as there exists at least one enabled transi- 

tion. 

When using Petri nets to model systems, places represent conditions and transitions are used to 

represent events. Figure 1 can be interpreted as a model of a simple railroad crossing. PI '  P2' P3' and 

P4 represent the different conditions that can hold for the train (i.e. approaching, just before, within, 

and past the crossing, respectively). Similarly, transitions I, 2, and 3 denote the events of signalling the 

Lrain's approach, entering the crossing, and signalling the train's departure. The large box represents 

the controlling device or computer -- either hardware or software based. The states of the gate are 

represented by two places P l l  (the gate is up) and P12 (the gate is down). Transitions 6 and 7 

represent the events of raising and lowering the gate respectively. 

Train 
. . . . .  g . . . .  

Figure 1. A Petri Net Graph 

The state of the Petri net (and hence the state of the modelled system) is defined by the marking 

(the existing conditions). The change in state caused by firing a transition is defined by the next-state 

function & 

Definition: The next-state function ~i: N n x T ~ N n for a Petri net (I)=(P,T,I,O,#0) with marking 

# and transition tj E T is defined if and only if tj is enabled. If ~f(#,tj) is defined, then ~i(#,tj) = ta" 

where 

V'(Pi) = #(Pi ) - #(Pi '  I(tj)) + #(Pi '  O(tj)) for all Pi E P 

Definition: For a Petri net ~=(P,T,I,O,#o) with marking #, a marking #" is immediately reachable 

from # if there exists a transition tj E T such that 6(p, t j )=p' .  

The "reachability" relationship is the reflexive transitive closure of the "immediately reachable" relation- 

ship. 

Definition: The teachability set R((I),#) for a Petri net @=(P,T,I,O,#0) with marking p is the smal- 

lest set of markings defined by: 

1. tJ e R(¢,t~) 

2. tf #" E R(~,#) and # ' "  = ~f(#',tj), for some tj E T, then #" " E R(~I,,#). 
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Both trees and graphs have been used to represent the reachability state. In this paper, a reaehability 

graph is used where the nodes of the graph are labeled with the present marking (i.e. the state) and the 

arcs represent transitions between states (see figure 2a). 

Definition: A path in the teachability graph is a sequence of transitions ti,...,t j starting at marking 

#i-1 to pj such that ~(/Jn.l,tn) = Pn for n = i...j 

Definition: The eztended nezt-state function 5" is defined for a marking #, and a sequence of transi- 

tions s E T* by 

/~ (P,tis) = 5 (/~(P~ti),s) 

(~,~)= 

To model time requires enhancements to the basic Petri net model. There have been several propo- 

sals for extending standard Petri nets to include time. We use the Time Petri net approach of Merlin 

(1974) as it provides a very flexible modelling tool while retaining the instantaneous firing feature of the 

untimed Petri net. 

A Time Petri net (TPN) is a Petri net, i.e. it is composed of a set of places P, a set of transitions T, 

an input function I, an output function O, and an initial marking P0 along with the added ]irin9 time 

functions Min and Max. The firing time functions specify the conditions under which a transition may 

fire. Formally, this is written: 

Definition: A Time Petri net structure, ¢, is a seven-tuple, ~=(P,T,I,O,Min,Max,P0). P, T, I, O, 

and P0 are defined as above. 

Min and Max are the rain time function and maz time function, respectively, where 

Min:T -~ R and Max:T - ,  R, R is the set of non-negative real numbers and 

Min i _< Max i for all i such that t i E T. 

Definition: A transition is ]irable at time r if and only if it has been continuously enabled during 

the interval r - Min(tj) to r. The firable transition may fire at any time r for Min(t.) 

_< r _< Max (tj). A transition must fire at time r if it has been continuously enabled during tl~e 

interval r - Max(tj) to r. 

Note that the Time Petri net is equivalent to a standard Petri net if all Min times are 0 and all 

Max times are set to oo. Also note that the markings of the states of the Time Petri net teachability 

graph will be equal to or a subset of the markings of the equivalent untimed Petri net. This is true since 

the enabling rules for the time Petri net are the same as for a Petri net. The difference lies in the addi- 

tional restrictions placed on the firing rules. Thus adding timing may restrict the set of possible mark- 

ings, but will never increase it. Since we are basically interested in determining worst cases (including 

the potential effects of timing failures), much of our analysis will involve deriving the untimed teachabil- 

ity graph and then determining 1) the timing constraints of the final system necessary to avoid high-risk 

states, and 2) the run-time checks, e.g. watchdog timers, needed to detect critical timing failures. 

gllmlnatiag High-Rhk States from the Design 

A mishap is an unplanned event or series of events that results in death, injury, illness, or damage 

to or loss of property or equipment. Mishaps can be classified as to severity from catastrophic to negligi- 

ble. 

Definttbn: A hazard is a set of conditions within a state from which there is a path to a mishap. 

A state a is hazardous if and only if there exists a mishap state er and a sequence of transitions 
. m 

sET* such that 6 (a,s)=a m. 
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~ P2P5P6Pl 1 
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Desired 
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Figure 2a. Reachability Graph for Figure 1 

critical state impossible critical state 

high-risk 
state 

Figure 2b. Example of Critical State Algorithm 
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Hazards can be classified according to the severity of any possible resulting mishap. For simplicity 

we will divide hazards into two groups -- high-risk and low-risk -- where high-risk hazards can lead to 

catastrophic (unacceptable) losses. Of course more categories can and often are used. It is important to 

note that in many, if not most, realistic systems it is impossible to completely eliminate risk. The goal 

instead is to design a system with "acceptable risk." T 

To show that a system is ~afe ~ or low-risk, it is necessary to first ensure that given that the 

specifications are correctly implemented, no mishaps will result. Second, the risk of faults or failures 

leading to a mishap must be eliminated or minimized. In this section we discuss how to identify and 

eliminate high-risk hazards which have been designed into the system. The next section will treat the 

problem of failures. 

Creating the reachability graph allows the designer of a system to determine if the system design 

can "reach" any high-risk states since it determines all possible states that the system can reach from 

the initial state by any legal sequence of transition firings. However, this may well be impractical due to 

the size of the teachability graph for a complex system. In the rest of this section, we describe tech- 

niques which may allow the design to be analyzed for safety without producing the entire teachability 

graph. 

The states of a reachability graph can be separated into two disjoint sets: states from which it is 

possible to reach high-risk and possibly also low-risk states and those from which it is possible to reach 

only low-risk states. 

Definition: A state (marking) #c is a critical state if and only if 

a) #c E low-risk states and 

b) there exist two distinct sequences of transitions s 1 and s 2 and two markings #i and #j such that 

/f*(#c'Sl) = #i and ~ (#c,s2) = #j where #i e high-risk states and #j E low-risk states. 

If a high-risk state is reachable, then there must be a critical state on the path from the initial state to 

the high-risk state (this includes the possibility that the critical state is the initial state). Otherwise, the 

design needs to be completely redone since all executions result in high-risk states. 

To eliminate hazards, it is not necessary to produce the entire teachability graph but only to deter- 

mine the critical states and to disallow the unwanted transition in each case. Some of our techniques are 

conservative, i.e. in order to reduce the large amount of computing to produce the entire graph, a larger 

number of critical states may be identified than actually exist. But note that it does no harm to elim- 

inate a hazard which never existed. Also, as will be seen in the next section when failures are discussed, 

eliminating a non-existent path may have the effect of eliminating or lessening the possibility of mishaps 

caused by run-time failures and faults. 

One way to locate critical states without necessarily producing the entire reachability graph is to 

start with the set of high-risk states and to work backward to determine if they are reachable from the 

initial state. This approach is useful when the goal of the analysis is to prove only that the system can- 

not reach certain hazardous states. This is often a requirement for safety-critical systems, e.g. see MIL- 

STD-882b. Fault tree analysis is a similar technique used for the same purpose [Vesely et. al. (1981), 

Leveson and Harvey (1983)]. The backward approach is itself practical only if one considers a relatively 

small number of high-risk states. This has been found to be adequate in practice [Vesely et. al. (198I)]. 

tt is important to note that the concern here is not with correctness, but with system safety. That is, a 

'fWhat is acceptabh risk is often determined by appropriate government licensing agencies. If not predetermined by law, the 
~efinition and categorization of mishaps as to severity must be done in the early stages of the system design. 
Because the term safe has a specific meaning in Petri net theory (a place is safe if it never contains more than one token), w e  

will use the term "low-risk" when necessary to avoid confusion. 
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system is "safe" if it is free from mishaps even if it also does not accomplish its "mission" or functiona~ 

objectives. 

To determine if a state can be reached using backward reachability graphs, it is necessary to tem- 

porarily ignore timing constraints. The procedure is to first construct the inverse untimed Petri net. 

Definition: The inverse Petri net, $-1 for a Petri net ¢=(P,T,I ,O) is defined by interchanging the 

input and output functions, B ' l =  (P,T,O,I). 

A teachability graph is then constructed using the inverse Petri net and the high-risk state as the initial 

marking. If the original initial state is reachable, then the mishap may be possible. 

Theorem: A high-risk state ~Zm is in the reachability set R(<I),a0) if and only if given an initial state 

a0, a 0 E R(¢ ' l , am ). 

The proof can be shown by induction on the sequence of transition firings. By definition if 

St = ~f(St',t) then # ' =  $'l(st,t). This allows the sequence of transitions from a 0 to a m to be 

traversed in reverse order. 

Even though a high-risk state is reachable in the untimed Petri net, it may not be reachable when 

time constraints are considered. Two approaches are possible. The first is to use the time constraints 

and work forward from the initial state to determine if the timing constraints have eliminated this path 

from the timed reachability graph. The other is to assume the worst and just modify the design to 

ensure that the path is eliminated. 

This backward approach is helpful only if the resulting teachability graph is smaller than the origi- 

nal. If the state is reachable, then the backward teachability graph can never be larger than the original 

teachability graph. Unfortunately, if the high-risk state is not reachable, it is possible for the backward 

reachability graph to be larger than the original graph and even to be infinite. Therefore, again it may 

be impractical to generate the entire backward reachability graph. 

But if the goal is to ensure that high-risk states can never be reached, it is possible to simply work 

backward to the first "critical" state (in this case to a state in the reachability graph which has two suc- 

cessors) and to use design techniques such as those outlined below to ensure that the bad path is never 

taken. It is unimportant as to whether this path actually is reachable since eliminating the possibility of 

a mishap which would not have occurred does no harm. It is also unimportant if this is truly a critical 

state as defined above (one path leads to low-risk states) since if the uneliminated path also leads to a 

mishap, this will be determined in a later step, and this second path wilt also be eliminated. 

The analysis procedure starts with the set of high-risk conditions. For each member of this set, the 

immediately prior state or states are generated. Each of these "one-step-backward" states is then exam- 

ined to see if it is a potentially critical state and can be used to eliminate one path to the high-risk state. 

Note that we are not dealing with complete states but only with partial states. That is, some conditions 

in the state are unimportant as far as risk goes. Furthermore, we do not know what the complete final 

states are. Therefore there may be some "don't  care" places in each state which are "filled in" in the 

process of executing the algorithm. Finally, we need only to look forward one step from each potentially 

critical state in order to label it as critical (i.e. there exists a next-state which is low-risk). This is 

because if this path also leads to a high-risk state, then it will be eliminated by the algorithm in a later 

step. The details of the algorithm follow: 
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Put initial set of high-risk conditions into S = states_to_process 

while S is not empty 

do 

let c be one of S; 

if c is a subset d the initial state then 

high-risk state reachable and need to redesign 

else 

do {work backwards to critical states} 

next_back_states = 

{determine which transitions are enabled} 

for each transition t E T 

do 

let R = O(t) n c; 

T E  ---- O(t) - R ;  

SE = c - R; 

if R ~ 0 then {t is enabled - generate the corresponding next backward states} 

Next_back_states = Next_back_states U f l ( R  U TE u SE, t); 

od 

for each next back_state b 

do 

Forward_states = set d immediately reachable states ~(b,t) 

Other_states = Forward_states - [Forward_states n {S u Next_back_states}] 

case b 

b E states_considered : exit; 

b is illegal according to system invariants : exit; 

b is high risk : add b to S; 

b is low-risk and there exists a f E other_states such 

that f is low-risk {therefore b is potentially critical}: add 6 to set of critical states; 

else {b is low-risk but not critical - necessary to go backwards again} 

add b to S; 

esac 

od 

move e from S to states_considered; 

augment design by eliminating bad transitions from critical states; 

od 

end while 

Using the  train example again, figure 2b shows the  partial graph generated by the  algori thm for the  

high risk s ta te  where the  train is approaching (P3), the gate is up ( P l l ) ,  and any other  "don ' t  care con- 

di t ions" (denoted by the  "*")  may also hold. Propagat ing this s tate  backwards,  we reach the initial 

state,  impossible states,  and critical states.  From this we derive the  information tha t  in order  to avoid 

the high-risk state,  the  design must  be modified to ensure tha t  t ransit ion t 3 has priori ty over t ransi t ion 

t 5 and that  transit ion t 6 has priority over transition t 1. 

When  a critical s ta te  is identified, it is necessary to modify the Petri  net  in some way to ensure that  

the good p a t h  is always taken, i.e. tha t  another  transit ion always is performed before or has priori ty over 
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the critical transitlon° 

There are many possible ways to modify the system design in order to eliminate the high-risk 

states. One common approach is to use an interlock. ~nterlocks are used to ensure correct sequences of 

events. An example of a hardware interlock is an access panel or door to equipment where a high vol- 

tage exists. Software interlocks include monitors and batons. To model an interlock in a Petri net, 

assume that t~ is the desired transition, while t. is the undesired transition. It is possible to force the 
I ] 

system always to take the desired path (i.e. to eliminate the undesired path from the reachability graph) 

by making the following changes to the two transitions in the Petri net. Add a new place (the interlock 

l) to the output bag of t i and to the input bag of tj. This ensures that transition t i always has priority 

over transition tj. There may be multiple desired transitions and an interlock must be applied to each. 

See figure 3a for an example. 

The above type of interlock is used to ensure that one event always precedes another event (e.g. a 

baton in software). Another type involves ensuring that an event does not occur while a condition is 

true. This is implemented in the Petri net by using a locking place (see figure 3b). This corresponds to 

a critical section in software. 

tl ~ t2 

Figure 3a. Interlock 

( 

t 3 

Figure 3b. Locking Place 

) 
m t2 

t 4 

) 

In the train example, an interlock can be added between t 7 and t 2 (see figure 5a) in order to elim- 

inate the high-risk states. The interlock is included within the computer-controller, but alternatively it 

might have been part of the hardware. One physical implementation of such an interlock might be a 

computer-controlled warning signal for the train. 

Another way to ensure that one transition will always fire when both are enabled is to enforce tim- 

ing constraints or timing conditions in the designed system• In order to ensure that a transition tj (which 

leads to the high-risk state) does not fires whenever t i and tj are both enabled (i.e. the high-risk state is 

eliminated from the reaehability graph), the following timing constraint must be enforced: the maximum 

time that it may take for the higher priority transition (ti) to fire must be less than the minimum time 

for the lower priority transition (tj) to become enabled and to fire. Each of these time quantities must be 

the total time that the enabling conditions have been met, not just the individual transition time limit. 

One method of determining these quantities is to use the reachability graph to find the maximum 

(or minimum) valued path leading to the transition which has the required conditions continually 

enabled. In the system modelled in figure I, the desired goal is to have condition P12 occur before 

$To require that a transition t i always have priority over a transition t. in all situations may be more strict than absolutely 
• • • J . . . . .  

necessary but thls is ~rue of most safety devlees and is one reason why safety oeeamonally conflicts wlth other system quaht es 

such as performance. 
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condition P3" In terms of the teachability graph this means that  when in state P2P~P6Pl l  or 

P2PTPgP11, transition t 2 must not be firable. In the first case, the constraint necessary for t 4 to fire 

before t 2 is simply that  Min(t2) > Max(t4). For the second case it is a hit  more complicated since firing 

t 1 results in t 2 being enabled. The constraint in this case is Min(t2) > MaX(tT)+Max(t4). 

Timing constraints are enforced in systems by either verifying that  the design makes it impossible 

for the constraint to be violated or by using watchdog timers and other devices to determine when the 

constraint is about to fail and to insert recovery techniques into the system design (either software or 

hardware). An example is shown in the next section. 

Adding Failures to the Analysis 

Once the design is determined to have an acceptable level of risk, run-time faults and failures must 

be considered. Designing for fault tolerance and safety requires being able to model failures and faults 

and to analyze the resulting model. Using definitions from Kopetz (1982), a failure is defined as an event 

while a fault is a state. A failure always results in a fault and is called a fault-starting event. The fault 

remains in the system until  the occurrence of a terminating event for this fault. In this paper, we are 

concerned with control failures. Control failures include: 

a required event that  does not occur 

• an undesired event 

• an incorrect sequence of required events 

• two incompatible events occurring simultaneously 

• timing failures in event sequences 

• exceeding maximum time constraints between events 

• failing to ensure minimum time constraints between events 

• durational failures (i.e. a condition or set of conditions fail to hold for a particular amount of 

time) 

Each of these types of failures must be able to be modelled in the Petri net. Merlin and Father 

(1976) modelled failures in Petri nets as a loss of token or generation of a spurious token. Azema and 

Diaz (1977) took a similar approach. This was appropriate since Merlin's goal was to analyze failures in 

communication systems where the primary type of fault is the loss of a message due to failure of the 

underlying communication medium. However, when dealing with analysis of failures in more general 

situations, it is often useful to be able to determine the state tha t  a system is in after the failure has 

occurred (i.e. the fault). For example, if a token is lost when the system is in a state where a particular 

bit is one, it is important  to know whether the failure results in a "stuck at one" state or a "zero" state 

for the bit. This is because a fault remains in the system until a terminating event for the fault (the 

faulty condition is no longer true or loses its token). Because of the faulty state or condition, it is possi- 

ble for further failures to occur which cause further faults. Thus the type of fault which results from the 

failure must be included in the model in order to analyze the consequences of failures on the system (and 

thus to differentiate between high and low cost failures). For analysis and readability purposes, it is also 

useful to model failure events in a different way than normal, expected events. 

For these reasons, we introduce a new type of transition, a failure transition which acts like other 

transitions but  is denoted by a double bar and a fault condition which is denoted by a double circle. T For 

TMerlin actually includes failure transitions in his teachability graph (which he calls the error token machine), but does not put 
chem in the Petri net itself. 
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a Petri net, *h, the set of transitions becomes T = T L U T F where T L are iegal transitions and T F are 

failure transitions and T L N T F = ~. Similarly, the se$ of places is now P = PL U PF where PL are 

legal places and PF are faults and PL gl PF = $" Examples of modelling some of the above types of con- 

trol failures can be found in figure 4. The failure transitions shown are infinitely fire-able. To make 

analysis practical, a place which acts as a counter can be added to the failure transition. The number of 

tokens initially contained in this place controls the maximum number of times the transition (failure) 

can fire. Realistically, most systems are designed to handle and recover from a maximum number of 

faults, and the tokens in the counter are the Petri net equivalent of this ceiling value. 

Figure 4a. Desired Event t I Does Not Occur 

V tf 

Figure 4b. Undesired Event 41 Occurs 

We now have two types of states: faulty states and legal states. 

Definit ion: A state a is a legal state if and only if there exists a path in the failure reachability 

graph from the initial state, a 0 to a which contains only legal transitions, i.e. if a 0 is the initial 
, 

state, there exists a sequence of legal transitions s E TL* such that 6 (a0,s) -- a. 

Definition: A state e is a faulty Mate if and only if every path to a from the initial state o" 0 con- 

tains a failure transition i.e. for every sequence s ~ T* where ~ (a0,s) = a there exists a tf such 

that tf E T F and tf 6 s 

Once failures are included in the model, it is necessary to decide what qualities of the design are 

important to ana|yze with respect to control failures. Three such qualities are control fault tolerance, 

recoverability~ and f~il-safety. Control fault tolerance implies that a system continues to function 

correctly (i.e. to provide the service required by its specification) in the presence of component failure. 

Recoverability implies that a system continues to provide service although the service may be (tem- 

porarily) degraded (i.e. may not satisfy all the requirements of the specification). A system is fail-safe if 

component faults do not lead to a catastrophic system failure (mishap) although the system may not 

provide any service except that required to prevent the catastrophic failure. Each of these qualities can 

be defined in terms of Petri nets as follows: 

Definition: A process ~s recoverable if after the occurrence of a failure, the control of the process is 

not lost, and in an acceptable amount of time, it will return to normal execution. Formally, a pro- 

cess is recoverable from a failure tf E T F if and only if in the failure reachability graph (FRG): 

Let ~F  be the set of faulty states and let ]~L be the set of legal states 

t)  the number of faulity states is finite, 

cardinMit~(EF)< c~ 

2) there are no terminal faulty states, 

for all ~ E E F, e is firable 
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3) there are no directed loops including only faulty states, 

there does not exist a sequence t 1 ... t n in the FRG such that for a i E ~F '  

df(ai,ti) = ai+ 1 for i=l...n-1 and al=an+ 1 

4) the sum of the maximum times on all paths from the failure transition to a correct state is less 

than a pre-defined acceptable amount of time. 

For every path (tl,...,tn) from a I E E F to a 2 E E L, 

E Max(tj) < Taceeptable for j = 1...n 

This definition is similar to that of Merlin and Farber (1976), but they allow any finite amount of time 

to return to normal execution° For many real-time systems, timing constraints are more strict than this. 

Thus doing nothing for a certain amount of time can be as dangerous under certain conditions as per- 

forming an incorrect action even though control is ultimately restored. 

Definition: A string A is a subsequenee of string B if and only if A can be obtained from B by delet- 

ing zero or more elements of B. 

Definition: A process is fault-toleraut for a control failure tf E T F if and only if a) it is recoverable 

and b) a correct behavior path is a subsequence of every path from the initial state to any terminal 

state. A correct behavior path is a path in the FRG from the initial state to final state which con- 

tains no failure transitions, i.e. a sequence of transitions t 1...t n E T* such that for all i, t i E T L and 

6(tri.1, ti) = ai, for i=l.. .n, a n is not firable 

Note that for nonterminating or cyclic processes, a n may not be a terminal state but may instead be the 

initial state. 

Definition: A system is fail-safe if and only if all paths from a failure F in the FRG contain only 

low-risk states, i.e. for all states of and sequences s 1 such that ~ (cr0,SlF)=a f there does not exist a 

sequence s 2 and state ahE high-risk states such that ~ (af, Fs2)=a h. Note that the system may 

never get back to a legal state. 

The above definitions can be extended to include the possibility of n failures, thus a system, for example, 

may be n-fault tolerant, n+l-reeoverable, and n+2-fail-safe. 

Two analysis approaches are possible. The first is to determine, perhaps through past experience, 

which failures are most likely, and then to create the resulting Failure Reaehability Graph (FRG) and 

analyze it for the above properties. This may be very costly (and possibly impractical) for complex sys- 

tems with many possible failure modes. Also, in software it is difficult to determine directly which 

failures are the most likely. 

An alternative approach is to take the safety viewpoint and consider only those failures with the 

most serious consequences. Since this is the requirement of most safety certification programs, there is a 

practical application for this type of analysis. In this approach, single-point failures and failure 

sequences which can lead to high-risk states are determined through the analysis after which the design 

can be augmented with fault-detection and recovery devices to minimize the risk of a mishap. If risk 

cannot be lowered sufficiently through these devices (e.g. there is an unacceptable probability they will 

fail or there are uncontrollable variab'[es'such as human error involved), it is also possible to add addi- 

tional safety devices to the design. For example, the designer may add hazard-detection and risk- 

minimization mechanisms which attempt to ensure that if a hazardous state is reached, the risk will be 

eliminated or minimized by fail-safe techniques which change the state to a no-risk or lesser-risk state 
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t 7 

Figure 5a. A Petri Net Graph with Failures 

computer 

L 

f5 

Figure 6. A Petri Net Graph with Failure Transition and Recovery 

- t 7 
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while at the same time minimizing the exposure time of the hazard. 

As an example of the process, consider the Petri-net model in the previous examples. If interested 

in failures which could result in high-risk states (e.g. the train is approaching, P3~ and the gate is up, 

P l l ) ,  a backward reachability graph can be constructed (figure 5b). The high-risk state is not reachable 

from the regular Petri net, but examination of the reaehability graph in figure 5c shows that three single 

failures (each by themselves} would allow the high-risk state to be reached, i.e. a failure transition f2 

which takes a token from P2 and puts one in P3' a failure transition f6 which does the same for P12 and 

Pl1'  and a failure transition f5 which involves an erroneous generation of a token in P10" Failure transi- 

tion f2 is a human failure where the train ignores the warning signal. Transition f6 is a gate failure which 

results in a premature gate raising. The last failure, f5' could be caused by a spurious signal from the 

controlling computer. Normally, the designer would now include standard failure detection mechanisms 

in the design along with recovery procedures. 

Figure 5b 
Backwards Reachability Graph Figure 5c 

Reachability Graph for Figure 5a 

Failure transition f5 in figure 5a was chosen as the basis for the fault tolerance mechanism shown in 

figure 6. This failure models a spurious output signal from the computer. Transitions R 1 and R 2 are 

used for fault detection and subsequent recovery. After a failure, there are two possible situations 

depending on the current state of the gate. If the gate is up then one response to a spurious up signal is 

to ignore it (shown in transition R2). The enabling conditions are P l l  (gate up) and P10 (signal from 

the computer}. 

The second possibility is the safety critical situation. In this case a train in approaching, the gate is 

down, and the erroneous signal is given to raise the gate. In order to detect the problem, redundant 

information must be contained in the system. The model has an internal "view of the world" contained 

in P6 and P7 which correspond directly to the actual conditions P l t  and P12" Fault detection is accom- 

plished by checking to see if P7 and P l l  occur at the same time. If so, there is a discrepancy between the 
real world and the internal state. 

Upon failure detection, there are several possible recoveries -- depending on which model is accepted 

as the true state of the system (i.e. is the computer state wrong or is the gate really up when it should 

be down). The safest solution is to assume the gate is up and lower it. This is the purpose of transition 

R I. Figure 7 shows the reachability graph for this net. The untimed reachabillty graph shows that for 

the state labelled 4 (conditions P2' P7' P9' P l l '  and P14), recovery is initiated when a failure has not 

occurred. Further investigation reveals that there is a point in time when the computer state is legiti- 

mately inconsistent with the actual world (after t 4 has fired but before t 7 fires}. One solution is to put a 

time constraint on R 1 such that the minimum time of R 1 is greater than the maximum time of t 7. This 

forces failure detection to wait until a consistent state has been permitted. 
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Place,3 

t P1 POP11P14 
I P2 P5 P6 PII PI4 

Po ho hl 
4 ] P2 P7 P9 Pll PI4 

5 P2 P5 P6 PIO Pll 

6 P1 P6 Pll 

7 P2 P7 Pt2 Pt4 I 

8 P2 P7 P9 P10 Pll. 

9 P2 P7 P9 P12 P14 

i 10 P2 P5 P6 Pll 

11 P3 P7 P12 P14 ..... 

12 P2.P7 P10 PI2 I 

I 13 P2 P7 P9 PIO P12 

14 P2 P7 P9 P11 

I 15 P4 P7 P8 P12 P14 

Figure 7. Reachability Graph for Figure 6 

I Places 

16 P3 P7 PIO P12 

17 P2 P7 Pll I 

18 P2 P7 P12 I 

19 P2 F7 P9 P12~ _ _  

20 P4 P6 PIO PI2 P14 

21 P4 P7 P8 P10 P12 

22 ......... P3 P7 Pll 

23 P3 P7 P12 

24 P4 P6 PII P14 

25 P4 P6 PI0 P10 P12 

26 P4 P7 P8 Pll 

27 ,,P4 P7 P8 P12 

28 P4 P6 Plo PI1 

29 P4 P6 Pll 

3o P4 P6 PIO P12 

In summary, analysis of the failure teachability graph with respect to the definitions of fault 

tolerant, recoverable, and fail-safe design will aid the designer in adding appropriate failure detection and 

recovery techniques to the system. When interested solely in a safety analysis, backward procedures can 

be used to determine which failures and faults are potentially the most costly and thus need to be aug- 

mented with fault tolerance mechanisms and also to determine where and how safety mechanisms should 

be used. This may be particularly useful for the software components of the system since it is difficult to 

determine which faults are most likely to occur and the potential number of failures to model may be 

very large. Furthermore, it is possible to treat the software at various levels of abstraction, e.g. only 

failures of the interfaces of the software and non-software components may be considered or more 

detailed failures of only those particular modules which are determined to be critical may be modelled. 

Condudons 

The use of Time Petri nets in design and analysis of safety-critical, real-time systems has been 

described and the basic model extended to allow modelling failures and faults. This allows the system to 

be analyzed for properties such as fanlt-tolerance and safety, to determine which functions are most criti- 

cal and thus may need to be made fault-tolerant (assuming that it may be too costly to ensure complete 

fault-tolerance), to determine conditions which require immediate mitigating action to prevent accidents, 

to determine possible sequences of failures which can lead to accidents, etc. Thus it is possible to 
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establish important properties during the synthesis of the design instead of using guesswork and costly a 

posteriori analysis (including formal analysis and testing). 

Unfortunately, Petri nets can be difficult to analyze. For general Petri nets, the reachability prob- 

lem, though decidable, has been shown to be exponential time- and space-hard. Although this is not a 

necessary property of Petri net models (many important and real systems can be analyzed efficiently), it 

is a possible result when complex systems are modelled. Some techniques which are useful even if the 

entire teachability graph is not completed have been presented in this paper. It is also possible to use 

the failure-enhanced Time Petri net model as the basis for a simulation in order to answer some of the 

same questions which could have been answered by the failure reaehability graph. Finally, many real- 

time systems require the computer software to be written and tested before the hardware components 

have been completed. Since the Time Petri net model is executable, the hardware parts can be used as a 

test bed for the software development process. 

In this paper, only severity of hazards was considered and not the probability of the hazard occur- 

ring or of leading to a mishap. This is a pessimistic approach (i.e. all hazards are considered to have 

equally high probabilities). We are currently devising techniques to include probabilities in the analysis. 

This will enable the designer to use a more sophisticated definition of risk and to derive measurements 

for risk (and thus safety) from the model. This in turn can provide the information required by the 

designer to make difficult tradeoff decisions, e.g. what if there are two possible recovery methods, one of 

which is more likely to work but also has worse penalties in the event of failure (perhaps in terms of tak- 

ing so long to execute that no other alternatives or fail-safe procedures are still feasible). 
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