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Abstract

The Internet of Things has the potential of transforming health systems through the collection and analysis of patient
physiological data via wearable devices and sensor networks. Such systems can offer assisted living services in
real-time and offer a range of multimedia-based health services. However, service downtime, particularly in the case of

emergencies, can lead to adverse outcomes and in the worst case, death. In this paper, we propose an e-health
monitoring architecture based on sensors that relies on cloud and fog infrastructures to handle and store patient data.
Furthermore, we propose stochastic models to analyze availability and performance of such systems including

models to understand how failures across the Cloud-to-Thing continuum impact on e-health system availability and
to identify potential bottlenecks. To feed our models with real data, we design and build a prototype and execute
performance experiments. Our results identify that the sensors and fog devices are the components that have the

most significant impact on the availability of the e-health monitoring system, as a whole, in the scenarios analyzed.
Our findings suggest that in order to identify the best architecture to host the e-health monitoring system, there is a
trade-off between performance and delays that must be resolved.

Keywords: Cloud computing, Data center failure, Emergency call service, Availability, Edge computing, Fog
computing; e-health

Introduction
The rapid emergence, ubiquity, and convergence of social

media, mobility, cloud computing, big data and data ana-

lytics, and the Internet of Things (IoT) are transforming

how society operates and interacts with each other. Unsur-

prisingly, the health sector is a major focus of IoT research

by both academia and industry due to its potential to

reduce costs, increase patient quality of life, and enrich

the patient experience [1]. Authors in [2] suggest that

the underlying concept of IoT is the pervasive presence

of a variety of connected things that can interact with

each other and cooperate with their neighboring devices

(things) to reach common goals. Things can be sensors,
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actuators, smart phones, computers, home/work appli-

ances, cars, and any other object that can be connected,

monitored and/or actuated [3]. IoT applications have the

potential of significantly impacting the everyday-life of

users, and are visible in many aspects of modern soci-

ety including smart cities, smart factories, traffic control,

assisted living, e-health etc.

IoT is not without its challenges. The relatively small

size and heterogeneity of connected edge devices typically

results in limited storage and processing capacity, and

consequential issues regarding reliability, performance,

and security [4]. These limitations are exacerbated when

one considers that IoT applications typically require sig-

nificant data storage and processing as well as high-speed

broadband networks to enable real-time decision making

[5]. For instance, in the case of e-health monitoring sys-

tems, while the data generated by sensors could be used in

diagnostic scenarios ranging from spine injuries to heart

disease to cancer, medical image analysis often requires
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high performance processing and storage resources that

are not available from edge devices.

Some of these IoT issues can be mitigated by integrat-

ing fog and cloud computing (hereafter referred to as as

IoT-to-cloud (I2C) system, crossing from edge devices,

fog devices and cloud infrastructure). Cloud comput-

ing is now a relatively mature technology and offers

IoT use cases improved processing and storage capabil-

ities, scalability, and availability. Fog computing, a rela-

tively new paradigm recognizes the limitations of existing

telecommunications networks and connected devices. It

extends the cloud paradigm to the edge of the net-

work thereby enabling and supporting vertically-isolated,

latency-sensitive applications [6, 7]. Many applications

require both fog localization and cloud globalization par-

ticularly for data analytics and big data use cases. Fog is

particularly well suited to real-time streaming analytics

as opposed to historical, big data batch analytics that is

normally carried out in a data center [8].

Despite the advantages that cloud and fog comput-

ing bring to IoT applications, they also introduce an

added layer of management complexity. While improving

availability, they introduce new points of failure beyond

the discreet IoT device i.e. failures in fog devices and

cloud infrastructure components, or as a whole. Avail-

ability is critical in many e-health applications partic-

ularly those that are actively monitoring patient health

and informing decisions by the patient or their health

professionals. Any downtime in critical e-health moni-

toring systems or lost data, including loss of data to the

patient, results in any subsequent medical analysis being

compromised, putting the patients well-being and life

at risk.

Traditional e-health monitoring systems adopt a con-

tinuous monitoring strategy. According to [9], “such long-

termmonitoring consumes storage, uses energy for multiple

sensors and sinks, increases computational costs required

to analyze data, and increases network usage leading to

transmission failures”. As a result, in addition to availabil-

ity analysis, the system performance requires additional

analysis to identify system bottlenecks and propose solu-

tions to mitigate or resolve them.

However, results from pure availability analysis tend

to be simplistic since models consider that a sys-

tem has only two states (functioning or failed). On

the other hand, “pure performance analysis of a sys-

tem tends to be optimistic since it ignores the fail-

ure/repair behavior of the system” [10]. To address these

issues, we combine availability and performance mod-

eling and analysis to present a more robust evalua-

tion of the target system, in this case an e-health

monitoring system.

Some existing works from the literature, such as

[11–14], have proposed models for e-health systems in

the IoT context. However, none of them have consid-

ered the integrated scenario relying on edge, fog, and

cloud infrastructures. Similarly, both availability and per-

formance models are not tested. Only [14] has considered

a real testbed to perform experiments however in this

case, they did not present e-health use cases. As such, this

paper extends the state of the art through the following

contributions:

• we propose stochastic availability models to

understand how failures in edge devices, fog devices,

and/or cloud infrastructure impacts on e-health

monitoring system availability. These models will

also be used to perform sensitivity analysis to

understand which components have a significant

impact on the I2C-based e-health monitoring system

availability;

• we implement a prototype to conduct performance

evaluations in order to feed the stochastic models

with real data. This prototype is composed of two

different configurations of fog devices, two different

network connections to access the cloud instance,

and four different geo-locations of cloud instance in

order to characterize the heterogeneity of I2C-based

systems; and

• we propose stochastic performance models

integrated with the availability models, and real data

outputted from the prototype in order to understand

how different capacity of fog devices and also

different geo-location of cloud instances impact on

performance metrics, such as throughput and service

time.

The remainder of this paper is organized as follows.

Section 3 describes related works. In Section 3, key con-

cepts used in the study are presented. This is followed by

our approach to modelling the e-health monitoring sys-

tem in Section 3. We then present our results in Section 3.

The paper concludes in Section 3 with a summary of our

work and avenues for further research.

Related work
A number of extant works have proposed solutions to deal

with IoT applications integrated with fog and cloud com-

puting. For instance, an analytical model is used in [15] to

decide where to process the data obtained from the IoT

devices considering renewable energy consumption and

the Quality of Service (QoS) of the application. To val-

idate their model, the authors presented a video stream

analysis application, where vehicles transmit data on road

conditions, such as objects located on the road, to the

cloud. This data is then analyzed and shared with other

drivers as potential dangers. In [16], authors propose a

QoS-aware service distribution strategy that takes in to
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Fig. 1 IoT system integrated with cloud and fog computing applied in a smart city scenario

account both service requirements and resource offerings

in a fog-to-cloud scenario including parameters such as

energy consumption balance and delay between the fog

and cloud.

While these works propose models and evaluate I2C

integration, they explore different domains with differ-

ent levels of criticality. E-health monitoring systems, the

focus of our study, has specific constraints not dealt with

in the aforementioned works including the load gener-

ated by the sensors. Authors in [11] propose a model to

represent and evaluate the security of information flow

in IoT systems integrated with cloud, using a medical

application as an example. They analyzed how service

provider availability affects the security of the informa-

tion flow. Similarly, the authors in [11] use a medical

application as a case study for their proposed model ana-

lyzing the security of the information flow in IoT systems

integrated with cloud infrastructures. In [12], the authors

propose a framework that enables multiple applications

Fig. 2 SPN graphical elements

to share IoT computational devices for health monitor-

ing. The use case scenario in [13] is a wearable IoT

architecture for health care systems. In [14], the authors

propose stochastic models to represent a health service

relying on mobile cloud computing infrastructure (i.e.

cloud infrastructure, wireless communication and mobile

device). Experiments were conducted considering scenar-

ios with different wireless communication channels (Wi-

Fi and 4G), different battery discharge rates, and different

timeouts.

Our work differs from these works on e-health applica-

tions because we consider an e-health I2C-based system

that relies on edge, fog and cloud infrastructures. Based on

this novel and emerging scenario, we propose stochastic

models to evaluate the availability and performance of this

system in three different scenarios. We are also conduct a

sensitivity analysis to understand how different values of

MTTF andMTTR impact on the availability of the system

as a whole. Furthermore, we perform experiments using a

prototype in order to obtain real data to use as an input

to our stochastic models to give more realistic results and

associated discussion.

Background
This section presents our understanding of basic concepts

key to this paper including definitions of edge, fog, and

cloud computing in Section 3. A brief description of the

modeling approaches used in this work is presented in

Sections 3 and 3.
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Fig. 3 An e-health monitoring system architecture

Cloud, edge and fog computing

NIST defines cloud computing as “... a model for enabling

ubiquitous, convenient, on-demand network access to a

shared pool of configurable computing resources (e.g., net-

works, servers, storage, applications, and services) that

can be rapidly provisioned and released with mini-

mal management effort or service provider interaction”

[8]. The opportunities presented by the cloud comput-

ing paradigm for IT efficiencies and business agility

enabled by scalability, rapid deployment, and paralleli-

sation are very attractive to enterprises of all sizes and

sectors (Kim, 2009).

Cloud computing and IoT can be viewed as two comple-

mentary technologies. The Cloud can compensate for the

technological constraints of IoT devices, namely process-

ing, storage and energy limitations, by offering a scalable,

cost-effective solution for IoT use cases. Similarly, IoT

extends the utility and value of the cloud out in to the

real world where enterprises and end users interact with

a wide variety of industrial and consumer settings [4].

Thus creating new economic value for both the public and

private sector driven through increased asset utilization

and employee productivity, improved supply chain and

logistics, optimized customer experience, and accelerated

innovation [17, 18].

With the proliferation of connected devices and asso-

ciated IoT applications, massive volumes of data are

being generated at the edges of networks. For a variety

of reasons including intermittent connectivity and local

quality of service (QoS) expectations, in many instances

data is processed locally [19]. This scenario where compu-

tation happens at the smart end device at the edge of the

network, and the related limitations associated with com-

putation at the extreme network periphery, is increasingly

referred to as edge computing [20]. According to NIST

[21], “edge is the network layer encompassing the smart

end devices and their users to provide, for example, local

computing capability on a sensor, metering or some other

devices that are network-accessible”.

The wide geographic distribution of IoT smart end-

devices results in IoT applications usually requiring

location-awareness and low latency which provides chal-

lenges for conventional cloud infrastructure [22]. To

address these challenges, fog computing has been pro-

posed as a practical solution to enable the smooth interac-

tion between cloud and edge devices for content delivery

and real-time data processing [23]. NIST define fog com-

puting as [21], “...a horizontal, physical or virtual resource

paradigm that resides between smart end-devices and tra-

ditional cloud or data centers. This paradigm supports

vertically-isolated, latency-sensitive applications by pro-

viding ubiquitous, scalable, layered, federated, and dis-

tributed computing, storage, and network connectivity”.

Similar to cloud, fog computing is a virtualized plat-

form that provides intermediary computation services,

both hardware and software, between smart end-devices
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Fig. 4 E-health monitoring system scenarios

and traditional cloud data centers [7, 22]. Thus, fog

devices are situated closer to the edge devices and can

provide limited computational power for a lighter pro-

cessing of the data collected by the edge devices, as

illustrated in Fig. 1.

Cloud and fog infrastructures, when integrated, can

provide virtually unlimited computational capacity for

IoT applications however the QoS and the availability of

the cloud infrastructure and fog devices becomes critical

dependencies in the overall system. The availability of IoT

applications can be impacted by several factors includ-

ing IoT and fog device failures, as well as issues relating

to the cloud infrastructure that impact QoS and avail-

ability. The impact of these failures can be exacerbated

by the complexity, interdependencies and interconnectiv-

ity of the overall integrated system. As discussed earlier,

there are many IoT e-health use cases where unavailabil-

ity of service (even if only for a few seconds) can result in

negative patient outcomes ranging from inconvenience to

misdiagnosis, and in extreme cases, death. To understand

the impact of e-health monitoring system unavailability

resulting from fog and cloud failures, we model this sce-

nario using a combination of Stochastic Petri Nets (SPN)

and Reliability Block Diagrams (RBD).

Fig. 5 E-health monitoring system model
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Table 1 Guard functions

Transition Guard Function

Fail_System_1 (#Sensors_ON=0)OR(#Microcontroller_ON=0)OR (#Fog_ON=0)OR(#Cloud_ON=0)

Repair_System_1 (#Sensors_ON=1)AND(#Microcontroller_ON=1)AND (#Fog_ON=1)AND(#Cloud_ON=1)

Fail_System_2 (#Sensors_ON=0)OR(#Microcontroller_ON=0)OR (#Cloud_ON=0)

Repair_System_2 (#Sensors_ON=1)AND(#Microcontroller_ON=1)AND (#Cloud_ON=1)

Fail_System_3 (#Sensors_ON=0)OR(#Microcontroller_ON=0)OR (#Fog_ON=0)

Repair_System_3 (#Sensors_ON=1)AND(#Microcontroller_ON=1)AND (#Fog_ON=1)

Reliability block diagrams

RBD is an instrument that allows relationships to be

created amongst the components of a system and is fre-

quently used to perform analyses, such as availability,

maintainability, reliability allocation and design improve-

ment decisions based on them [24].

According to [25], an RBD aims to represent the

behavior of a system using a graphical structure com-

posed of connected blocks. There are two basic types of

configuration: serial and parallel. The former is composed

of serial nodes to represent the components of the sys-

tem. It is similar to logical AND gates i.e. if at least one

component fails, the whole system also fails. The latter

is composed of parallel nodes that are similar to logical

OR gates i.e the system is considered in fault only if all

components fail [26, 27].

RBDs are commonly used due their simplicity, but they

can not be used to represent systems with more complex

behavior [28]. Thus, Stochastic Petri Nets (SPNs) can be

used to overcome this deficiency of RBDs.

Stochastic petri nets

A Petri Net is defined as a directed bipartite graph

that can be used in modelling and describing informa-

tion systems; it contains components in its structure

such as sets of places and transitions [29, 30]. Petri

Nets are called stochastic when each one of the its

transitions are associated with a random firing delay

that follows a stochastic process (normally following an

exponential distribution) [31].

The main components of an SPN are shown in Fig. 2.

Places (a) are represented as white circles, while tokens

(b) are represented by black circles. Tokens are attached

to places, and a set of tokens associated in places

can represents a state of system modeled. Transitions

are represented by bars and can be enable according

preconditions. Transitions can also be divided in to two

types: (c) immediate (activated by distribution probabil-

ity) and (d) timed (activated instantly). Arcs (e) (f ) connect

places and transitions together and may have weight [32].

Sensitivity analysis

In [33], sensitivity analysis is defined as a paradigm that

studies how the variation in output is associated to the

variation of different inputs of a numerical model. Sensi-

tivity analysis commonly presents some questions that are

associated with it, such as “Is there any factor whose vari-

ability has a negligible effect on the output?” and “What

input factors cause the largest variation in the output?”.

Sensitivity analysis targets different points according the

application in focus and it can be used to explore several

features of a model and an application. The objectives can

cover regions of sensitivity, factor importance and func-

tion, factor interdependence, assessment of the similarity,

factor and model reduction, and uncertainty apportion-

ment [34]. The most common method of conducting

sensitivity analysis is to repeat the experiment by varying

only one parameter of the system, while the others remain

fixed [35] and doing the same for all components of the

system. At the end of the experiment, a sensitivity ranking

is generated based on the analysis of the outputs obtained

from each observation.

Modeling an e-healthmonitoring system
Handlingmassive amounts of data can also impair the sys-

tem in triggering relevant and timely decision making and

actuation. In order to enhance the reliability of data trans-

mission and the availability of highly relevant contextual

Fig. 6 Fog device model
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Fig. 7 Cloud server model

information, there is a need to define efficient data sum-

marizing and filtering mechanisms that can be applied

with a conditional scheme [9].

E-health monitoring system

The popularization of smart end devices, tied to the

advances in information and network technologies in

recent years, have made possible the development of

cheaper and more affordable medical systems. IoT has

played an important role in the evolution of these systems,

providing (low cost) sensors to monitor many aspects of

patient life [36].

As described previously, edge devices can use cloud

computing to improve the availability and performance

of medical applications. For instance, Sierra wireless1

enables the connection between IoT devices and cloud

computing infrastructure to collect and analyze real time

data from hospitals and home health monitoring devices

[36]. As an e-health monitoring systemmonitors a patient

continuously, it collects vast amounts of data that needs

to be analyzed in relative real-time without interruption.

Significant delays in receipt of data can compromise the

efficacy of an e-health application and impact the patient’s

well-being and health. In this case, according to [8], fog is

positioned to play a significant role in the ingestion and

processing of the data close to the source as it is being

produced.

In this work, we propose an architecture to represent

the behavior of an e-health monitoring system that relies

on sensors, fog devices (such as Raspberry Pi2) and cloud

infrastructure (public or private cloud services) to process

and store patients vital signs data. Figure 3 presents

our proposed architecture. We assume that patients have

sensors (such as blood sugar measurement, heartbeat

monitoring, and epileptic seizure detection) that collect

the relevant physiological data and these sensors are cou-

pled to a microcontroller (such as Arduino3). We also

assume that we have two different applications that con-

sume collected data: (a) a fog application, and (b) a

cloud application. We refer to these applications as web

applications.

The fog application can check the normality of the

data and, in the case of an anomaly, the application may

instigate an action e.g. a call to an emergency service.

Physiological data may be sent to the cloud application

for further processing e.g. to train a machine learning

Fig. 8 SPN model to represent a simple queue
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Fig. 9 Performance model of e-health monitoring system

algorithm to examine a patient’s condition over time and

to compare one patient against a larger population to help

doctors to provide better treatment4.

Given this architecture, we consider three different

availability scenarios (see Fig. 4) in which our e-health

monitoring system is implemented:

• Scenario 1: The e-health monitoring system

availability depends on all components of the system

i.e. a failure in any of them will result in a system

failure. This scenario does not present redundancy

and the two applications are complementary i.e. when

one of them fails, the system becomes unavailable.

Data is sent to fog devices to perform some pre-

processing that does not require large computational

capacity. Later, the data is sent from the fog device to

Table 2 Guard functions of performance model

Transition Guard function

ET1 #Sensor_up>0

ET2 #Cloud_up>0

ET3 #Cloud_up>0

ET4 #Fog_up>0

IT1 (#scenario=1)AND(#Microcontroller_ON>0)AND(#Fog_ON>0)

IT2 (#scenario=2)AND(#Microcontroller_ON>0)

IT3 (#scenario=3)AND(#Microcontroller_ON>0)

a cloud server to complete the processing and stored.

A similar scenario is presented in [37];
• Scenario 2: The e-health monitoring system relies

only on the cloud application and infrastructure to

send patient vital signs data. As such, the system

availability estimation does not take in account the

fog application and fog device; and
• Scenario 3: This scenario is similar to scenario 2 but

here the system relies only on the fog application and

infrastructure to receive the patient data; the e-health

monitoring system availability estimation does not

consider the cloud application and cloud

infrastructure.

Stochastic models

We use the Mercury tool5 to model the e-health monitor-

ing system and evaluate its availability and performance.

Availabilitymodels

Figure 5 shows our SPN model representing the whole

e-health monitoring system. We consider the follow-

ing components: the sensor, the microcontroller (in this

work, the sensor and the microcontroller are repre-

sented in an edge device), fog device, and cloud data

center. To represent these components, we utilize build-

ing blocks composed of two places (one to represent

when the component is working (ON) and another

to represent the failure (DOWN)), and two transitions

(that represent (i) the failure and (ii) the repair of a

specific component).
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Table 3 Equations for performance metrics

Scenario Metric Equation (Mercury tool sintaxe)

1 Throughput P{(#1_Cloud_Requests>0)AND(#Cloud_ON>0)}*(1/ST_Fog_Cloud)

Service time E{#1_Cloud_Requests}/(P{#1_Cloud_Requests>0}*(1/ST_Fog_Cloud))

2 Throughput P{(#2_Cloud_Requests>0)AND(#Cloud_ON>0)}*(1/ST_Cloud)

Service time E{#2_Cloud_Requests}/(P{#2_Cloud_Requests>0}*(1/ST_Cloud))

3 Throughput P{(#3_Fog_Requests>0))AND(#Fog_ON>0)}*(1/ST_Fog)

Service time E{#3_Fog_Requests}/(P{#3_Fog_Requests>0}*(1/Fog_Cloud))

By way of illustration, in the cloud building block,

the place Cloud_ON represents that the cloud provider

is running, and the place Cloud_OFF that it has failed

or unavailable. The transition Cloud_Fail represents the

cloud failure event (mean time to failure (MTTF) value),

while Cloud_Repair represents the time to repair the

cloud infrastructure (mean time to repair (MTTR) value).

In this work, we consider that all failure and repair times

are exponentially distributed [38, 39]. The other three

components (sensors, microcontroller, and fog) follow the

same logic.

Moreover, there are another three building blocks with

immediate transitions (in the top of the figure) that repre-

sent the system status in different scenarios. From left to

right, those building blocks represent scenario 1, 2 and 3

respectively (described in Section 3). Each scenario has a

building block composed of ON and DOWN places and

two immediate transitions. These places have the same

semanticmeaning as the previous ones, as well as the tran-

sitions. The difference is that each transition is activated

through a guard function instead of MTTF or MTTR

values. These functions are presented in Table 1.

To provide more details about the fog device and cloud

server that host an application, we modeled them as an

RBD. To represent the fog device (Fig. 6), we consider it is

composed of hardware (HW), an operating system (OS),

and the application (APP) that consumes the vital signs

data from the patients. If any of these components fail, we

consider that the fog device is unavailable and then the

RBD is in series.

The cloud server (Fig. 7) is composed of hardware

(HW), an operating system (OS), a virtual machine (VM),

and an application (APP) that will process the patients

data to improve their treatment. We also consider that the

failure of any component entails the cloud unavailability

(RBD in series too).

The availability of each of the three scenarios is the

probability of having a token in the place that represents

the state ON of the respective building block (see Fig. 5).

To model the availability metric in our SPN, we utilize the

following expression:

P{scenariox_ON} > 0 (1)

where x is the number of the scenario (from 1 to 3), as

described previously.

Performancemodel

In this work, we consider a selection of performance met-

rics based on [40]. To represent the clients requesting

service, we consider a queuing system M/M/1/K , mean-

ing that the arrival process is a Poisson process with rate

λ (M), the service time is independent and exponentially

distributed with parameter µ (M), there is only a sin-

gle server to process the requests (1), and the capacity of

the system is limited (K). This queue configuration allows

the evaluation of relevant aspects of the system, such as

the impact of different arrival times and different queue

capacities [41]; it is commonly used to represent cloud

requests ([42–46]).

Table 4 Prototype infrastructure components

Device Type Specification

Edge device Heart rate sensor Operate from 3 V to 5 V

Edge device Arduino UNO Clock speed 16 MHz, SRAM 2 KB, Flash Memory 32 KB

Fog device Raspberry Pi 3 Quad Core 1.2GHz CPU, 1GB RAM and 802.11n wireless

Fog device Netbook Intel Atom processor 1.6GHz, 2GB RAM and 802.11b/g/n wireless

Cloud Elastic Compute Cloud (EC2) Four different geographic locations: (a) Sao Paulo/Brazil, (b) California/USA, (c) London/England,
and (d) Tokyo/Japan.
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Table 5 Component configurations of scenario 1

Scenario Configuration Edge device Edge device Fog device Fog device network Cloud location

1 1 Heart rate sensor Arduino UNO Raspberry Pi 3 Ethernet Sao Paulo/Brazil

2 Heart rate sensor Arduino UNO Raspberry Pi 3 Ethernet California/USA

3 Heart rate sensor Arduino UNO Raspberry Pi 3 Ethernet London/England

4 Heart rate sensor Arduino UNO Raspberry Pi 3 Ethernet Tokyo/Japan

5 Heart rate sensor Arduino UNO Raspberry Pi 3 IEEE 802.11 Sao Paulo/Brazil

6 Heart rate sensor Arduino UNO Raspberry Pi 3 IEEE 802.11 California/USA

7 Heart rate sensor Arduino UNO Raspberry Pi 3 IEEE 802.11 London/England

8 Heart rate sensor Arduino UNO Raspberry Pi 3 IEEE 802.11 Tokyo/Japan

9 Heart rate sensor Arduino UNO Netbook Ethernet Sao Paulo/Brazil

10 Heart rate sensor Arduino UNO Netbook Ethernet California/USA

11 Heart rate sensor Arduino UNO Netbook Ethernet London/England

12 Heart rate sensor Arduino UNO Netbook Ethernet Tokyo/Japan

13 Heart rate sensor Arduino UNO Netbook IEEE 802.11 Sao Paulo/Brazil

14 Heart rate sensor Arduino UNO Netbook IEEE 802.11 California/USA

15 Heart rate sensor Arduino UNO Netbook IEEE 802.11 London/England

16 Heart rate sensor Arduino UNO Netbook IEEE 802.11 Tokyo/Japan

In order to illustrate how these performance metrics

were modeled using an SPN approach, consider the sim-

ple queue model shown in Fig. 8. The transition T1

represents the arrival of clients while transition T2 repre-

sents the service time. We consider that both arrival time

(AT) and service time (ST) are exponentially distributed

[47, 48]. The place P1 represents requests that are in ser-

vice. The place P2 represents when the system resource

(e.g. a web server) is running, while P3 represents when a

resource is in failure. Transitions T_failure and T_repair

represent the failure and the repair of the resource, respec-

tively. T2 only fires when there is a token in place P2 i.e.

when the resource is running and this behavior is assured

by guard function #P2 > 0. The place P4 represents

the total capacity K that the system can withstand. In

other words, it is the number of requests can be queued

in system.

In this work, we consider the following performance

metrics6:

• Throughput (TP): can be defined as the rate

requests can be serviced by the system. Generally, the

TP of a system increases as the load on the system

increases. However, after a certain load level, the TP

stops increasing, and, in most cases, even starts

decreasing. In our system, the TP represents the

number of requests the web applications (fog or

cloud applications) can process. Taking into account

the queue presented in Fig. 8, TP can be calculated as

the probability of having tokens in place P1 (requests

in queue) and in place P2 (system working)

multiplied by the service rate:

TP = P{(#P1 > 0)AND(#P2 > 0)} × (1/ST) (2)

• Service Time (ST): is, in a simplified way, the

interval between a user’s request and the system

response. In our system, we can define the interval

between the HTTP request from the microcontroller

and the response time of the web application (hosted

either in the fog or cloud). Service time can be

Fig. 10 Example of prototype configuration in scenario 1
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Table 6 Results from prototype experiments

Scenario configuration Average time (in ms) Standard deviation

scenario 1 : Netbook (Ethernet) → São Paulo 197.84 4.6487

scenario 1 : Netbook (Ethernet) → California 432.04 10.4320

scenario 1 : Netbook (Ethernet) → London 455.98 98.8941

scenario 1 : Netbook (Ethernet) → Tokyo 586.02 13.39002

scenario 1 : Netbook (IEEE 802.11) → São Paulo 260.81 194.4324

scenario 1 : Netbook (IEEE 802.11) → California 547.54 316.4965

scenario 1 : Netbook (IEEE 802.11) → London 574.57 269.2531

scenario 1 : Netbook (IEEE 802.11) → Tokyo 667.97 332.1957

scenario 1 : Raspberry Pi (Ethernet) → São Paulo 207.15 105.0747

scenario 1 : Raspberry Pi (Ethernet) → California 440.33 70.7183

scenario 1 : Raspberry Pi (Ethernet) → London 446.88 6.5417

scenario 1 : Raspberry Pi (Ethernet) → Tokyo 588.56 12.4967

scenario 1 : Raspberry Pi (IEEE 802.11) → São Paulo 215.61 24.5928

scenario 1 : Raspberry Pi (IEEE 802.11) → California 456.57 17.9215

scenario 1 : Raspberry Pi (IEEE 802.11) → London 471.14 17.5994

scenario 1 : Raspberry Pi (IEEE 802.11) → Tokyo 611.72 20.2465

scenario 2 : São Paulo 179.76 11.9883

scenario 2 : California 414.38 14.9591

scenario 2 : London 426.85 8.6601

scenario 2 : Tokyo 567.06 15.1969

scenario 3 : Netbook (Ethernet) 66.14 0.8167

scenario 3 : Netbook (IEEE 802.11) 76.37 15.7349

scenario 3 : Raspberry Pi (Ethernet) 67.77 1.4624

scenario 3 : Raspberry Pi (IEEE 802.11) 75.5 4.0961

calculated as the number of tokens expected in place

P1 divided by throughput:

ST = E{#P1}/(P{#P1 > 0} × (1/ST)) (3)

In this way and considering the proposedmetrics to rep-

resent the e-health monitoring system performance, we

propose the SPN model presented in Fig. 9.

This model is composed of three queues with

each one representing a different scenario. The place

Requests_Arrival indicates that there is data from the sen-

sor to be sent to the web application. The stochastic tran-

sition ET1 indicates the arrival time of requests; it only

fires when the sensor is working. Place Requests_Queue

stores tokens that represent requests that will be sent to

a web application. The immediate transitions IT1, IT2,

and IT3 will fire in accordance with the number of tokens

present in place Scenarioindicating the evaluated scenario.

Scenario 3 is an example where queue behavior is

described in the model. The immediate transition IT3

will fire only when the microcontroller is working and

there are three tokens in place Scenario as in scenario

3. The place 3_Fog_Capacity represents the capacity of a

fog device, that is, how many requests a fog device can

process simultaneously, through number of tokens in this

place. The place 3_Fog_Requests represents the number of

requests are being processed by a fog device. When IT3

fires, one token is consumed from place 1_Fog_Capacity

and one token is produced in place 1_Fog_Requests and

in place Requests_Arrival, enabling new requests arrive

in the fog device. The stochastic transition ET4 repre-

sents the mean time for a fog application to process a

request. When ET4 fires, one token is consumed from

place 3_Fog_Requests and one token is produced in place

3_Fog_Capacity again (retrieving the capacity that was

being consumed). Scenario 2 is modeled in a similar way

but it is represented by places 2_Cloud_Requests and

2_Cloud_Capacity, and transitions ET3 and IT2.

Scenario 1 behaves similarly to the others, with only

one difference: the immediate transition IT1 will fire

when there is one token in place Scenario and when

the microcontroller and fog device are working, because
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Fig. 11Methodology for configuring devices according to each scenario

these devices are responsible for sending data to the cloud

instance. We assume that this scenario is limited only by

the capacity of fog device once all requests to the cloud

are sent by the fog device, and that the cloud has superior

capacity than the fog devices. So, the number of tokens

in place 1_Fog_Capacity represents the capacity of a fog

device while place 1_Cloud_Requests represents the num-

ber of requests being processed in the cloud instance in

scenario 1. The stochastic transition ET2 represents the

time to process a request in scenario 1.

All of these behaviors are assured by guard functions

presented in Table 2. Some of these guard functions

connect the performance model with our availability

model (Fig. 5)in order to evaluate failure impact on sys-

tem performance metrics. The equations to compute the

performance metrics (throughput and service time) are

presented in Table 3 and follow the same logic presented

previously.

Prototyping a e-healthmonitoring system
Our main goal of building and performing experiments in

a prototype is to acquire real data to feed our analytical

models. This prototype represents a simplified version of

the architecture illustrated in Fig. 3. With this prototype

we measure the time to send data from the sensor to both

the fog device and the cloud infrastructure.

Prototype infrastructure description

The prototype infrastructure is composed of two edge

devices, two fog devices, and a cloud with four different

geo-locations. Depending on the scenario, the amount of

devices can vary. Figure 4 describes scenarios considered

in this work. Table 4 describes the hardware specifications

of the edge and fog devices, and the geo-locations of cloud

instances.

Considering all the components described in Table 4,

we can have different configurations for each scenario. For

instance, Table 5 shows all possible combinations of com-

ponent configurations related to scenario 1. Scenario 1 has

18 combinations while scenarios 2 and 3 both have four

combinations.

In scenario 1, we use a heart rate sensor as the

edge device 7. This sensor reads the heart beats using

an amplified optical sensor to estimate the heart beat

Fig. 12Methodology for performing measurements with the prototype
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Table 7 MTTF and MTTR of components in hours (values

obtained from [53–58])

Component MTTF (h) MTTR (h)

HW_Cloud 8760 1.667

HW_Fog 4765.793684 3.4702988846

OS 1440 1

VM 2880 0.17

Microcontroller 44957 5

Sensor 28011 5

per minute (BPM), the signal, and the interval between

beats (IBB) of the patient. This sensor is attached

to the Arduino platform, UNO8, that actuates as a

microcontroller.

To send the vital signs data generated from the sen-

sor to equipment with better computational capacity, for

example a fog or cloud device, we use an Ethernet shield 9

module to enable the Arduino to send data to superior

layers. An Arduino sketch was developed that reads data

from the heart rate sensor and periodically sends the data

(through HTTP requisitions) to a web application hosted

in the fog and cloud layers.

Currently, a number of specialized IoT communication

protocols have been developed such as Message Queu-

ing Telemetry Transport (MQTT) 10 and Constrained

Application Protocol (CoAP) [49] in order to provide

a lightweight communication protocol to support IoT

device communication. However, it is still useful imple-

ment a HTTP-based application, since HTTP is the most

common protocol used for Internet communication, and

according to [50], IoT applications usually adopt HTTP

as the messaging protocol in order to support REST

interfaces. In this way, we implemented our prototype

following a RESTful architecture using HTTP to send data

from sensors to a fog device and to cloud infrastructure.

To represent the fog device in our prototype, we use

two different devices: (a) Raspberry Pi 3 11, with Quad

Core 1.2GHz CPU and 1GB RAM; and (b) Netbook CCE

with Intel Atom processor 1.6GHz with 2GB RAM. Both

devices were connected to the Arduino by using the

same network (Ethernet and IEEE 802.11), also located in

Recife, Brazil.

The public cloud environment used is the Elastic Com-

pute Cloud (EC2) from Amazon Web Services (AWS)12.

EC2 allows users to easily create, launch, stop, or termi-

nate one or multiple instances as well as selecting the

operating system and applications [51]. Also, it is possi-

ble to select the geographic region in which the instance

will be hosted. As such, in order to measure the impact

of location on each instance, we created instances in four

different geographic regions: (a) São Paulo/Brazil, (b) Cal-

ifornia/USA, (c) London/England, and (d) Tokyo/Japan.

Prototype applications description

On the fog and cloud computing side, we configured a

web application that receives and processes data from the

edge device. This web application was implemented using

Python and Flask13. In addition, we use Apache as a con-

tainer for both applications. Figure 10 shows an example

considering the scenario 1.

We use the same web application in scenarios 2 and 3,

however the cloud and fog applications differ in scenario

1. In scenario 1, the fog application receives data from

the Arduino and sends the data to the cloud application.

After it receives a cloud response, the fog device returns a

response to the Arduino. In scenarios 2 and 3, the cloud

and fog applications receive and process requests directly

Fig. 13 a Availability levels and b downtime regarding the e-health monitoring system considering the three scenarios proposed
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Table 8 Indexes of the three paramaters that affect more the metric of each scenario

Scenario 1 Scenario 2 Scenario 3

Parameter Index Parameter Index Parameter Index

MTTF_Fog 2.64 × 10−4 MTTF_Cloud 1.95 × 10−4 MTTF_Fog 2.65 × 10−4

MTTR_Fog 2.57 × 10−4 MTTR_Cloud 1.93 × 10−4 MTTR_Fog 2.57 × 10−4

MTTF_Cloud 1.95 × 10−4 MTTR_Sensors 3.57 × 10−5 MTTR_Sensors 3.57 × 10−5

from the Arduino and send back a confirmation response

to the Arduino platform.

Prototype measurement methodology and results

To recap, we have now defined three different scenar-

ios (Fig. 4), and have two different fog devices, two

different network connections, and four different cloud

geo-locations. Furthermore, for each scenario we have

multiple configurations.

Figure 11 shows the methodology used to setup

the devices according to each scenario used in our

experiments, while Fig. 12 shows the methodology used

to perform the experiments. Note: the interval between

requests was set up to 2 s, totaling 102 requests for each

experiment.

Table 6 shows the average time (and the standard devi-

ation) obtained from our measurements. In scenario 1,

one can see that the geographic location of the cloud

Fig. 14 Availability results for scenario 1 varying a the fog device MTTF, b the fog device MTTR and c, the cloud MTTF
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Fig. 15 Availability results of scenario 2 varying a the cloud MTTF, b the cloud MTTR and c, the sensor MTTR

instances impacts performance. For example, the Net-

book connected to the São Paulo instance using the

Ethernet option had a mean delay of 197.84 ms, while

the mean service time for the Tokyo instance was 586.02

ms. In this case, there is an increase of 196.20% due

to geographical distance. As expected, the connection

type also impacted delay. For example, with the Net-

book connected to the cloud instance located in São

Paulo, the delay increases 31.83% when we changed the

Ethernet connection to IEEE 802.11 (from 197.84 ms

to 260.81 ms respectively). However, when the Rasp-

berry Pi was used as a fog device, the impact of the

network connection was less. Delay from the Raspberry

Pi using the Ethernet to a cloud instance located in

São Paulo was 207.15 ms, while using IEEE 802.11 was

215.61 ms, an increase of only 3.92%. The largest impacts

recorded related to the Netbook can be explained by the

network card.

In scenario 2, the same geographic impact is noted as

per scenario 1. However, once there is a direct connec-

tion between the microcontroller (Arduino) and the cloud

instances, the delay is lower than scenario 1 since there is

an intermediary fog node. As expected, the greater the dis-

tance from the microcontroller to the cloud instance, the

longer the delay. From an instance located in São Paulo to

an instance located in Tokyo, the delay increased 215.45%

from 179.76 ms to 567.06 ms.

Scenario 3 behaves similarly to scenario 1 regarding

network connection impact. The mean delay from the

microcontroller to the Netbook through an Ethernet con-

nection was 66.14 ms, while through IEEE 802.11 was, on

average, 76.37 ms, an increase of 15.46%. The Raspberry

Pi mean delay was similar, from 67.77 ms to 75.50 ms

(increase of 11.40%) using the Ethernet and IEEE 802.11

network connection respectively.

In general, it is possible to note that the Netbook

has a superior performance than the Raspberry Pi. In

both scenarios 1 and 3, considering both types of net-

work connection, the service time for the Netbook was

lower than the Raspberry Pi. This is due to the fact that

the computational capacity of the Netbook is superior

than the Raspberry Pi. In addition, IEEE 802.11 had a
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Fig. 16 Availability results of scenario 3 varying a the fog MTTF, b the fog MTTR and c, the sensor MTTR

Table 9 Performance results of scenario 1

Fog device → Network connection → Cloud geo-location Throughput (requests/year) Service Time (ms)

Netbook → Ethernet → São Paulo 15,738,041.69 1851.17

Netbook → Ethernet → California 15,736,826.80 2300.51

Netbook → Ethernet → London 15,736,728.23 2352.86

Netbook → Ethernet → Tokyo 15,736,220.39 2664.78

Netbook → IEEE 802.11 → São Paulo 15,737,640.90 1962.35

Netbook → IEEE 802.11 → California 15,736,364.61 2567.16

Netbook → IEEE 802.11 → London 15,736,259.12 2635.18

Netbook → IEEE 802.11 → Tokyo 15,735,924.73 2890.17

Raspberry Pi → Ethernet → São Paulo 15,737,979.44 1867.21

Raspberry Pi → Ethernet → California 15,736,792.77 2318.46

Raspberry Pi → Ethernet → London 15,736,760.02 2332.73

Raspberry Pi → Ethernet → Tokyo 15,736,212.84 2671.46

Raspberry Pi → IEEE 802.11→ São Paulo 15,737,907.39 1881.88

Raspberry Pi → IEEE 802.11 → California 15,736,725.89 2354.14

Raspberry Pi → IEEE 802.11 → London 15,736,664.17 2386.73

Raspberry Pi → IEEE 802.11 → Tokyo 15,736,124.07 2732.74
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Fig. 17 Scenario 2 performance results: a throughput, and b service time

high standard deviation average service time when com-

pared to the Ethernet connection. This can be explained

by interference with physical objects, high loss package,

and collision avoidance mechanism present in wireless

connections [52].

Results from stochastic models and discussions
In this section, we present and discuss the results for both

availability and performance obtained from our models.

Availability results

To perform analysis on our models, we collected each

component’s MTTF and MTTR values in line with extant

literature. The MTTF and MTTR values of fog device

hardware (HW_Fog) were estimated through an average

of HW values found in [39, 53–56], because the val-

ues for the specific hardware used was not available.

All values we used to set our models are described

in Table 7.

The availability and downtime results for each scenario

are presented in Fig. 13. Scenario 2 presents the best avail-

ability level (0.9987%) in comparison with the scenario

1 (0.9973%) and 3 (0.9983%). This means that scenario

2 presents 11.01 h/year of downtime, while scenario 3

has 15.20 h/year, and scenario 1, 23.65 h/year. Scenario 1

Table 10 Performance results of scenario 2

Cloud geo-location Throughput (requests/year) Service Time (ms)

São Paulo 15,758,748.10 2319.58

California 15,758,746.89 2830.46

London 15,758,746.81 2861.87

Tokyo 15,758,745.88 3252.77

presents the lowest availability because all the compo-

nents are in series; all components are essential to e-health

monitoring system operation.

Sensitivity analysis

For the sensitivity analysis, we used theMTTF andMTTR

values from our system’s components as parameters, vary-

ing them in ten values within a range defined bymaximum

and minimum values (10% plus and minus the default

value). Table 8 shows the top three components (and their

respective sensitivity index) that most impact on system

availability.

Figure 14 represents the availability variation of the

top three parameters that most impact system availabil-

ity in scenario 1. As expected, when we increase the

MTTF value (see Fig. 14a and c), the availability also

increases, but in this case, the fog device MTTF has more

impact than the cloud MTTF. An increase of 20% in fog

device MTTF results in a notional reduction of 2.1051 h

in annual downtime, while the same increase in cloud

MTTF results in a smaller decrease in downtime i.e. only

1.4088 h.

Scenarios 2 and 3 (Figs. 15 and 16, respectively) behave

similarly due to their reliance on only one application

instantiation; scenario 2 considers only the cloud while

scenario 3 only considers the fog. In scenario 2, the three

parameters that have the greatest impact on system avail-

ability are the MTTF and MTTR of Cloud and the MTTR

of the sensors. A variation in MTTF of cloud results in a

reduction in annual downtime of 1.4108 h, while the same

variation inMTTR of sensors results in a minor reduction

in annual downtime, 0.3123 h. As expected, in scenario 3

the MTTF andMTTR of fog are those that greater impact

system availability. An increase of 20% in the MTTF of

the fog devices results in a decrease of 2.1071 h, while the
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Fig. 18 Scenario 3 performance results: a throughput, and b service time

same increase in the sensor’s MTTR results in a decrease

of 0.0312 h.

Performance results

We perform stationary analysis on our performance

model. The service time used in the analysis was set up

with delays measured through our prototype experiments

(Table 6), while the time to arrival requests was set up 2 s.

Table 9 presents the performance results obtained from

the analysis of our model. One can note that changing the

geographic location of the cloud instance impacts the per-

formance metrics evaluated. For example, let’s consider

the Netbook sending data using the Ethernet. To send data

to the cloud instance located in São Paulo, the throughput

was 15,738,041.69 requests/year. To send to the instance

located in Tokyo was 15,736,220.39 requests/year. In

this same configuration, the service time increases from

1851.17 to 2664.78 ms.

The change of connection type had a low impact on

the metrics evaluated. For instance, for messages sent

from the Netbook to the instance located in São Paulo,

the throughput using the Ethernet and IEEE 802.11

were 15,738,041.69 requests/year and 15,737,640.90

requests/year respectively; the service times were 1851.17

and 1962.35 ms respectively. In general and as expected,

the Netbook had a superior performance than the Rasp-

berry Pi due to its superior hardware configuration.

Figure 17 and Table 10 present the results of scenario

2. As in scenario 1, the geographic locations of cloud

instances also impacted on the performance metrics. The

throughput for the instance located in São Paulo was

15,758,748.10 requests/year and decreased as the distance

of the instance location increased, reaching 15,758,745.88

requests/year for the instance located in Tokyo. The ser-

vice time is also impacted, from 2319.58 ms for the

instance located in São Paulo and 3252.77 ms for instance

located in Tokyo.

Finally, Fig. 18 and Table 11 present the performance

results for scenario 3. In this scenario, a significant

impact was identified relating to the type of network

connection. For example, the throughput of the Netbook

using the Ethernet was 15,748,129.90 requests/year,

while through IEEE 802.11 was 15,748,129.83

requests/year. A similar impact was identified with

the service time i.e. 2842.23 and 2856.60 ms. The

Netbook and Raspberry Pi display similar behaviors

as they both experienced a close delay in prototype

experiments.

The processing capacity of the fog device

(place 3_Fog_Capacity) and cloud server (place

3_Cloud_Capacity) was limited in our models (600

and 1000, respectively) to avoid state explosion when

solving the model analytically. Nonetheless, we noted

that increasing the capacity to process simultaneous

Table 11 Performance results of scenario 3

Fog device → Network connection Throughput (requests/year) Service Time (ms)

Netbook → Ethernet (N-E) 15,748,129.90 2842.23

Netbook → IEEE 802.11 (N-I) 15,748,129.83 2856.60

Raspberry Pi → Ethernet (R-E) 15,748,129.89 2844.51

Raspberry Pi → IEEE 802.11 (R-I) 15,748,129.83 2855.37
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requests substantially neither affects the throughput

nor the service time metrics. For values greater than

600 and 1000, the impact on analyzed metrics were

almost insignificant. For instance in scenario 2, when

we set fog and cloud capacity as 600 and 1000 respec-

tively, the Markov chain was composed of 24,032

states and the result was 1799.3254 requests/hour and

1269.2155 ms for throughput and service time respec-

tively. When we use 1200 and 2000, the Markov chain

was composed of 48,032 states resulting in 1799.4367

requests/hour and 1412.8086 ms for throughput

and service time respectively).

Discussions

From the stationary analysis, we evaluated availabil-

ity in each scenario. We noted that the best avail-

ability level (0.9987%) was achieved in scenario 2

(where only the cloud application is considered) and

the worst one (0.9973%) was scenario 1 (using both

fog and cloud). It is an interesting result since in

scenario 1 we have more computational layers and con-

sequently more devices can fail (and thereby decreas-

ing the availability of the whole system). Thus, despite

the extension of fog node capability by the cloud, this

integrated scenario is more complex and as a result

has more points of failures despite the hypothesized

benefits.

Regarding the sensitivity analysis results, there is greater

variability in the components that impact the avail-

ability of e-health monitoring system in the scenarios

examined. In scenario 1, the most critical component

is the fog device whereas in scenarios 2 and 3, the

fog device and cloud infrastructure impact the system

respectively. An increase of 20% in MTTF value of fog

device (scenario 1) results in a reduction of 2.1051 h

in annual downtime. An increase of 20% in MTTF of

cloud infrastructure results in reduction of 1.4108 h of

annual downtime (scenario 2). And in scenario 3, an

increase of 20% in MTTF of fog devices results in reduc-

tion of 2.1071 h of annual downtime. Depending on the

configuration chosen for the e-health monitoring sys-

tem, investments can be made to increase availability,

or by adding more redundant equipment provide greater

reliability.

Within the prototype experiments, we noted an

increase of delay as the distance from microcontroller/fog

devices to cloud instance increases both in scenario

1 and 2, as expected. The delay in scenario 1 was

slightly higher than scenario 2 once the fog devices

are added. However, the addition of fog devices (sce-

nario 1) enables the pre-analysis of data collected by

sensors before sending to the cloud. Thus, simple deci-

sions, such as calling an ambulance, can be made

quicker.

We also observed that the delay to send data from

microcontroller to fog devices is significantly lower than

sending to the cloud. Considering the closer proximity

of the the cloud instance to the microcontroller (São

Paulo), the mean delay was 179.76 ms, while the higher

mean delay to send to the cloud was 76.37 ms (Netbook

with IEEE 802.11). For delay-sensitive systems (e.g. e-

health monitoring systems, augmented reality, real-time

video analytics, and content delivery [22]), fog devices can

greatly reduce the delay and increase the performance

of these systems. However, one should not disregard the

limited computing capacity of these devices.

These experiment results were used to feed the perfor-

mance model. For scenarios 1 and 2, as the geographic

distance of the cloud instance increases, the throughput

decreases (see Tables 9 and 10). Once the time to pro-

cess a request increases, fewer requests will be processed

because they will remain in the queue for longer (see

Fig. 8). In addition, service time is directly impacted by

the geographic location of an instance i.e. the longer it

takes to send the request, the longer it will take to pro-

cess the request and to receive a response. For an e-health

monitoring application, where some decisions need to be

made quickly, hosting the cloud instance in a remote geo-

graphic region may have a significant impact on service

time and associated QoS levels.

Scenario 1 had the lowest availability level and the worst

performance results. This can be explained as follows. The

e-health system is considered operational only when all

components of the scenario are working and this reduces

the availability of the system as a whole. Relatively poor

performance results are due to the high delay in send-

ing data from the microcontroller to the cloud passing

through a fog device. Notwithstanding this, this scenario

can take advantage of the computing capacity and virtually

unlimited data storage that cloud computing offers.

Scenario 2 presented the best availability level and bet-

ter performance results than others. The improvement

in performance is due to the decrease in delay because

the data is sent directly from the microcontroller to the

cloud (without fog devices). Notwithstanding this, the

delay in scenario 2 can compromise systems that are

delay-sensitive.

Scenario 3 had lower availability results than scenario

2, because the availability of fog devices is lower than

cloud infrastructure. Similar to scenario 1, the avail-

ability has an impact in throughput, decreasing the

number of requests processed when compared to sce-

nario 2. The service time is lower than other scenar-

ios, since delay to send data to fog devices is lower.

However, fog devices have lower computational capac-

ity than cloud devices, so this scenario may not be the

most appropriate for systems that handle large amounts

of data.
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Conclusions
Fog and cloud computing address a number of problems

encountered in IoT however they also increase manage-

ment complexity. Despite fog and cloud computing offer-

ing greater availability and resilience, they can also be

viewed as vulnerabilities or potential points of failure. As

such, in addition to edge device failure, attention must be

paid to fog node and cloud infrastructure failures. While

cloud and fog integration is relatively well known and

shares common technologies, the integration/extension

with IoT is a non-trivial task, mostly due to massive device

heterogeneity and service requirements.

Some systems have high criticality and any downtime

can lead in extreme cases to death as in the case of an

e-health monitoring system, the focus of this article. The

main goal of the is study was to identify the bottlenecks

in an integrated e-health monitoring system and propose

strategies to minimize the application downtime, prevent

failures, and guide financial investment decision making.

In this paper, we proposed an architecture to pro-

vide an e-health monitoring system relying on IoT sen-

sors, fog devices and cloud infrastructure. This service

was evaluated regarding its availability and performance.

We proposed stochastic models by using SPN and RBD

approaches. To use realistic data as an input to our mod-

els, we also developed and implemented a prototype with

different types of fog device, network connection, and

cloud instances located in four different geographic loca-

tions.

From our results, it is clear that there is a trade-off

between performance and service time. In this way, it

is necessary to prioritize the application requirements

before deciding on the best architecture. This is illus-

trated by the results from the various scenarios. For

example, the scenario that relies only on cloud infras-

tructure (scenario 2) presents the best availability level

since cloud providers can offer a better service as mea-

sured by reliability than fog devices. On the other hand,

scenario 1, which relies on fog devices and cloud infras-

tructure, may be more appropriate to host e-health mon-

itoring systems due to the technological limitations of

end-devices. Other configurations may be more appro-

priate depending on the use scenario e.g. big data

services.

As future works, we plan to analyze the impact of

redundancy and understand how we can improve the

availability of the system by adding more cloud servers

or fog devices. We also plan to evolve the prototype

system with different types of smart-end devices, fog

devices, and analytical techniques (including machine

learning) to treat the vital signs data from patients and

analyze the impact of processing data on fog devices

and cloud servers. Finally, we intend to evaluate dif-

ferent IoT communication protocols, such as MQTT,

COAP, and AMQP with the goal of improving the

prototype and measuring different metrics such as the

QoS of application.

Endnotes
1https://www.sierrawireless.com
2https://www.raspberrypi.org/
3https://www.arduino.cc/
4http://www.nvidia.com/object/deep-learning-in-

medicine.html
5http://www.modcs.org/?p=2264
6The metric descriptions follow the Mercury tool syn-

tax.
7https://github.com/WorldFamousElectronics/

PulseSensor_Amped_Arduino
8https://www.arduino.cc/
9https://www.arduino.cc/en/Guide/

ArduinoEthernetShield
10http://mqtt.org/
11https://www.raspberrypi.org/products/raspberry-pi-

3-model-b/
12www.aws.amazon.com/ec2
13Flask is a microframework for building web applica-

tions using the Python language. See http://flask.pocoo.

org/docs/0.12/
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