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Abstract

Blur is caused by a pixel receiving light from multiple

scene points, and in many cases, such as object motion,

the induced blur varies spatially across the image plane.

However, the seemingly straight-forward task of estimating

spatially-varying blur from a single image has proved hard

to accomplish reliably. This work considers such blur and

makes two contributions: a local blur cue that measures the

likelihood of a small neighborhood being blurred by a can-

didate blur kernel; and an algorithm that, given an image,

simultaneously selects a motion blur kernel and segments

the region that it affects. The methods are shown to perform

well on a diversity of images.

1. Introduction

Blur refers to image degradation caused by a pixel

recording light from multiple scene points, and its common

causes include camera shake, defocus, and object motion.

Blur is characterized by a “kernel”, or point-spread func-

tion (PSF), and when the cause of blur is defocus or object

motion, the kernel typically changes across the image plane.

Such spatially-varying blur is much harder to analyze than

its uniform counterpart, and as a result, most methods for

estimating spatially-varying blur require multiple images,

an initial segmentation, or something else to augment the

seemingly meager information available in a single photo.

The limited success with spatially-varying blur lies in

stark contrast to recent advances with uniform blur. In

the latter case, one can now reliably estimate and reverse

the effects of blur through a variety of methods, even

when the (spatially-uniform) kernel is of a complex, non-

parametric form [4, 11, 12, 14, 17, 20]. The difference in

the spatially-varying case is that blur must be inferred lo-

cally, using many fewer observations than are available in

a large, uniformly-blurred image. And this means that one

must use stronger image models to be able to extract the

required information from a reduced set of measurements.

Figure 1. What’s moving ? Given an image with motion blur, we

seek to infer the blur kernel and the region it affects. The image on

the right shows a segmentation of the blurred object in the image,

and an estimate of the blur kernel generated by our algorithm.

This paper presents a novel cue for analyzing blur lo-

cally and reasoning about non-uniform cases. Starting with

a standard sub-band decomposition (a “local Fourier trans-

form”), we introduce a probability model for unblurred nat-

ural images that is simple enough to “play well” with the

decomposition but powerful enough for accurate inference.

This gives us a robust and efficient likelihood measure for a

small image window being blurred by a given kernel.

This cue is then applied to the problem of segmenting

motion-blurred regions from otherwise sharp images and si-

multaneously selecting the blur kernel acting on the affected

region. We evaluate this approach using a diverse collection

of images that each contain a single moving object. It yields

satisfactory estimates of the blur kernel in most cases, and

as suggested in Fig. 1, it is able to obtain useful segmenta-

tions when combined with color information.

2. Related work

Inferring the point spread function from a blurred image

requires simultaneously reasoning about the PSF and the la-

tent sharp image on which it operates. To address the prob-

lem, one must define the family of blur kernels to be consid-

ered as well as a model—often probabilistic in nature—for

sharp images. Existing methods differ in terms of the types

of blur they consider, the input they assume, and whether or

not they consider spatial variation.



When the blur is spatially-uniform, one has the good for-

tune of being able to accumulate evidence across the entire

image plane, and as a result, one can afford to consider a

very general class of blur kernels. In this context, a va-

riety of recent techniques have shown that it is possible to

recover completely non-parametric (i.e., tabulated) blur ker-

nels, such as those induced by camera shake, from as little

as one image [4, 11, 12, 14, 17, 20]. One general insight

that is drawn from this work is that instead of simultane-

ously estimating the blur kernel and a single sharp image

that best explain a given input, it is often preferable to first

estimate the blur kernel as that which is most likely under a

distribution of sharp images. Levin et al. [17] refer to this

process as “MAPk estimation”, and we will use it here.

Blur caused by motion or defocus often varies spatially

in an image, and in these cases, one must infer the blur ker-

nels using local evidence alone. To succeed at this task,

most methods consider a reduced family of blur kernels

(e.g., one-dimensional box filters), and they incorporate

more input than a single image. When two or more im-

ages are available, one can exploit the differences between

blur and sensor noise [22] or the required consistency be-

tween blur and apparent motion [1, 2, 5, 6] or blur and

depth [9, 10]. As an alternative to using two or more im-

ages, one can use a single image but assume that a solution

to the foreground/background matting problem is given as

input [7, 8, 13]. Finally, one may be able to use a single

image, but with special capture conditions to exaggerate the

effect of the blur, as is done in [16] with a coded aperture

(and additional user input) for estimating defocus blur that

varies spatially with scene depth.

More related to our work is the pioneering effort of

Levin [15], who also considers single- image input without

pre-matting. The idea is to segment an image into blurred

and non-blurred regions and to estimate the PSFs by exploit

differences in the distribution of intensity gradients within

the two types of regions. These relatively simple image

statistics allow compelling results in some cases, but they

fail dramatically in others. One of the primary motivations

of our work is to understand these failures and to develop

stronger computational tools to eliminate them.

3. Modeling Blur

We use y[n] to represent an observed image, with n ∈ R
2

indicating the location of a pixel. Let x[n] be the corre-

sponding latent sharp image, that is, the image that would

have been captured in the absence of any blur or noise. The

images x and y are assumed to be related by

y[n] = (kn ∗ x)[n] + z[n], (1)

where z is sensor noise and kn is the spatially-varying blur

kernel acting at pixel location n. We assume z to be white

Gaussian noise:

z[n]
iid
∼ N (0, σ2

z). (2)

Our goal is to estimate the blur kernels kn. This problem

is under-determined even when the kernel does not change

from point to point, and allowing spatial variation adds con-

siderable complexity. We need to make some assumptions

to proceed, and one assumption we will make is that the

kernel is constant in any local neighborhood. This turns out

to be a reasonable assumption in most cases, but as we will

see, it limits our ability to obtain localized boundaries based

on blur information alone.

3.1. Sub­band Decomposition

Blur is naturally analyzed in the frequency domain, and

when the blur is uniform over an image (kn = k), the con-

volution theorem lets us simplify the analysis by “diagonal-

izing” (1) with the Fourier transform:

Y (ω) = X(ω)K(ω) + Z(ω), (3)

where ω ∈ [−π, π]2 and Y (ω), X(ω), K(ω) and Z(ω)
are Fourier transforms of x, y, k and z respectively. How-

ever, when the blur kernel varies spatially, the signals x[n]
and y[n] are no longer related by convolution, and a global

Fourier transform is of limited utility.

Instead, we require a localized frequency representation.

Let w[n] ∈ {0, 1} be a symmetric window function with

limited spatial support, and let {fi} be a set of filters:

fi[n] = w[n] × exp (−j〈ωi, n〉) , (4)

with frequencies ωi ∈ R
2. The choice of {ωi}i will depend

on the window size, and it can be made to keep the filters

orthogonal. Thus, we assume 〈fi, fj〉 = 0 if i 6= j.

Applying these filters to an image x yields the corre-

sponding responses xi[n] = (x ∗ fi)[n]. For any location

n, the set of values {xi[n]}i can be imagined as the Fourier

decomposition of a window centered at that location.

When kn is constant in neighborhood of size equal or

greater than the support of w, (1) and (4) can be combined:

yi[n] = (x ∗ (kn ∗ fi)) [n] + (z ∗ fi)[n]. (5)

This is similar to the spatially-uniform case (3), but different

in a critical way: In this spatially-varying case, there is no

means of expressing the transform coefficients {yi[n]}i in

terms of the corresponding {xi[n]}i alone, because pixels in

any window of y have values determined by pixels outside

of that window in x. In short, we do not obtain the same

“diagonalization”.

However, we can derive a useful relationship between

the statistics of the coefficients {xi[n]}i and {yi[n]}i.

Specifically, let y = x ∗ k hold in a neighborhood of n that

is equal to the support of w, and let all elements of x[n] in
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Figure 2. Evaluation of the Gaussian and GSM priors with a toy example. (a) A 1-D image with a high contrast blurred edge (the dotted

red line corresponds to the latent sharp edge) and a low contrast blurred edge. (b) A comparison of the spectra {σki}i (top) corresponding

to the blur kernel (red line) and no blur (blue line), with the actual observed coefficient magnitudes for two windows containing the blurred

and sharp edges (red and blue lines respectively, corresponding to the windows shown in (a)). We see that while the observed magnitudes

match the “shapes” of their corresponding expected spectra, they are scaled differently based on the contrast of the edges. (c) An evaluation

of the Gaussian and GSM prior-based likelihoods in (9) and (11) to classify both windows correctly as being blurred or not-blurred. A

window is classified as blurred if the log of the ratio is above 0. We can see that while the GSM-based likelihood yields the correct

classification for both edges, there is no single value of σ2

g for which both windows are classified correctly, i.e. for which the blue and red

curves are below and above 0 respectively.

a slightly larger neighborhood—equal to the support of w
plus that of k—be independent and identically distributed

as N (0, σ2). Then it is easy to show that the transform co-

efficients {xi[n]}i and {yi[n]}i are also distributed as zero-

mean Gaussians with variances given by

E|xi[n]|2 = σ2〈fi, fi〉,

E|yi[n]|2 = σ2
∑

n

|(k ∗ fi)[n]|2 , σ2σ2
ki,

Exi[n]x∗
j [n] = Eyi[n]y∗

j [n] = 0, ∀i 6= j. (6)

Therefore, as an analogue to the diagonalization in (3), con-

volution with k independently scales the variance of each

coefficient yi[n] so that it can be related directly to the

corresponding coefficient xi[n] of the latent sharp image.

Because of this analogy, we will refer to the set of trans-

form coefficients of the blur kernel, {σ2
ki}i = {

∑

n |(k ∗
fi)[n]|2}i, as the blur spectrum in the remainder of the doc-

ument. (A 1-D example is shown in top of Fig. 2(b).)

4. Prior on Sharp Images

Since the problem of estimating the blur kernels kn from

the input image y is under-determined, we need a statistical

prior model for the latent sharp image x to constrain the

problem. We will then use this prior in conjunction with a

MAPk estimation approach [17] to derive expressions for

p({yi[n]}i|k): the likelihood that the blur kernel at n is k.

4.1. Gaussian

A natural choice for an image prior might be a Gaus-

sian distribution on image gradients. Specifically, if ∇ is a

derivative filter in a particular direction,

x∇[n] = (∇ ∗ x)[n]
iid
∼ N (0, σ2

g). (7)

Since (5) is linear in x we can write

y∇
i [n] = fi ∗ y∇

i = (kn ∗ x∇) ∗ fi + (∇ ∗ z) ∗ fi. (8)

Combining (7) and (8) with the fact that the noise is white

Gaussian (2), and using our expressions for variance (6), we

can derive the following expression for the likelihood of the

observed coefficients {y∇
i [n]}i when kn = k:

p({y∇
i [n]}i|k) =

∏

i

N
(

y∇
i [n]|0, σ2

gσ2
ki + σ2

zi

)

, (9)

where σ2
ki is the blur spectrum as per (6) and σ2

zi are the fil-

tered noise coefficients. These coefficients can be written as

simple scaled versions of the noise variance, σ2
zi = σ2

zσ2
∇i

with σ2
∇i ,

∑

n |∇∗fi[n]|2, using reasoning similar to (6).

A Gaussian prior has the virtue of simplicity and the like-

lihood in (9) can be computed easily in closed form. More-

over, despite the fact that empirical distributions of gradi-

ents in natural images have significantly heavier tails than a

Gaussian distribution, the model has been used with some

amount of success for blur estimation in the absence of spa-

tial variation [17].

Unfortunately, it is far less useful when dealing with

spatially-varying blur. This is illustrated in Fig. 2 using a

toy one-dimensional “image” that contains a low-contrast

edge that is not blurred, and a high-contrast edge that is

blurred by a box filter k. We assume that the kernel k is



known, and our task is to decide, by looking at the spec-

trum in each local window of the input image, whether that

window was blurred by k or was not blurred at all (or equiv-

alently, was blurred by an impulse). The top of part (b) in

the figure shows the spectra of the two blur kernels (k and

the impulse).

Figure 2(c) shows the likelihood ratio for different val-

ues of the sharp image model parameter σg , and it shows

that the Gaussian-based likelihood model (9) is never able

to classify both windows correctly. That is, we can choose

the model parameter to correctly classify one or the other,

but not both simultaneously. Intuitively, this results from

the fact even if we can reasonably expect the mean square

gradient values of an entire sharp image to be close to σ2
g ,

the same is not true within different small windows of that

sharp image whose statistics can change quite dramatically.

To gain further insight, we can look at the local spectra

of the input image around the two edges, as depicted in the

bottom of Fig. 2(b). We see that while the magnitudes of

the spectra match the shapes of the two blur kernel spectra,

their relative scales are very different. The classification

fails, then, because the simple Gaussian-based likelihood

model (9) involves absolute variance values, at a scale that

is fixed and determined by the choice of our image prior

model parameter σ2
g . Viewed another way, the likelihood

term is adversely affected by the difference in contrast be-

tween the two edges, and this prevents it from being able to

make a decision based purely on how sharp they are.

In the next section, we introduce an alternate image prior

model that specifically aims at capturing edge sharpness

distinct from edge contrast. It is a heavy-tailed distribution

that has the advantage of being reasonably tractable compu-

tationally within the sub-band representation.

4.2. Gaussian Scale Mixture

Instead of choosing a single Gaussian with variance σ2
g ,

we model gradients in an image using an infinite mixture

of zero-mean Gaussian distributions having a continuous

range of variances. Additionally, we ‘tie together’ the scale

parameters within each spatial neighborhood η. Formally,

p({x∇[n]}n∈η) =

∫

ps(s)
∏

n∈η

N
(

x∇[n]|0, s
)

ds, (10)

where s is the scale parameter and ps(s) is a probability

distribution on s which we choose to be uniform in the set

S = (0, smax). Note that conditioned on s, the image gra-

dients in neighborhood η are i.i.d, and the marginal distri-

bution of any single gradient x∇[n] has heavier tails than a

Gaussian distribution.

This is a slight variation of a Gaussian Scale Mixture

(GSM), and GSM-based priors have been used previously

to model natural images[21] for denoising [18] and decon-

volution [23]. If we choose the size of the neighborhood η

to be equal to or greater than the sum of the supports of the

window w and blur kernel k, we can derive an expression

for the likelihood analogous to the simple Gaussian case of

the previous section:

p({y∇
i [n]}i|k) ∝

∫

S

∏

i

N
(

y∇
i [n]|0, sσ2

ki + σ2
zi

)

ds.

(11)

Comparing this to (9), we see that the likelihood term

integrates over all possible values of the variance (or scale)

s in a window, as opposed to relying on a single choice σ2
g .

Returning to the toy example of Fig. 2, this has the effect of

making the likelihood more agnostic to the absolute mag-

nitudes of the local spectra, and allows it to latch on to the

shape of the spectrum instead. As shown in Fig. 2(c), the

GSM prior leads to a correct classification of the two edges.

One drawback of (11) is that it is significantly more ex-

pensive to compute due to the integration over S. However,

we find that the integrand—the likelihood of coefficients

conditioned on any particular s— is a product of exponen-

tials and typically behaves as an impulse on s. That is, the

conditional likelihood typically has a sharp peak at an “op-

timal” choice of s and is negligible for all other values. So

we can approximate it using

p({y∇
i [n]}i|k) ∝ max

s∈S

∏

i

N
(

y∇
i [n]|0, sσ2

ki + σ2
zi

)

.

(12)

The optimal value ŝ that maximizes the conditional likeli-

hood in the above equation must satisfy

ŝ =

(

∑

i

ri(ŝ)

)−1
∑

i

ri(ŝ)

∣

∣y∇
i [n]

∣

∣

2
− σ2

zi

σ2
ki

,

ri(ŝ) =

(

1 +
σ2

zi

ŝσ2
ki

)−2

, (13)

and can be found using fixed point iterations. Convergence

is typically quick for low values of σ2
z . If the solution ŝ lies

outside the set S, it can be appropriately clipped and then

used to compute (12).

5. Detecting Motion

In the previous sections, we introduced a local blur cue

that allows the efficient computation of a robust likelihood

measure (12) for a given window in the image being blurred

by a candidate kernel. We now describe an algorithm that

uses this cue to simultaneously segment a motion-blurred

region of an image and determine the blur kernel that affects

this region. This is useful because the blur kernel contains

direct information about the orientation and speed (relative

to exposure time) of moving objects [1, 2, 5, 6]. In the fol-

lowing, we assume that all of the motion-blurred regions of

the input image are corrupted by the same kernel.



For a given image y[n], every pixel is either part of the

stationary sharp “background” or the motion-blurred “fore-

ground”. Therefore, kn ∈ {k0, km} where k0, chosen to

either be an impulse (i.e. no blur at all) or a mild defocus

blur, corresponds to the blur kernel acting on the station-

ary regions of the image , and km is the motion-blur kernel.

Our task is to estimate km and to assign a label I[n] to every

location, where I[n] = 0 if kn = k0 and 1 otherwise.

The motion blur kernel km is in turn assumed to be one

of a discrete set of possible candidates, corresponding to

horizontal or vertical box filters of certain lengths. (These

correspond roughly to horizontal or vertical object motion

with fixed velocity.) Formally,

km ∈ {bhl1 , . . . bhlL , bvl1 , . . . bvlL}, (14)

where bhl is a horizontal “box” filter of length (correspond-

ing to number of pixels the object moved during exposure)

l, i.e.,

bhl[n] =

{

1/l if ny = 0, 0 ≤ nx < l,
0 otherwise,

, (15)

bvl is a similarly defined vertical box filter, and {l1, . . . lL}
is the set of lengths we wish to select from.

5.1. Selecting the Kernel

To handle both horizontal and vertical candidate blurs

{bhl} and {bvl}, we need to use two sets of coefficients

{yh
i [n]}i and {yv

i [n]}i defined as,

yh
i [n] = (fih∗∇h∗y)[n], yv

i [n] = (fiv∗∇v∗y)[n], (16)

where ∇h,∇v are horizontal and vertical gradient filters,

and {fih}i, {fiv}i correspond to sub-band decompositions

based on horizontal and vertical 1-D windows wh and wv .

The first step is to select the motion blur kernel, km, and

in order to do so, we need to derive an expression for the

likelihood pm(b)
.
= p(km = b). If b is horizontal, then the

coefficients yh
i [n] should be explained either by b or k0, and

the coefficients in the orthogonal direction yv
i [n] should all

be explained by k0 (i.e. they are not affected by the motion

blur). The converse is true if b is vertical, and this reasoning

leads us to define

pm(blh) =

[

∏

n

max
k∈{k0,blh}

p
(

{yh
i [n]}i|k

)

]

×

[

∏

n

p ({yv
i [n]}i|k0)

]

,

pm(blv) =

[

∏

n

max
k∈{k0,blv}

p ({yv
i [n]}i|k)

]

×

[

∏

n

p
(

{yh
i [n]}i|k0

)

]

. (17)

The blur kernel km can then be chosen amongst the candi-

date set in (14) to maximize this likelihood pm(·).

5.2. Segmentation

Once the kernel km has been chosen, the next step is to

do a segmentation by assigning the labels I[n] for each lo-

cation. While the relative likelihoods of the sub-band coef-

ficients under k0 and km could be used to do the segmenta-

tion, best results are obtained when these are combined with

statistical distributions for object and background color into

an MRF model as used in traditional segmentation.

Similar to the approach in [19], we choose the labels l[n]
as the solution to an energy minimization problem. We de-

fine a “Gibbs” energy function to capture the blur likeli-

hoods, color distributions, and a spatial smoothness con-

straint on I[n] as

E(I[n], θf , θb) =
∑

n

Bn(I[n]) + α
∑

n

Cn(I[n], θf , θb)

+
∑

(n,n′)∈P

Vn,n′(I[n], I[n′]), (18)

where θf , θb are the sets of parameters for the color distri-

butions of the moving object and stationary background, Cn

and Bn encode the likelihoods of I[n] from blur and color

information respectively, α is a scalar parameter that con-

trols the relative contribution of the two, and Vn,n′(·, ·) en-

forces smoothness by favoring the same label assignments

at all pairs P of neighboring locations.

Bn(I[n]) is defined in terms of the likelihoods from our

blur model:

Bn(I[n]) =

{

− log p({y∇
i [n]}i|ko) if I[n] = 0,

− log p({y∇
i [n]}i|km) if I[n] = 1.

,

(19)

where y∇
i [n] are the sub-band coefficients for the same di-

rection as the selected km, ı.e. y∇
i [n] = yh

i [n] if a horizon-

tal box blur was chosen as km, and the vertical coefficients

yv
i [n] otherwise.

The color of pixels in the moving object and background

are each modeled as a (discrete) mixture of Gaussians, pa-

rameterized by θf and θb respectively. Cn is then defined

as

Cn(I[n], θf , θg) = − log p(y[n] |I[n], θf , θb ). (20)

Fig. 3 shows a map of Bn, Cn and of their weighted com-

bination for a typical image. Finally, we choose Vn,n′ =
γ[I[n] 6= I[n′]] where γ is a scalar that corresponds to the

penalty for making different label assignments to neighbor-

ing pixels.

The labeling I[n] can be initialized based on Bn alone,

and then we employ an iterative scheme to minimize the

energy E in (18). In each iteration, we estimate the opti-

mal parameters θf and θb using expectation-maximization

(EM), and then assign I[n] using graph cuts [3].



Image Bn

Cn Bn + αCn

Figure 3. Contributions of blur and color models to segmentation.

While the blur model suffers from localization problems because

of defined window sizes, the color model by itself is unable to

distinguish between blurred and stationary objects that look simi-

lar. The two, however, compliment each other and when combined

in an MRF model with smoothness constraints, give good quality

segmentations (see Fig. 5).

6. Experiments

In this section, we test the algorithm with a variety of

images, each captured with a point-and-shoot or cell-phone

camera. Each image contains a single motion-blurred ob-

ject, and we are interested in evaluating our method’s abil-

ity to choose the correct orientation and length for the blur

kernel and segment the blurred object.

6.1. Implementation Details

Both the horizontal and vertical sub-band transforms

were defined in terms of windows of length W = 61.

The filters {fih} and {fiv} were then generated with ωi

equal to the corresponding 1-D set of frequencies 2πu/W ,

u ∈ {1, . . . 15}. The gradient filters ∇ were defined sim-

ply as [−1, 1] (in the appropriate direction), i.e. the gra-

dient values corresponded to the finite differences between

neighboring pixels.

For the blur length, we searched over the discrete set of

integers from 4 to 15 pixels. Larger lengths can be han-

dled by downsampling the image to an appropriate reso-

lution. For segmentation, the object and foreground RGB

color vectors were modeled as mixtures of 4 and 6 Gaus-

sians respectively. All choices of parameters (including σ2
z ,

α and γ) were kept fixed for all images.

To evaluate the real-world applicability of the algorithm,

a diverse set of images were captured using various devices,

including a mid-level digital SLR, a consumer point-shoot

Horizontal, 4 Vertical, 7 Vertical, 7 Horizontal, 11

Figure 4. Crops of the blurred images from a few images with the

corresponding detected blur length and orientation. The detected

orientation matches the apparent motion direction, and images that

are qualitatively more blurred have larger detected lengths.

camera and a cell phone cameras. Since the algorithm was

run on the JPEG images, a tone scale correction was done,

assuming a standard gamma of 2.2, to recover the linear

intensities for computing the blur likelihoods. All images

were scaled down to be roughly 550 pixels wide.

These images and a MATLAB implementation of the

algorithm can be downloaded from the project page at

http://www.eecs.harvard.edu/˜ayanc/svblur/.

6.2. Results

We first qualitatively evaluate the ability of the algorithm

to choose the correct orientation and length for the motion

blur kernel km. In Fig. 4, we show close-ups of moving

objects (see Fig. 5 for full images) and the corresponding

selected blur kernels. The algorithm correctly determines

whether the motion is horizontal or vertical, and for objects

that appear to have more significant blur it selects larger

kernel lengths.

Figure 5 shows the full segmentation results for a set

of images, as well as the relative likelihoods from the blur

model alone. We find that the algorithm does well on this

diverse set of real world images, despite approximate as-

sumptions about noise variance, gamma correction, etc. It

is also able to detect the blurred regions even in cases of rel-

atively minor motion (see images 2 and 5) and is fairly ro-

bust even in cluttered backgrounds (see image 4). In some

cases however, some regions are incorrectly marked blurred

because of color similarities to the blurred object (image 2),

or erroneous estimates from Bn (image 4, where the blur

model “sees” soft shadows as blurred edges). Supplemental

material on the project website linked above contains more

detailed results, including results on other images.

Our MATLAB implementation of the algorithm takes

roughly 4 minutes to compute the sub-band coefficients of

an image, compute the likelihoods under all candidate blur

kernels, choose km, and evaluate the blur energy Bn. The

full segmentation, which includes iterations to estimate the

color distributions using EM and label assignments using

graph cuts, takes an additional 12 minutes. These execution

times were recorded for a 600×450 image using a machine

with a 2.8GHz Pentium processor and 1GB of RAM.

http://www.eecs.harvard.edu/~ayanc/svblur/
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Figure 5. Results of motion blur estimation and segmentation on 7 images. (a) The input images. Image 1 was taken with a digital SLR,

2, 3 and 5 were taken with a cell phone camera, and 5, 6 and 7 were taken with a consumer point-shoot camera. (b) Relative probability

maps of blur vs no-blur using the blur prior alone (i.e. Bn). (c,d) Segmentation results of the full algorithm, with (c) showing regions

labeled as not blurred, and (d) showing regions labeled as blurred along with the estimated blur kernel.



7. Conclusion

We propose a new local cue for analyzing spatially-

varying blur. It involves a sub-band decomposition to iso-

late the “local frequency” components of an image, and a

prior image model based on a Gaussian Scale Mixture to

handle the variation in gradient statistics among local win-

dows of a single image. Combined, these allow one to effi-

ciently compute the likelihood of a particular window in an

image being blurred by a candidate kernel, and this likeli-

hood conveniently incorporates a preference for sharp edges

without being adversely affected by the natural variation in

edge contrast that occurs in a typical image.

We use the proposed likelihood measure to determine the

orientation and degree of motion in images with moving ob-

jects, and by combining them with color information, we

show that one can obtain reasonable segmentations of the

objects. Our segmentations are hard, and an immediate di-

rection to explore is computing soft mattes instead. The

boundaries of moving objects are linear combinations of a

blurred foreground and a sharp background, and it is likely

that the proposed blur machinery can be used to enhance

reasoning about such mattes that would otherwise be ob-

tained using color information alone.

More broadly, while the proposed tools have been used

to analyze motion blur, they are general enough to handle

any instance of spatially-varying blur. For example, for de-

focus blur where the kernel changes with scene depth, one

can imagine using the framework in [16] but doing away

with the requirement for special capture conditions by us-

ing the proposed likelihood measure in (12) instead of cues

from a coded aperture.
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