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Abstract: The process of single-point incremental forming (SPIF) is a relatively new technology that
is primarily used in the production of prototypes and small quantities of products. However, the
process has several limitations with respect to the quality characteristics of its products. This study
examined the effects of four process parameters—namely, tool diameter, feed rate, step size, and sheet
thickness—on the characteristics of the final product. A total of 15 product responses were measured
and/or calculated during the experiments. The responses fell under three different categories; surface
profile accuracy, strain/stress/thinning, and forming forces. In previous published work, responses
were studied separately for each category. The aim of this paper was to determine the relationships
between responses using a principal component analysis (PCA). PCA is a well-known multivariate
analysis technique used to reduce the dimensionality of data. As a result of the PCA, the product’s
characteristic dimensions were reduced from 15 while 71% of the total variance of data was preserved.
The results showed that only 8 responses were enough to characterize the final product, rather than 15.
A relationship was detected between the side wall accuracy and forming forces and between strain,
circularity, and surface roughness. These findings could not be detected with single-variable analyses.

Keywords: SPIF; PCA; profile accuracy; forming force; principal strain

1. Introduction

Incremental sheet forming (ISF) is a relatively new technology used primarily to pro-
duce prototypes and small batches of products. In this regard, the process is economically
advantageous as it permits the production of complex shapes of thin sheet metal without
the use of a special die. Compared with traditional sheet metal processes, this process offers
a number of advantages, including lower initial costs, shorter lead times, enhanced forma-
bility limits, and greater process flexibility [1]. The process does have some limitations
due to the poor quality of its final product’s surface, non-uniform thickness distribution
of the parts, and the long forming time required compared with other competitive sheet
metal processes.

The concept of sheet forming with a single-point tool was patented by Leszak in 1967,
long before it was technically feasible [1,2]. Several industries have used the process recently,
including automobiles, aerospace industries, biomedical applications, and appliances [3].
There are two main types of ISF; single-point incremental forming (SPIF) and two-point
incremental forming (TPIF). TPIF differs from SPIF in that it includes a supporting die
underneath the sheet workpiece [4]. A general-purpose CNC milling machine is used
in both categories, and with a simple generic tool, several products of different complex
geometries can be made directly from their CAD models.

In order to study ISF processes, a wide range of practical issues had to be addressed
and resolved. Several researchers were concerned with the accuracy of the geometric
properties of the product, including dimensional errors [5,6], waviness [4], and side wall
angle errors [7]. Design of experiments (DOE) was employed to assess the effect of different
process parameters on the accuracy of the produced profile, including the response surface
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method (RSM) [6,8], Taguchi [9], and factorial design [10]. Many ISF research activities
have also addressed the issue of surface roughness, such as [11–13]. In addition, researchers
have examined the strain and thinning of workpieces; for example [14–17].

As the number of studied responses increases, researchers tend to use multivariate
analyses. In this way, they are able to gain a deeper understanding of the relationships
between these variables. There have been a few studies conducted in the field of ISF that
have applied a multivariate analysis. In their study, Chinnaiyan et al. used a Taguchi-based
grey relational analysis (GRA) coupled to a PCA to find the combination of seven forming
parameters that optimized the SPIF formability of an AA5052 sheet [3]. In this study,
surface roughness and formability, presented as the sum of major strain and minor strain,
were measured. The suggested hybrid optimizing technique resulted in enhancing the
formability and surface roughness by 56% and 93%, respectively.

Raju et al. employed a Taguchi-based GRA in conjunction with the response sur-
face method (RSM) to optimize formability, wall angle, forming time, surface finish, and
springback parameters [18]. The suggested hybrid technique could predict the optimal com-
bination of five process parameters; namely, tool diameter, feed rate, spindle speed, number
of sheets, and vertical step depth. Validating experiments resulted in an improvement of
1.42% in the grey grade value.

This study examined four process parameters in order to determine their impact on
final product characteristics; namely, tool diameter, feed rate, step size, and sheet thickness.
A total of 15 product responses were measured and/or calculated during the experiment.
There were three categories of responses; these were the profile accuracy and surface
roughness, sheet straining, and forming forces. In previous publications [19–21], responses
were studied in separate categories.

To investigate the relationships among the 15 responses, a multivariate analysis was
used in this paper. For the purpose of this study, the PCA was chosen as a method of
reducing the dimensionality of the data and achieving a simple structure while retaining
most of the original data variance. To the best of the author’s knowledge, a multivariable
analysis has not been used in SPIF to analyze these different categories of part characteristics.
The results of this paper allowed a reduction in the needed measurements to characterize
the final product, hence reducing the cost of such quality control tests.

2. Materials and Methods
2.1. Experiment Setup

The aluminum alloy used in this study was commercial aluminum alloy AA 1050-
H14. This material was selected for its common availability and low cost. The chemical
composition of the sheet, listed in Table 1, was determined by a SPECTROMAXx machine,
model LMF05 36 (AMETEK, Kleve, Germany). A Zwick/Roell universal testing machine
was used to carry out tensile tests on the specimens according to the ASTM standards.
Table 2 shows the mechanical properties of the samples.

Table 1. Chemical composition of AA 1050-H14 sheets.

Sample Al % Fe % Si % Ti % Other

1 99.5 0.368 0.0480 0.0216 0.0624
2 99.5 0.360 0. 0496 0.0205 0.0007

Table 2. Mechanical properties of aluminum alloy AA 1050-H14.

Material Code Yield
Strength σy (MPa)

Ultimate Tensile
Strength σUTS (MPa)

Elongation
at Break

Young Modulus
E (MPa)

AA1050-H14 108 117.5 8.45% 67,648
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To achieve the objective of this study, a simple part was designed in the shape of
a truncated cone with a height of 50 mm and a base diameter of 100 mm, as shown in
Figure 1b,d. A special fixture was designed and manufactured to be used on a vertical
CNC milling machine. To allow a free deformation of the workpiece under the applied
load, dedicated fixtures were designed from three separate parts. Initially, the workpiece
was a square sheet with 240 mm sides and the working area was 200 × 200 mm. Figure 1a
illustrates the setup of the fixture and the machine.
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Figure 1. (a) Fixture and machine setup, (b) part dimensions and the investigated process parameters,
(c) forming tools, and (d) final part.

Figure 1b shows a schematic drawing of the process depicting the part geometry,
forming tool, feed rate direction, and vertical step. Figure 1c shows the tool geometry
with two different diameters. Hardened D2 steel was used to make the forming tools. The
hemispherical tip of the tool was polished in order to reduce friction with the workpiece.
The tool was attached to a live center so it could rotate freely. The machine spindle did not
rotate during the experiments and lubricating oil was utilized to minimize friction.

In order to fabricate a given product, several tool paths may be used. In this study, a
spiral tool path, generated by MASTERCAM software, was used. The tool contours were
created using the transition step method [22]. During the manufacture of the part, the tool
formed one circle, and then moved down the step size in accordance with the program. In
this manner, the process was repeated until the part was fully fabricated. Along the formed
circles, the tool moved at a constant speed equal to the preset feed rate.

The experimental design matrix was generated using a full factorial design with four
factors (controllable process parameters) and two levels for each factor. There were two
replications of each experiment. Table 3 presents the four factors, along with their levels.
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The studied process parameters were chosen due to their expected effects on the final
product [5–17]. Preliminary experiments were used to determine their levels. With the
current setup, factor values beyond the selected levels resulted in flawed parts.

Table 3. Process parameters and their levels.

Annotation Process Parameter (Factor) Low Level High Level

TD Tool diameter (mm) 10 20

FR Feed rate (mm/min) 500 1000

SS Step size (mm) 0.5 1

ST Sheet thickness (mm) 1 2

2.2. Measurements
2.2.1. Force Measurement

The forming force in three directions was measured with a KISTLER 2825A1 force
dynamometer located under the fixture. A KISTLER 5019B amplifier was connected to the
dynamometer for signal amplification. With these apparatuses, the forming forces applied
to the part by the tool were recorded at a sampling rate of 50 Hz using a data acquisition
system [19].

2.2.2. Profile Accuracy Measurement

There were four types of profile accuracy items that were considered [21]; namely, the
circularity error, waviness error, side angle error, and part depth error. To estimate the four
profile errors mentioned above, a Zeiss ACCURA CMM with an accuracy of 2 µm was
used. Approximately 300 points were detected on each produced part using a 3 mm probe.

Throughout the depth of the cone, circularity errors were estimated at three different
levels. The CMM was used to measure the coordinates of 30 points along a circular path
in the XY-plane while maintaining a constant probe height in the z-direction. The process
was repeated at locations C1, C2, and C3, as shown in Figure 2a. A typical circularity error
test exhibited a circular deviation, as shown in Figure 2b. For each level of measurement
(C1, C2, and C3), a circle was fitted using the least squares method and the maximum
radial deviations (inside and outside the fitted circle) were recorded (B1 and B2). Based
on ISO 230 4:2005(E) [23], the circular deviation was calculated as the maximum radial
separation between two concentric circles enclosing the actual path. The circularity error
was calculated as the sum of the two deviations, B1 and B2.
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Due to the variable diameter along the depth of the part, the circularity error was
normalized with respect to the nominal diameter of the part. The normalized circularity
errors were referred to as NC1, NC2, and NC3, respectively, and were defined by the
circularity error/nominal diameter of the part.

The waviness error was determined by selecting approximately 200 points along
4 paths (W1, W2, W3, and W4), as shown in Figure 3a. The recorded points were used
to fit a line using the least squares method. This process was repeated along each of the
four paths that were 90◦ apart. Figure 3b shows the maximum deviations from the line (A1
and A2). According to ASME B46.1-1985 [24], the waviness deviation is calculated as the
sum of A1 and A2. Using two values, the waviness error is expressed as the average and
maximum of each part’s four deviations.
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The side angle is the angle formed by the side walls of parts with respect to the
horizontal XY-plane, as shown in Figure 1b. The side angle error is defined as the difference
between the actual and designed side angle (60◦).

The part depth was determined by measuring the distance between the top and bottom
of the cone. The error was calculated as the difference between the actual and designed
depth of the part (50 mm).

2.2.3. Measuring Strain

A grid of squares with a side length of 2 mm was electrochemically etched onto the
surface of the workpiece before forming in order to measure the strains and calculate the
stresses and thinning of the final part, as shown in Figure 4. In order to determine the
strains and calculate the stresses and thinning, a grid analyzer, model 100 (FMTI Systems,
Ontario, Canada) was utilized. Strain was measured at various points along the wall to
capture the variation in the wall. The measurements were taken along lines L1, L2, and
L3, with five grids being selected on each line, as shown in Figure 4b. Principal stresses
were calculated from the experimental values of principal strains by the GRID ANALYZER
using the following equation:

σ = cεn

where the constant (C) = 146.9 and strain hardening exponent (n) = 0.3. Details regarding
this procedure may be sought in [21].
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Figure 4. (a) Initial sheets etched with 2 mm square grid pattern; (b) sheet after deformation with
measurement locations.

2.2.4. Measuring Roughness

Ra and Rt were measured at four locations on the part’s inner surface and each
measurement was repeated twice. As a measure of surface roughness, the average of both
the Ra and Rt measurements was recorded for each part. Measurements were conducted
using 0.8 mm cut-offs and 4 mm evaluation lengths.

2.3. Principal Component Analysis (PCA)

The PCA method is an unsupervised technique widely used in exploratory data analy-
ses [25]. The primary objective of a PCA is to reduce data dimensionality with a minimum
loss of information in order to enhance interpretability. In this technique, the original data
are projected onto a series of orthogonal components (called principal components or PCs)
in such a way as to maximize the variance captured by these components [26]. PCs are
linear combinations of the original variables with different loadings, which represent the
amount that each variable contributes to a particular PC.

Every PC carries a higher percentage of data variance than the one preceding it, which
is a critical feature of a PCA. While the number of calculated PCs is the same as the number
of original variables, this property allows the selection of a few PCs, beginning with PC1. As
a result, the data can be represented in a reduced number of dimensions. To determine the
optimal number of PCs to include in an analysis, several criteria have been proposed [25,26].
According to Kaiser’s criterion (average eigenvalue criterion), PCs are significant only if
their eigenvalue exceeds the average eigenvalue, which is 1 when the data are scaled.
Alternatively, a cut-off percentage of cumulative variance can be established and only PCs
that meet this threshold are considered. In general, the cut-off point ranges between 70 and
90% [27].

3. Results and Discussion

A summary of the studied factors and the measured or calculated responses is pre-
sented in Table 4. According to a previous section, the factors that were examined were
the tool diameter, the feed rate, the step size, and the sheet thickness. The surface profile
response variables included normalized circularity (NC1, NC2, and NC3), average and
maximum waviness (AW and MW (mm)), side angle error (AE (o)), depth error (DE (mm)),
and surface roughness parameters (Ra and Rt (µm)). In terms of deformation behavior
response variables, maximum principal strain (MPST), maximum principal stress (MPS
(MPa)), and maximum thinning (MT) were measured. The force response variables in-
cluded maximum force in the z-direction (Fz), maximum force in the x-direction (Fx), and
maximum force in the y-direction (Fy). All force values were measured in KN.
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Table 4. Experimental plan and responses.

Serial TD
mm

FR
mm/min

SS
mm

ST
mm NC1 NC2 NC3 AW

mm
MW
mm

AE
Degrees

DE
mm

Ra
µm

Rt
µm MPST MPS

MPa MT Fz
KN

Fx
KN

Fy
KN

1 20 1000 0.5 2 0.061 0.072 0.098 0.52 0.84 0.93 0.92 0.55 5.25 0.82 163 0.58 1.60 0.70 0.69

2 10 500 1 1 0.058 0.070 0.095 0.38 0.56 −1.31 1.42 1.75 15.63 0.81 162 0.57 0.43 0.29 0.27

3 20 500 1 2 0.059 0.074 0.097 0.73 1.26 1.00 0.78 0.68 8.75 0.81 163 0.59 1.67 0.99 0.86

4 10 500 1 1 0.061 0.077 0.107 0.50 0.81 0.88 −0.73 2.10 20.25 0.84 163 0.57 0.53 0.32 0.33

5 20 500 0.5 2 0.061 0.076 0.098 0.54 0.96 0.75 1.85 0.55 7.38 0.83 165 0.62 1.42 0.72 0.71

6 10 500 1 2 0.060 0.063 0.101 0.53 0.88 1.66 −1.89 2.08 17.88 0.72 156 0.55 1.49 0.83 0.87

7 20 500 0.5 1 0.059 0.078 0.095 0.39 0.67 −0.47 0.92 0.40 3.75 0.97 172 0.64 0.49 0.32 0.31

8 10 1000 0.5 1 0.051 0.072 0.098 0.34 0.48 0.03 −0.55 1.98 18.88 0.79 161 0.58 0.38 0.23 0.22

9 20 1000 0.5 1 0.056 0.073 0.094 0.40 0.68 −0.41 0.91 0.43 5.00 0.87 161 0.57 0.69 0.32 0.34

10 10 1000 1 2 0.058 0.073 0.104 1.01 1.45 1.17 −1.99 2.30 19.38 0.74 158 0.56 1.58 0.78 0.89

11 10 500 0.5 1 0.057 0.073 0.106 0.43 0.81 −0.05 −1.63 1.40 15.75 0.76 160 0.59 0.46 0.20 0.21

12 10 1000 0.5 2 0.059 0.074 0.110 0.99 1.46 0.40 −1.66 2.10 16.75 0.73 157 0.55 1.29 0.57 0.55

13 10 500 0.5 1 0.059 0.078 0.103 0.43 0.78 −0.03 −1.56 1.45 14.25 0.77 158 0.54 0.43 0.20 0.20

14 20 1000 1 2 0.051 0.075 0.097 0.94 1.42 1.13 0.69 0.65 8.50 0.82 162 0.58 1.76 0.87 0.90

15 20 500 0.5 2 0.054 0.068 0.094 0.48 0.77 0.96 1.51 0.60 6.63 0.86 165 0.6 1.64 0.78 0.77

16 20 1000 0.5 2 0.053 0.079 0.097 0.61 0.95 0.61 0.95 0.53 5.63 0.86 165 0.59 1.64 0.68 0.71

17 10 1000 0.5 1 0.058 0.073 0.095 0.33 0.67 −0.42 −0.91 2.30 19.88 0.76 158 0.57 0.38 0.19 0.19

18 20 500 0.5 1 0.061 0.072 0.096 0.35 0.56 −0.16 2.38 0.58 5.75 0.97 174 0.66 0.52 0.32 0.32

19 10 500 1 2 0.060 0.069 0.110 0.85 1.46 0.38 −2.01 1.98 18.88 0.74 158 0.56 0.72 0.38 0.38

20 20 1000 1 1 0.054 0.064 0.100 0.68 1.48 0.68 1.64 0.40 4.00 0.8 162 0.58 0.67 0.37 0.38

21 10 500 0.5 2 0.049 0.074 0.098 0.93 1.49 0.60 −1.46 2.35 19.38 0.7 155 0.55 1.26 0.51 0.54

22 10 1000 0.5 2 0.050 0.072 0.096 0.97 1.38 0.32 −1.45 2.50 18.63 0.73 156 0.55 0.47 0.20 0.24

23 10 1000 1 2 0.057 0.076 0.102 0.83 1.16 1.00 −1.81 1.88 14.75 0.72 157 0.56 0.56 0.26 0.27

24 20 1000 1 2 0.059 0.074 0.098 0.75 1.19 1.07 0.69 0.70 11.13 0.84 164 0.59 1.63 0.86 0.87

25 20 500 1 1 0.059 0.075 0.100 0.49 0.76 0.86 0.60 0.40 3.88 0.87 164 0.58 0.28 0.17 0.17
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Table 4. Cont.

Serial TD
mm

FR
mm/min

SS
mm

ST
mm NC1 NC2 NC3 AW

mm
MW
mm

AE
Degrees

DE
mm

Ra
µm

Rt
µm MPST MPS

MPa MT Fz
KN

Fx
KN

Fy
KN

26 20 1000 0.5 1 0.054 0.068 0.090 0.35 0.46 0.16 1.74 0.43 4.50 0.98 172 0.63 0.53 0.31 0.30

27 20 500 1 1 0.054 0.074 0.103 0.40 0.56 0.12 1.83 0.40 3.63 0.84 164 0.59 0.24 0.16 0.16

28 20 1000 1 1 0.055 0.075 0.104 0.42 0.74 0.11 1.72 0.43 4.63 0.89 167 0.61 0.22 0.14 0.14

29 20 500 1 2 0.051 0.076 0.102 0.92 1.33 0.79 0.67 0.90 12.13 0.86 165 0.58 0.87 0.42 0.45

30 10 1000 1 1 0.060 0.065 0.095 0.43 0.65 0.35 −0.33 2.03 15.88 0.86 165 0.59 0.54 0.25 0.25

31 10 1000 1 1 0.056 0.076 0.097 0.59 0.88 −0.09 −1.49 1.88 16.63 0.78 161 0.59 0.18 0.11 0.11

32 10 500 0.5 2 0.056 0.074 0.099 0.85 1.33 0.78 −1.42 2.25 20.25 0.72 156 0.54 0.47 0.22 0.26
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As the data are presented on different scales, normalized values are used in a PCA [28].
It is possible to accomplish this by using a correlation matrix rather than a covariance matrix
in the analysis. As the correlation coefficient between two variables is calculated by dividing
their covariance with the product of their standard deviations, the values of the correlation
matrix are normalized between −1 and +1. Table 5 presents the Pearson correlation matrix
for all 15 response variables. In order to avoid adding redundant information to the analysis,
it is recommended to avoid variables with high correlations [28]. It is assumed that the
limit for a high correlation is when the Pearson correlation coefficient (r) equals 0.7 [29].
Consequently, if two response variables have r > 0.7, only one will be considered in the
analysis. Regarding the Pearson values presented in Table 5, only the following variables
were included in the analysis: NC1, NC2, NC3, AW, AE, Ra, MPST, and Fz.

Table 5. Pearson correlation for all response variables.

NC1 NC2 NC3 AW MW AE DE Ra Rt MPST MPS MT Fz Fx

NC2 −0.055

NC3 0.230 0.171

AW −0.296 0.124 0.362

MW −0.234 0.046 0.398 0.951

AE 0.007 −0.105 0.239 0.537 0.535

DE −0.033 −0.028 −0.481 −0.450 −0.410 −0.184

Ra −0.016 −0.120 0.294 0.357 0.288 0.001 −0.855

Rt −0.000 −0.065 0.345 0.363 0.310 0.037 −0.850 0.968

MPST 0.113 0.073 −0.457 −0.562 −0.583 −0.270 0.803 −0.750 −0.748

MPS 0.152 0.060 −0.406 −0.525 −0.538 −0.229 0.805 −0.732 −0.722 0.969

MT 0.153 0.040 −0.413 −0.513 −0.503 −0.242 0.734 −0.666 −0.659 0.859 0.935

Fz 0.022 −0.048 −0.043 0.448 0.457 0.643 0.060 −0.151 −0.096 −0.135 −0.094 −0.072

Fx 0.103 −0.096 −0.062 0.387 0.408 0.638 0.118 −0.194 −0.123 −0.071 −0.022 0.001 0.974

Fy 0.068 −0.098 −0.041 0.432 0.443 0.667 0.072 −0.150 −0.084 −0.106 −0.062 −0.041 0.979 0.991

The rotation of the eigenvectors (components) was used to simplify the structure of the
results; i.e., to achieve a condition in which the absolute value of variable loads near 1 or 0
on an eigenvector would allow for an easy interpretation of the factors [30]. There are two
main types of rotation available in statistical software. Rotations can be either orthogonal
or oblique, for which several methods are available. All rotation methods within the JASP
software [31] were examined in this study. According to the output of the analysis, cluster
rotation resulted in a structure that was closest to a perfect simple structure. According
to the literature, if a perfect simple structure is not possible, cluster rotation performs
better than other rotation methods [32]. For component loadings, a cut-off value of 0.4
was established to exclude those that were less than 0.4 because these were not considered
salient [33].

In Figure 5, the scree plot illustrates the eigenvalues of the eight components after
cluster rotation.Table 6 presents the eigenvectors, eigenvalues, and explained variation
(contribution) for the first three components, where PC1, PC2, and PC3 represent the first
three principal components after cluster rotation. There were only three components with
eigenvalues greater than one, and thus they satisfied Kaiser’s criterion. Furthermore, their
cumulative contribution exceeded 0.714, which exceeded the cut-off limit of 0.7. As a result,
only the first three components were considered in the rest of the analysis.
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Table 6. Eigenvectors, eigenvalues, and explained variation (contribution) for the first three PCs after
cluster rotation.

PC1 PC2 PC3

AE 0.899

Fz 0.885

AW 0.720

Ra 0.931

MPST −0.814

NC1 0.486

NC2 0.876

NC3 0.659

Eigenvalue 2.267 2.168 1.274

Contribution 0.283 0.271 0.159

Cumulative 0.283 0.554 0.714

Figure 6 shows the path plot that related the original response variables to the three
selected components PC1, PC2, and PC3. The principal components are shown on the
left as circles. Variables are represented on the right by rectangles. A variable’s loading
on the principal components is represented by arrows pointing to the component. Red
arrows indicate negative loadings and green arrows indicate positive loadings; the wider
the arrow, the greater the loading.

PC1 was strongly influenced by the three variables AE, FZ, and AW, with all three
pointing in a positive direction, as indicated in Table 6 and Figure 6. PC2 was controlled by Ra
and NC1, which directed positive directions, and MPST, which directed negative directions.
PC3 was controlled by the two variables NC2 and NC3, pointing in a positive direction.

Consequently, it was proposed that PC1 measured the side wall quality by relating the
waviness error to the side angle error. As the forming force increased, PC1 suggested that
the expected side wall quality decreased, both locally (waviness error) and generally (side
angle error).

The interpretation of PC1 loadings indicated a causal relationship; however, those of
PC2 did not appear to agree. There was generally a correlation between them, rather than
a causal relationship. In general, the maximum principal strain, surface roughness, and
circularity error at the top of the part were primarily influenced by the diameter of the
tool [20,21]. The smaller the diameter of the tool, the greater the Ra and NC1 values, while
the maximum principal strain was reduced. As a result, there was a negative correlation
between them.



Processes 2023, 11, 1254 11 of 14Processes 2022, 10, x FOR PEER REVIEW 11 of 14 
 

 

 

Figure 6. Path diagram for the first three PCs after cluster rotation. 

PC1 was strongly influenced by the three variables AE, FZ, and AW, with all three 

pointing in a positive direction, as indicated in Table 6 and Figure 6. PC2 was controlled 

by Ra and NC1, which directed positive directions, and MPST, which directed negative 

directions. PC3 was controlled by the two variables NC2 and NC3, pointing in a positive 

direction. 

Consequently, it was proposed that PC1 measured the side wall quality by relating 

the waviness error to the side angle error. As the forming force increased, PC1 suggested 

that the expected side wall quality decreased, both locally (waviness error) and generally 

(side angle error). 

The interpretation of PC1 loadings indicated a causal relationship; however, those of 

PC2 did not appear to agree. There was generally a correlation between them, rather than 

a causal relationship. In general, the maximum principal strain, surface roughness, and 

circularity error at the top of the part were primarily influenced by the diameter of the 

tool [20,21]. The smaller the diameter of the tool, the greater the Ra and NC1 values, while 

the maximum principal strain was reduced. As a result, there was a negative correlation 

between them. 

PC3 represented the circularity errors at the middle and bottom of the part. Both of 

them progressed together as the springback increased with the depth of the part due to 

the increment of deformation in the sheet [20].  

The score plots in Figure 7 show the results of the first two components, colored ac-

cording to tool diameter (a), feed rate (b), step size (c), and sheet thickness (d). There is a 

clear distinction between the scores in Figure 7a,d as the scores divided into two regions 

whereas the scores in Figure 7b,c do not have this distinction. This was due to the fact that 

the tool diameter and sheet thickness had the greatest effect on the final product charac-

teristics in this study.  

In Figure 8, scores are presented in relation to both the tool diameter and sheet thick-

ness at the same time. In the graph, there are four distinct regions that show a significant 

interaction between the tool diameter and sheet thickness. Research has previously 

demonstrated this interaction. As shown in the figure, sheet thickness separated the data 

around PC1 while the tool diameter separated the data around PC2. The sheet thickness 

had the greatest effect on the forming force [19] and, therefore, on the quality of the side 

walls, which was represented by PC1. In terms of surface roughness and principal strain, 

the tool diameter had the greatest impact [20,21].  

Figure 6. Path diagram for the first three PCs after cluster rotation.

PC3 represented the circularity errors at the middle and bottom of the part. Both of
them progressed together as the springback increased with the depth of the part due to the
increment of deformation in the sheet [20].

The score plots in Figure 7 show the results of the first two components, colored
according to tool diameter (a), feed rate (b), step size (c), and sheet thickness (d). There is a
clear distinction between the scores in Figure 7a,d as the scores divided into two regions
whereas the scores in Figure 7b,c do not have this distinction. This was due to the fact
that the tool diameter and sheet thickness had the greatest effect on the final product
characteristics in this study.

 

 

 

(a) (b) 

(c) (d) 

Figure 7. Score plot of the first two components colored by process parameter: (a) tool diameter;
(b) feed rate; (c) step size; (d) sheet thickness.
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In Figure 8, scores are presented in relation to both the tool diameter and sheet thick-
ness at the same time. In the graph, there are four distinct regions that show a significant
interaction between the tool diameter and sheet thickness. Research has previously demon-
strated this interaction. As shown in the figure, sheet thickness separated the data around
PC1 while the tool diameter separated the data around PC2. The sheet thickness had the
greatest effect on the forming force [19] and, therefore, on the quality of the side walls,
which was represented by PC1. In terms of surface roughness and principal strain, the tool
diameter had the greatest impact [20,21].

 

 

 

Figure 8. Score plot of the first two components colored by tool diameter and sheet thickness.

4. Conclusions

An exploratory study was conducted using SPIF to investigate the effect of four pro-
cess parameters on the final product characteristics. A total of four process parameters were
selected; namely, the diameter of the tool, the feed rate, the step size, and the thickness of
the sheet. In order to construct the experiment matrix, a two-level full factorial design was
utilized. For the final product, which was a simple truncated cone, 15 responses were mea-
sured/calculated. A total of three categories of responses were identified. These were (1) the
surface profile accuracy; (2) the strains, stresses, and thinning; and (3) the forming forces.
This response has previously been described as category-based in previous publications.

A PCA was used to uncover the relationships between the entire 15 responses. Based
on a correlational analysis, only eight responses were sufficient to represent the product
characteristics and the PCA was only performed on these eight responses. In order to
create a close-to-perfect simple structure for the data, cluster rotation was applied. Cluster
rotation resulted in the first three PCs representing all the studied responses while retaining
71% of the variance.

It has been suggested that the first component describes the side wall quality of the
product (waviness error and side angle error) and that it should be combined with the
forming force. It was concluded that a variation in the forming force was responsible for the
side wall quality variation. Surface roughness, maximum principal strain, and normalized
circularity at the top of the product were represented by PC2. It has been suggested that
the correlation between the three responses was due to the fact that they were all primarily
influenced by the same factors.

The main contribution of the results presented in this paper was the PCA’s ability
to reduce the number of measurements required to maintain the quality of the final SPIF
product. Based on the relationship between waviness and angle errors, one could only
measure one and conclude the other. It was also noteworthy that the product characteristics
that were affected by the same process parameters behaved similarly, indicating that only
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one of these characteristics needed to be examined, thereby reducing the cost of quality
control. A single-variable analysis was not able to detect these findings.

The results presented in this paper provide a useful insight into the relationship
between the various characteristics of SPIF products. By applying the same technique to
different materials, product geometry, and process parameters, knowledge in this area can
be deepened and its application expanded.
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