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Measurements of functional connectivity support the hypothesis that the brain is

composed of distinct networks with anatomically separated nodes but common

functionality. A few studies have suggested that intellectual performance may be

associated with greater functional connectivity in the fronto-parietal network and

enhanced global efficiency. In this fMRI study, we performed an exploratory analysis of

the relationship between the brain’s functional connectivity and intelligence scores derived

from the Portuguese language version of the Wechsler Adult Intelligence Scale (WAIS-III)

in a sample of 29 people, born and raised in Brazil. We examined functional connectivity

between 82 regions, including graph theoretic properties of the overall network. Some

previous findings were extended to the Portuguese-speaking population, specifically

the presence of small-world organization of the brain and relationships of intelligence

with connectivity of frontal, pre-central, parietal, occipital, fusiform and supramarginal

gyrus, and caudate nucleus. Verbal comprehension was associated with global network

efficiency, a new finding.

Keywords: functional connectivity, fMRI, network parameters, intelligence, Wechsler intelligence scales,

exploratory data analysis

INTRODUCTION

Functional connectivity is expressed as correlations between the

blood oxygenation level dependent signals in different regions of

the brain (Friston et al., 1993; Biswal et al., 1995; Van den Heuvel

and Hulshoff Pol, 2010). Consistent spatial patterns of functional

connectivity are found for individuals at rest and are presumed

to reflect information processing networks (Lowe et al., 1998;

Raichle et al., 2001; Beckmann et al., 2005; Damoiseaux et al.,

2006). Recent advances in neuroimaging have provided new tools

to measure and analyze interactions between brain regions, cat-

alyzing the study of functional connectivity of the brain (Van den

Heuvel and Hulshoff Pol, 2010). An important recent expansion

of functional connectivity studies was the use of the principles

of graph theory (Watts and Strogatz, 1998) to depict the brain

as an efficient complex network, with brain regions as the nodes

and functional connectivity as the edge weights (Sporns and Zwi,

2004; Bullmore and Sporns, 2009). The functional brain network

shows a highly efficient small-world organization, with a high

level of local clustering and short effective lengths between brain

regions. This leads to high global efficiency of information flow in

the network (Sporns and Zwi, 2004; Van den Heuvel et al., 2008).

An important tool to measure the intelligence in adults is the

Wechsler Adult Intelligence Scale (WAIS), based on the “global

capacity of the individual to act purposefully, to think rationally

and to deal effectively with his environment” (Wechsler, 1939).

Some studies have applied intelligence indices to anatomical and

functional brain measurements (Gray et al., 2003; Haier et al.,

2004; Song et al., 2008; Gläscher et al., 2009; Li et al., 2009). A

previous study found that higher IQ scores are associated with

greater functional connectivity within a fronto-parietal network,

suggesting that the coordination of these regions is an impor-

tant neural basis of individual intelligence (Song et al., 2008). A

region-specific analysis of the lateral prefrontal cortex, part of the

fronto-parietal network, found that its global connectivity pre-

dicted working memory performance and fluid intelligence (Cole

et al., 2012). Two studies have reported an association between

efficiency of global communication and intellectual performance,

suggesting that individuals with higher intelligence have a more

organized brain network overall (Van den Heuvel et al., 2008;

Song et al., 2009).

However, the relationships between brain functional connec-

tivity and psychological measures such as intelligence are not

fully defined. In the present exploratory study, we pursued this

line of research further by considering how the several indices

of intelligence measured by the Wechsler Adult Intelligence Scale

(WAIS-III) related to connection strengths and network proper-

ties in a brain network defined by a set of 82 a priori cortical

and subcortical regions derived from an atlas (Tzourio-Mazoyer

et al., 2002). The use of a smaller set of regions of interest pre-

serves structural and physiological similarities, while simplifying

the analysis and easing the interpretation of the findings relative

to the commonly used voxel-wise approach. In contrast to some

studies that considered a priori regions known to be related to

intelligence (Song et al., 2008; Cole et al., 2012), the present study
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explored the brain as a whole, with no region-specific or network-

specific hypotheses. This analysis could help to elucidate how the

human brain supports particular intellectual processes, extending

previous work and providing background to future studies.

MATERIALS AND METHODS

PARTICIPANTS

Thirty one healthy people were recruited from the academic

community and the local population living in the state of São

Paulo, Brazil. They were right-handed, had no history of neu-

rological or psychological illnesses, and were native speakers of

Brazilian Portuguese. People with a range of educational lev-

els were recruited to provide a greater range of intelligence

scores (Table 1). Thirty of these participants made up Dataset 1.

Volunteers participated in this study after responding to the stan-

dard screening interview of the Hospital of Clinics in Ribeirão

Preto, and providing written consent as approved by the Research

Ethics Committee of University of São Paulo.

MEASURES OF INDIVIDUAL INTELLIGENCE

The level of intellectual performance was measured (Gérson

S. Santos Neto and Sara R. E. Rosset) using the WAIS III

test (Wechsler Adult Intelligence Scale) as modified for the

Portuguese-speaking population of Brazil (Nascimento, 1998).

WAIS-III is a widely used instrument that assesses several cog-

nitive domains contributing to intelligence. It has high test-retest

reliability and a large database for comparison and standardiza-

tion (Gläscher et al., 2009). Measurements originating from the

third version of the test are the four fundamental indices Verbal

Comprehension Index, Perceptual Organization Index, Working

Memory Index, and Processing Speed Index; and the overall score,

Full-Scale IQ. The test took 1 h 30 min on average and was given

at a separate time from the image acquisition (less than 2 months

apart, except for one participant with a 3-month difference).

DATA ACQUISITION

Resting-state functional magnetic resonance images (eyes open,

no fixation) from each participant were acquired in a Phillips

3 Tesla scanner with a Quasar Dual gradient system (80 mT/m,

200 mT/m/ms), using an eight channel head coil and SENSE

encoding. An EPI sequence was performed with the following

parameters: 2000 ms repetition time, 30 ms echo time, 240 ×

240 mm field of view, 3 × 3 mm in-plane voxel size, 4.0 mm slice

thickness, 0.5 mm slice gap, 32 slices, 80◦ flip angle, 200 volumes,

25.2 Hz bandwidth per pixel. Overall functional acquisition time

was 6:48, including four initial volumes that were discarded prior

to analysis.

High-resolution anatomical images were also acquired using

a 3D T1 weighted turbo-field-echo gradient sequence with the

following parameters: 2500 ms repetition time, 3.2 ms echo time,

7.0 ms time echo spacing, 900 ms inversion time, 1 mm isotropic

voxel size, 8◦ flip angle, 240 × 240 × 160 mm3 field of view, and

overall time 5:19. Diffusion and other functional images were also

acquired, but not used in the present analysis.

A separate set of resting-state functional magnetic resonance

images (open eyes, with fixation) from 30 subjects (13M/17F,

age: 26.5 ± 5.5, age range: 20–42, right-handed) was included in

the analysis to provide a baseline for the small-worldness mea-

surement, and classified as Dataset 2. These images were from

the 1000 Functional Connectomes Project (Biswal et al., 2010),

specifically the data acquired in Leipzig, Germany, in a 3 Tesla

scanner with the following parameters: 2300 ms repetition time,

34 slices, 195 volumes.

PRE-PROCESSING

Functional MRI data were processed using the SPM8 soft-

ware (http://www.fil.ion.ucl.ac.uk/spm/software/spm8) and the

CONN functional connectivity toolbox (14), both implemented

in MatLab (R2013a, The MathWorks, Natick, MA, USA). For

each individual’s functional images, rigid body movement was

measured and corrected using a two-step procedure in which the

first of the specified functional images was used as a reference to

which all subsequent images were realigned, then the functional

images were re-registered to the mean image. Participants who

moved more than 2 mm in translation or 1 degree in rotation

were excluded from analysis. Functional images were then spa-

tially smoothed using a Gaussian filter of 5 mm full width at half

maximum.

Anatomical images from each volunteer were registered to the

mean functional image created in the previous step. The anatom-

ical volumes were segmented into gray matter, white matter and

cerebrospinal fluid compartments and non-linearly registered to

the MNI standard space. The resulting masks were eroded once

at an isotropic voxel size of 2 mm to minimize partial volume

effects. This step produced spatial normalization parameters that

were used to apply the transformations to the functional images.

Voxel time series were additionally processed to reduce noise.

Signals from the white matter and CSF compartments (5 princi-

pal components each) and the estimated head motion time series

and first differences were removed by regression. A temporal

band-pass filter was applied to remove signals outside the range

0.008–0.09 Hz (Whitfield-Gabrieli and Nieto-Castanon, 2012).

Average signals were extracted from a set of 116 regions

defined by the Automated Anatomical Labeling (AAL) atlas,

which is a macroanatomical parcellation of the single subject

MNI-space template brain (Tzourio-Mazoyer et al., 2002). Eight

of the AAL regions were excluded from the analysis due to

their small size (less than 300 voxels), which increased the likeli-

hood that partial volume effects would contaminate signals from

those regions. Cerebellum and cerebellar vermis regions were

also excluded because they were not fully covered by the fMRI.

Therefore, 82 cortical and subcortical regions were included in

total, all of them shown in the Supplemental Material (Table S1)

with their AAL abbreviations and the locations of their centers, in

x, y, and z.

ANALYSIS OF FUNCTIONAL CONNECTIVITY AND INTELLIGENCE

Weighted association matrices were created (Figure 1) using the

Pearson correlations between the time series of each pair of

brain regions. Functional connectivity of each path was compared

with the four fundamental intelligence indices and the Full-Scale

IQ using the Pearson correlation coefficient (Table 3, Figure 2).

Negative values of the matrices were included to consider also the

functional anticorrelations. Functional connectivity values were
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FIGURE 1 | Construction of weighted and binary correlation matrices of the brain.

FIGURE 2 | Axial, coronal, and sagittal projections of the brain showing the functional connections having associations with (A) Full-Scale IQ and (B)

Perceptual Organization Index at FDR < 0.05. Numbers correspond to the labels in Table 3.

the Fisher Z scores computed between the time series of each pair

of regions. Each list of 3321 p-values (all pairs of 82 regions) was

adjusted to maintain a false discovery rate of 0.05, separately for

each IQ index.

GRAPH ANALYSIS

We examined small-worldness, characteristic path length, clus-

tering coefficient, and global and local efficiency. Characteristic

path length is the shortest path length between all pairs of nodes.
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Clustering coefficient is the number of connections in the neigh-

borhood of a certain node divided by the maximum number of

possible connections between the neighbors of this node. Global

efficiency is inversely related to the characteristic path length and

measures how efficiently information is communicated between

nodes. Local efficiency of a given node is the inverse of the average

shortest path connecting all neighbors of that node and evaluates

the influence of different paths based on the connection weights

of the node’s neighbors, i.e., a path made of strong connections

contributes to the local efficiency more than a path made of weak

connections. Therefore, local efficiency of a node is related to its

clustering coefficient, since more connections or stronger ones

between neighbors directly affect both measures.

All the network parameters were computed using the Brain

Connectivity Toolbox (BCT) (Rubinov and Sporns, 2010).

Negative correlations in association matrices were not included in

any analysis of network measures, since they need to be removed

prior to BCT computations (Rubinov and Sporns, 2010, 2011).

Different network measures require different pre-processing of

the association matrix.

Small-worldness analysis

Characteristic path length (L) and clustering coefficient (C) were

computed to study the small-worldness of our data (Dataset

1, Figure 3) and of an independent set of resting-state fMRI

(Dataset 2, Figure 4) to verify the small-worldness of the network

in our sample and to provide a baseline for our measurements.

These calculations used binary matrices obtained by threshold-

ing the correlation matrices (Figure 1) at a range of values. The

same analysis was applied to 20 random matrices with the same

number of connections and similar distribution of connections

(Sporns and Zwi, 2004), to obtain a random-matrix characteris-

tic path length (Lrandom) and clustering coefficient (Crandom). The

networks are said to have small-world organization for correla-

tion thresholds in which L = Lrandom and C > Crandom; this was

calculated using a 2-sample t-test for p ≤ 0.01.

Analysis of global network properties and intelligence

Global network parameters (characteristic path length, clustering

coefficient, and efficiency), obtained using weighted networks,

were related to the intelligence indices using the Pearson correla-

tion coefficient (Table 4). The Z-transformed correlation matrix

was used for the association matrix, except for global efficiency,

which used the Pearson correlations due to the need to restrict

the range to [0,1]. Negative values were set to zero. Some form

of normalization is necessary to obtain measures that are inde-

pendent of the network size, dividing parameters obtained from

brain networks by those obtained from random networks. For

normalization of weighted networks, a recently approach pur-

poses to compute the average value from an ensemble of surrogate

graphs (Stam et al., 2009). In our study, 100 surrogate random

weighted networks were constructed, derived from the origi-

nal networks by randomly permuting the edge weights. The

parameters of these random weighted networks were averaged

FIGURE 3 | Our data (Dataset 1): Mean characteristic path length for brain (red) and random (blue) networks are shown on the left as a function of

threshold. Mean clustering coefficient for brain (red) and random (blue) networks are shown on the right. Confidence bands represent ±1 standard deviation.

FIGURE 4 | Independent test data (Dataset 2): Mean characteristic path length for brain (red) and random (blue) networks are shown on the left.

Mean clustering coefficient for brain (red) and random (blue) networks are shown on the right. Confidence bands represent ±1 standard deviation.
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and used in normalization. For this analysis, p-values were not

adjusted.

An additional analysis of global characteristic path length and

global clustering coefficient associated to intelligence indices was

performed using a binarized association matrix (thresholded at

r = 0.45) to facilitate comparisons with Van den Heuvel et al.

(2009) (Figure 5). Both metrics were normalized using the same

20 equivalent random binary matrices, specified in Section Small-

Worldness Analysis, averaged for each brain network. Pearson

correlations were also transformed using the Fisher Z in this

analysis.

Analysis of local network properties and intelligence

Finally, local efficiency, which is related to clustering coefficient,

was related to the intelligence indices using the Pearson correla-

tion coefficient (Table 5, Figure 6). Local efficiency calculations

used the untransformed Pearson correlation matrix for the asso-

ciation matrix, except that negative weights were replaced with 0.

For this analysis, false discovery rates were computed per node

(over the list of the 81 other regions).

RESULTS

Of the 31 volunteers, one did not perform the intelligence test

and exhibited excessive movement during imaging acquisition;

thus 30 participants (Dataset 1) were included in the small-world

organization study (ages: mean 27 years, standard deviation 6,

range: 19–38; 15 women) and 29 participants were included in

the intellectual performance study (ages: mean 27 years, stan-

dard deviation 6, range: 19–38; 14 women). Demographic data

for the intellectual performance study (29 participants) are in

Table 1.

We have included a table of correlations between the intel-

ligence indices in our sample (Table 2). Verbal IQ (VIQ) was

strongly correlated with Verbal Comprehension Index (VCI) and

Working Memory Index (WMI). Performance IQ (PIQ) was cor-

related strongly with Perceptual Organization Index (POI) and

moderately with Processing Speed Index (PSI). This was expected

because VIQ and PIQ are derived from the fundamental indices,

and so these indices were not used in the analysis of this study.

Full scale IQ (FSIQ) was strongly correlated with Perceptual

Organization and Working Memory indices and moderately

correlated with Verbal Comprehension and Processing Speed

Indices, also expected.

ASSOCIATIONS BETWEEN FUNCTIONAL CONNECTIVITY AND

INTELLIGENCE

Possible correlations of functional connectivity with FSIQ and

perceptual organization are shown in Table 3 and Figure 2.

Table 3 shows all correlations with FDR<0.05; Tables S2–S6 in

the Supplemental Material show complete results for the 15 most

significant associations for each IQ index. The most prevalent

regions were pre-central, parietal, and occipital.

SMALL-WORLDNESS ANALYSIS

To establish the baseline validity of the network analysis, we com-

puted small-worldness for our data and compared the results to

an independent data set. Brain networks showed a clear small-

world organization over a range of thresholds. Figure 3 (left) and

Figure 4 (left) show normalized characteristic path length from

binary networks as a function of threshold for participants for

Dataset 1 and Dataset 2, respectively. Mean values for 20 matched

random networks are also shown for comparison. Figure 3 (right)

and Figure 4 (right) shows the same for the normalized clustering

coefficient. In both datasets, networks showed a clear small-world

organization for correlation thresholds between 0.05 and 0.20,

characterized by L ≈ Lrandom for thresholds lower than 0.20 and

C ≫ Crandom for thresholds higher than 0.05 (2-sample t-test, all

p < α = 0.01, Bonferroni corrected for multiple thresholds).

ASSOCIATIONS BETWEEN GLOBAL NETWORK PROPERTIES AND

INTELLIGENCE

We observed a negative, though statistically weak (p = 0.14), cor-

relation between FSIQ and normalized characteristic path length

(lambda) (Figure 5, left). This was computed using correlation

matrices binarized at a threshold of 0.45, the same threshold

applied by Van den Heuvel et al. (2009), for the purpose of direct

comparison.

Verbal comprehension was associated with normalized global

efficiency (r = 0.43, p = 0.02, uncorrected p-value). Also, global

efficiency was weakly correlated with FSIQ (r = 0.24, p = 0.22,

uncorrected p-value). These results along with a complete list

of correlations between intelligence scores and global network

parameters are shown in Table 4.

FIGURE 5 | Normalized characteristic path length (lambda) (left) and

normalized clustering coefficient (gamma) (right) had slight negative

relationships with Full Scale IQ, though these were not statistically

robust. The network path strengths were based on binarized correlation

matrices thresholded at 0.45 for this analysis. (�) corresponds to

measurements for an individual participant.
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FIGURE 6 | Axial, coronal, and sagittal views of the brain showing

the non-normalized weighted-network local efficiency in the

regions where it had the strongest association with (A) Full-Scale

IQ, (B) Verbal Comprehension Index, (C) Working Memory Index,

and (D) Processing Speed Index. Labels correspond to those shown

in Table 5.

ASSOCATIONS BETWEEN LOCAL NETWORK PROPERTIES AND

INTELLIGENCE

We observed also possible relationships between local efficiency

and measures of intelligence (Table 5, Figure 6). Prominent

regions were pre-central gyrus, associated with FSIQ; caudate

nucleus, associated with verbal comprehension and processing

speed; bilateral inferior occipital gyrus, associated with verbal

comprehension; and bilateral rolandic operculum, associated

with working memory and processing speed. However, in all

cases the false discovery rate was >0.05; uncorrected p-values are

reported here.

DISCUSSION

We have extended a number of previous observations concerning

brain functional connectivity and intelligence to the Portuguese-

speaking population. These include the presence of small-world

organization and correlations of intelligence with global and local

characteristics of the brain’s functional networks. Additionally,
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some novel findings in this exploratory study suggest hypotheses

for future research.

The global functional brain network exhibited small-world

organization at correlation thresholds between 0.05 and 0.20, α =

0.01, Bonferroni corrected for multiple comparisons of thresh-

olds, and this closely matched the small-world organization that

was apparent in the confirmation data set (Figures 3, 4). This sug-

gests a high level of local clustering combined with a relatively

Table 1 | Demographic data and estimated intelligence scores.

Category Data

Gender (M/F) 15/14

Age (years-old) 26.8 ± 5.8

Verbal IQ 111.7 ± 10.8

Performance IQ 116.0 ± 11.4

Full-scale IQ 114.2 ± 10.0

Verbal comprehension index 111.9 ± 11.0

Perceptual organization index 115.3 ± 11.9

Working memory index 111.4 ± 12.3

Processing speed index 116.1 ± 12.0

Age and intelligence scores are shown as mean ± standard deviation.

Table 2 | Correlations between intelligence scores.

VIQ PIQ FSIQ VCI POI WMI

PIQ 0. 54

FSIQ 0. 90 0. 85

VCI 0. 84 0. 29 0. 67

POI 0. 52 0. 95 0. 81 0. 23

WMI 0. 73 0. 56 0. 74 0. 49 0. 52

PSI 0. 45 0. 55 0. 55 0. 38 0. 35 0. 53

Bold numbers represent significant values for α < 0.01.

small number of long-distance connections (Watts and Strogatz,

1998). This threshold range is smaller than the thresholds of

0.3–0.5 reported in previous observations of small-worldness

in whole-brain networks (Van den Heuvel et al., 2008, 2009).

However, node definitions differed substantially between the

studies as well. Small-world networks are an attractive model for

the connected human brain, because of their ability to trans-

fer information with high efficiency for low wiring cost (Watts

and Strogatz, 1998), and seem ubiquitous in the organization of

anatomical connectivity, affected in a variety of diseases (Bassett

and Bullmore, 2009). Moreover, Sporns and Zwi, in 2004, stated

that information integration and even mental awareness depend

on the small-world structure. Our replication of this effect sup-

ports the validity and the reliability of the network measures in

this sample.

Globally, FSIQ showed a weak negative correlation with char-

acteristic path length (Figure 5, left; r = −0.28, 95% CI = −0.59,

0.10), although with no statistical significance. Additionally,

global efficiency (inversely correlated with path length) showed

a weak positive correlation with FSIQ (Table 4; r = 0.24 95%

CI = −0.14, 0.56), not statistically significant also. These same

correlations were weaker when the full (weighted) associa-

tion matrix was used (Table 4) instead of a binarized matrix

(Figure 5). It is not known whether the thresholding step

increases or decreases the reliability of the resulting measure-

ments; however, possibly of note, correlations were observed to

be the same sign in our results and in previous literature regard-

less of method or statistical significance. The consistent finding

of a negative correlation between characteristic path length and

FSIQ could be an extension to Portuguese speakers of the pre-

vious finding in Dutch speakers (Van den Heuvel et al., 2009):

for characteristic path length, r = −0.54, 95% CI −0.80,−0.11.

The negative correlation is consistent with the previously pro-

posed idea that human intelligence is related to how efficiently

different brain regions are organized and integrated (Van den

Heuvel et al., 2009). It also suggests that functional brain networks

are optimized in computational efficiency to promote higher

Table 3 | Associations between functional connectivity and intelligence indices (Full-Scale IQ—FSIQ, Perceptual Organization Index—POI) for

specific nodes (center coordinates in x, y, and z) in the overall network, and with (uncorrected) 95% confidence intervals.

Index Label Functional connectivity between (AAL label) Correlation FDR

MNI Region A Center A (mm) MNI Region B Center B (mm)

FSIQ 1 Fusiform R (33.7, −40.2, −21.5) Parietal Sup L (−23.7, −60.8, 57.7) 0.62 (0.36, 0.80) 0.003

2 Pre-central L (−39.0, −7.0, 49.6) Occipital Sup R (24.0, −82.2, 29.3) 0.60 (0.30, 0.79) 0.05

3 Occipital Sup R (24.0, −82.2, 29.3) Parietal Sup L (−23.7, −60.8, 57.7) 0.59 (0.29, 0.79) 0.03

4 Pre-central L (−39.0, −7.0, 49.6) Occipital Inf R (37.9, −83.2, −90) 0.57 (0.26, 0.78) 0.05

POI 1 Pre-central L (−39.0, −7.0, 49.6) Occipital Inf L (−36.5, −79.6, −9.2) 0.67 (0.40, 0.83) 0.006

2 Parietal Sup R (25.8, −60.4, 60.7) Paracentral Lobule L (−8.0, −26.7, 68.7) 0.66 (0.38, 0.82) 0.009

3 Occipital Inf R (37.9, −83.2, −90) Post-central L (−42.9, −23.8, 47.5) 0.63 (0.35, 0.81) 0.015

4 Pre-central L (−39.0, −7.0, 49.6) Occipital Inf R (37.9, −83.2,−90) 0.62 (0.32, 0.80) 0.015

5 Frontal Sup Orb L (−5.4, 52.5, −8.9) Frontal Sup Orb R (7.8, 50.4, −8.5) 0.61 (0.31, 0.80) 0.04

6 Pre-central L (−39.0, −7.0, 49.6) Parietal Sup R (25.8, −60.4, 60.7) 0.59 (0.29, 0.79) 0.020

Functional connectivity was measured as the Fisher transformed correlation between the two regions’ time series. Only region pairs whose connectivity was

correlated with IQ index at FDR < 0.05 are shown. Tables S2–S6 in the Supplemental Material show further results.
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processing speed (Van den Heuvel et al., 2009) with minimal

wiring cost (Chklovskii et al., 2002).

The network parameters studied here were measurements of

functional segregation (clustering coefficient and local efficiency),

that describe the processing occurring within densely intercon-

nected networks of brain regions; and functional integration

(characteristic path length, and its inverse, global efficiency), that

is related to how information from distributed brain regions is

combined (Rubinov and Sporns, 2010). Global efficiency was

associated with verbal comprehension (r = 0.43; 95% CI = 0.08,

0.69) (Table 4), a novel suggestive finding worthy of further study.

This finding, combined with associations between VCI and local

efficiency found in several brain regions (Table 5, Figure 6B and

further discussed below) suggests that linguistic and verbal abil-

ities are linked with a higher brain efficiency, at both global and

local levels.

No other associations were found between global network

parameters and intellectual performance (Table 4). Because of the

relatively small sample size of this study, we are not able to make

strong conclusions from this and it does not necessarily conflict

with prior findings, as our estimated 95% confidence intervals

included the statistically significant correlation values found by

others (Song et al., 2009; Van den Heuvel et al., 2009). However, it

is possible that relationships between functional connectivity and

intelligence could be limited to sub-networks of the brain, rather

than being present at a global level, so we proceeded to examine

network characteristics at a regional level also.

Local efficiency in the caudate nuclei was associated with

VCI (Table 5). Some studies show that this region is important

for language and verbal abilities, revealing that a smaller short-

est path between the caudate and neighbor regions would be

related to a higher verbal intelligence. This was not the only fea-

ture involving the caudate that was related with verbal abilities.

Caudate function has also been related to verbal fluency during

a working memory task (Gruber and von Cramon, 2003), and

has shown activity during speech contrasted with a non-speech

rest baseline condition (Simmonds et al., 2011). Significant asso-

ciations with verbal fluency performance have also been found

for caudate nuclei volume, suggesting that this region is impli-

cated in the circuitry mediating this ability (Hannan et al., 2010).

Left caudate plays an important role in language selection in

both monolingual and multilingual people (Crinion et al., 2006),

and some studies propose that the caudate would act to fine-

tune interactions between automatic and more complex language

processing (Friederici, 2006) or in the resolution of word ambi-

guity (Ketteler et al., 2008).

Local efficiency in the parietal gyrus was correlated with Verbal

Comprehension and Processing Speed indices (Table 5), and con-

nection strengths to the parietal lobe correlated with Perceptual

Table 5 | Associations between non-normalized weighted-network

local efficiency and intelligence indices (Full-Scale IQ—FSIQ, Verbal

Comprehension Index—VCI, Working Memory Index—WMI,

Processing Speed Index—PSI) for specific nodes in the overall

network, with 95% confidence intervals and p-values (uncorrected for

multiple comparisons).

Intelligence Label AAL atlas Correlation with

index region local efficiency

FSIQ 1 Pre-central R 0.48 (0.14, 0.72) p = 0.009

2 Occipital Inf L 0.45 (0.11, 0.70) p = 0.013

3 Pre-central L 0.37 (0.010, 0.65) p = 0.05

VCI 1 Putamen L 0.50 (0.16, 0.73) p = 0.006

2 Caudate R 0.48 (0.13, 0.72) p = 0.009

3 Supp Motor Area L 0.42 (0.07, 0.68) p = 0.022

4 Pre-central R 0.42 (0.06, 0.68) p = 0.024

5 Cingulum Mid L 0.42 (0.06, 0.68) p = 0.024

6 Frontal Sup L 0.41 (0.06, 0.68) p = 0.026

7 Occipital Inf R 0.41 (0.05, 0.67) p = 0.028

8 Occipital Inf L 0.40 (0.04, 0.67) p = 0.03

9 Caudate L 0.38 (0.016, 0.66) p = 0.04

10 Parietal Sup R 0.37 (0.010, 0.65) p = 0.05

WMI 1 Rolandic Oper R 0.52 (0.19, 0.74) p = 0.004

2 Rolandic Oper L 0.42 (0.07, 0.68) p = 0.022

PSI 1 Caudate L 0.46 (0.11, 0.70) p = 0.013

2 Rolandic Oper L 0.45 (0.10, 0.70) p = 0.014

3 Parietal Inf R 0.41 (0.05, 0.67) p = 0.028

4 Caudate R 0.41 (0.05, 0.67) p = 0.029

5 Temporal Mid L 0.39 (0.03, 0.66) p = 0.03

6 Rolandic Oper R 0.39 (0.03, 0.66) p = 0.04

7 Frontal Sup Medial L 0.39 (0.03, 0.66) p = 0.04

8 Frontal Inf Tri R 0.38 (0.013, 0.65) p = 0.04

Only the subset with correlations at p < 0.05 are shown (uncorrected for multiple

comparisons).

Table 4 | Pearson correlations between normalized weighted-network global parameters (characteristic path length, global efficiency, and

global clustering coefficient) and intelligence indices (Full-Scale IQ—FSIQ, Verbal Comprehension Index—VCI, Perceptual Organization

Index—POI, Working Memory Index—WMI, Processing Speed Index—PSI) with 95% confidence intervals and p-values (uncorrected for

multiple comparisons).

Normalized characteristic path length Normalized global efficiency Normalized global clustering coefficient

FSIQ −0.15 (−0.49, 0.22) p = 0.42 0.24 (−0.14, 0.56) p = 0.22 −0.07 (−0.42, 0.31) p = 0.74

VCI −0.27 (−0.58, 0.11) p = 0.16 0.43 (0.08, 0.69) p = 0.02 −0.25 (−0.57, 0.12) p = 0.18

POI −0.09 (−0.44, 0.29) p = 0.64 0.08 (−0.29, 0.44) p = 0.67 0.02 (−0.34, 0.39) p = 0.90

WMI −0.08 (−0.43, 0.30) p = 0.68 0.17 (−0.20, 0.51) p = 0.36 −0.03 (−0.39, 0.34) p = 0.88

PSI −0.04 (−0.40, 0.33) p = 0.82 0.12 (−0.26, 0.46) p = 0.55 0.15 (−0.23, 0.49) p = 0.43
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Organization and Working Memory indices (Tables S4, S5 in

Supplemental Material).

Local efficiency and connection strength in occipital lobe

regions were associated with higher general intelligence scores

and other indices (Tables 3, 5). This suggests an impact of

early perceptual processing on WAIS scores, especially Perceptual

Organization. Although we did not observe correlations between

the POI and segregational network properties (Table 5), there

were some correlations with individual connections (Table 3).

This may mean that this index is more related to individual con-

nections than to network organization, possibly because of the

necessity of rapid transfer of information of this region to oth-

ers. It may reflect the same phenomenon observed in a recent

study where higher IQ was correlated with shorter inspection

time measured by EEG (which tells how fast the system extracts

information from a given stimulus) because recurrent signals—

those that are transmitted from a higher-tier sensory region to a

lower one and that cognitive functions rely on—reach visual areas

faster (Jolij et al., 2007).

Local efficiency of bilateral rolandic operculum correlated with

WMI (Table 5, Figure 6C). This region encompasses part of the

pre-central gyrus. This is consistent with a number of other

findings relating pre-central areas to working memory, in terms

of both activity (Gruber and von Cramon, 2003; Colom et al.,

2010) and functional connectivity (Newton et al., 2011; Cole

et al., 2012). We also observed a correlation between left pre-

central regions and occipital ones with measures of general and

fluid intelligence (Table 3, Figure 2A). Although other findings

reported that pre-central activity and connectivity properties are

related to fluid intelligence (Cole et al., 2012) as well as general

intelligence (Gray et al., 2003), the specific role of the pre-central-

occipital connection to the general intelligence is not known.

Since these relationships are not described yet in the literature,

this study may be a starting point for this question.

At the level of single paths, the strongest correlations we

observed between FSIQ and functional connectivity (Table 3,

Figure 2A) are consistent with the parieto-frontal integration the-

ory (P-FIT) of Jung and Haier (2007), which was based on an

extensive review of the literature relating measures of intelligence

to brain structure and function. Individual differences of the

described connections in this model are predicted to correlate

with differences in intellectual performance. That is what we have

partially observed in the patterns of functional connectivity, with

higher functional connectivity predicting greater FSIQ and per-

ceptual organization capacity. The model proposes information

flow from basic sensory/perceptual processing regions to areas

where structural abstraction and elaboration are involved. This

is represented in our results by the connection between fusiform

gyrus—a region involved in recognition of visual input and visual

imagery—and parietal gyrus; and the connection between occip-

ital and parietal cortex (Table 3). Then, a parieto-frontal net-

work is responsible for information processing and abstraction,

and finally the anterior cingulate selects the response (Jung and

Haier, 2007), although no associations could be detected in our

study to corroborate these two parts of the model. Nevertheless,

direct connections between occipital regions and pre-central ones

were associated with FSIQ (Table 3, Table S2 in Supplementary

Material), which is not in accordance with the P-FIT and thus

suggests a need for further study. Of note, as not all of the rela-

tionships predicted by this model were present, more experiments

would be needed to robustly confirm or reject all aspects of the

model.

Our selection of 82 pre-defined atlas regions as network nodes

offers reduced complexity of the networks and higher data pro-

cessing speed compared to a voxel-wise approach, and possibly

easier interpretability of the findings in terms of known properties

of the relatively large regions. The finding of small-world organi-

zation bolsters the comparability of our results to those of other

studies that used different node definitions. However, it is also

true that results of this study are partially dependent on the node

definitions, and the node definitions used here may not coincide

with others. Example of correspondences include an association

between local efficiency in the left pre-central gyrus and the Full-

Scale IQ for a weighted anatomical network made of 90 AAL

atlas regions (Li et al., 2009) (r = 0.25; 0.03, 0.45), endorsing our

result in Table 5 (r = 0.37; 0.010, 0.65). In addition, we observed

a weak correlation (r = 0.24; p = 0.22) between global efficiency

and Full-Scale IQ (Table 4), just as Song et al. (2009) did for the

default mode network (r = 0.24; p = 0.072). Findings we did not

observe include those involving local efficiency of a number of

cortical and subcortical regions (Li et al., 2009) and the associ-

ations between intelligence and functional connectivity reported

by Song et al. (2008, 2009). Direct comparisons are reported in

the Supplement Material (Tables S7, S8).

In an exploratory study such as this one, the possibility

of chance findings must be clearly communicated. Failing to

acknowledge multiple tests would lead to many false positive

associations. On the other hand, strictly controlling type I error

is likely to eliminate interesting leads in a sample of this size.

Therefore, in associations between path connectivity values and

intelligence scores, we compromised by controlling the false dis-

covery rate (estimated fraction of positive findings that were false)

at 5% for each path (3321 values). As the associations with global

and local network parameters showed high p-values, FDR con-

trol was not performed in these cases to conserve a few of the

most relevant associations. Our findings that certain regions were

important in more than one context, and that some regions

showed symmetric bilateral effects, do lend some apparent valid-

ity to the results. We have provided complete information about

the statistical reliability of all findings to facilitate hypothesis

development and comparisons with other studies.

Further study of the relationships between brain network orga-

nization and intelligence would be necessary to complement

and extend the findings shown here. This study considered a

Portuguese-speaking population, but further data from different

populations should be analyzed to allow the results to be gen-

eralized, in particular the relationship between global efficiency

and verbal intelligence that was strongly apparent in our work.

More detailed templates could be used in the definition of the

network nodes for a finer-grained investigation of the brain’s con-

nectivity. It is also noteworthy that we considered only positive

correlations between nodes; anticorrelations may provide com-

plementary data once methods to quantify them arise (Rubinov

and Sporns, 2010).
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The findings shown here replicate and extend the negative

association between characteristic path length of the functional

brain network and cognitive general intelligence for a Portuguese-

speaking population. The small-world organization model was

verified as a feature of brain networks, suggesting an ability to

transfer information with high efficiency and low wiring cost.

Global efficiency was weakly associated with general intelligence

but strongly associated with VCI, a novel finding. Combined

with the observed relationship between verbal comprehension

and local efficiency in several regions, this suggests that a

possible link between language ability and organizational and

integrational properties of the brain network warrants further

study. Additionally, an exploratory analysis suggested associations

between intelligence and network properties of frontal, parietal,

and occipital cortices; and fusiform, supramarginal, pre-central

gyrus, and caudate nuclei.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found

online at: http://www.frontiersin.org/journal/10.3389/fnhum.

2015.00061/abstract
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