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Abstract. Two NUMA architectures with different memory subsystems are  
experimentally analyzed in this paper. By applying the benchmark with various 
access patterns, it shows much different characteristics of memory system be-
tween Xeon E5620 with Global Queue and LS 3A with typical crossbar switch. 
The experiment results reveal the fact that LS 3A and Xeon E5620 have some 
similar features. Our study also showed some other diverse features of these 
two platforms: due to the different contention locations and mechanisms, the 
memory access model for E5620 doesn’t fit for LS 3A. Through comparing, we 
find that one advantage of LS 3A is that it can obtain steady bandwidth on  
both local and remote thread, and it is more fair for local and remote access un-
der some circumstances. Another fact is that LS 3A is not such sensitive to  
remote access, compared with E5620, so there will be no obvious performance 
degradation caused by non-local memory access. 
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1 Introduction  

With the increasing number of processor cores on one single machine, memory 
bandwidth has become the main bottleneck of computer system. Instead of using fast-
er and bigger processor caches, NUMA has reduced the memory bandwidth issue by 
using asymmetric hierarchical memory model. A NUMA system contains some pro-
cessors, caches, memory controllers and memory banks, using connection technolo-
gies provided by AMD’s HT (HyperTransport)[1] or Intel’s QPI (Quick Path Inter 
connect) [2] to connect with each other. Due to the NUMA factor, when a process 
access local memory or remote memory, they have different access delay and band-
width. To obtain the optimal performance, previous optimization work on NUMA 
platform often schedule the process, move data from remote to local to maximize the 
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local accesses. Some of these are based on analysis after execution [3][4][5], while 
others can dynamic deal with it during execution [6][7][8][9][10]. 

Instead of just observing local or remote memory access, the studies have made 
deep analyze of the inner memory controller architecture in recent two years. And 
they found that under some circumstance decreasing data locality may procure better 
performance [11][12]. This kind of study involves the detail behaviors and architec-
ture of memory controller and it is more applicable to real application environment. 
After all, entirely local or remote access is not common in real applications. When we 
study the memory bandwidth on NUMA platform we need to consider both memory 
layout and the contention of local and remote memory access. We need to understand 
its architecture features through experiments to take full advantage of these CPU’s 
underlying hardware power. 

In this paper, we test two NUMA platforms, consisted of LS 3A processors and  
Intel Xeon E5620 processors, to characterize their memory performance. Then we 
analyze their similarities and differences, merits and shortcoming based on their dif-
ference architectures. At last, we propose a guideline to obtain best performance when 
using NUMA system consisted of these two processors. 

2 Experimental Setup 

In this section we describe the architecture details of the evaluation systems, the 
benchmark programs, and the experimental methodology used. 

2.1 Hardware 

LS 3A used in our work is an experimental CPU made by Institute of Computing 
Technology (Chinese Academy of Sciences). The NUMA platform made by LS 3A is 
consisted of dual-processors and it use HT to connect with each other. As shown in 
Fig.1(a), for each processor, the first level crossbar switch X1 connected with four 64-
bit superscalar GS464 high performance processor cores (P0-P3)，four 1MB shared 
second level cache (we can also call it LLC, Last Level Cache), the two ports of HT 
used to connect with IO or other processors. The second level crossbar switch X2 
used to connect LLC and 2 memory controllers MC0 and MC1, which also called 
IMC(Integrated Memory Controller). Each MC is connected with 2GB DDR2 memo-
ry, and the total memory of the system is 8GB. The frequency and width of the HT on 
this main board is about 200MHz and 8-bit (it can work on 800MHz and 16-bit). Two 
64-bits 400MHz DDR2 controller can provide total bandwidth about 6.4GB/s. The 8 
processor cores will share the L2 cache. When doing remote memory access, they go 
through the remote crossbar switch X1 and X2. Intel named LLC, local and remote 
arbitrate queue and IMC as uncore unit, and it corresponds to the part surrounded by 
dotted line square in Fig.1. 
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(a) LS 3A                                                     (b) E5620 

Fig. 1. NUMA system consisted of dual-processors 

In this architecture, a memory access may reach different components, such as lo-
cal cache, remote LLC (L2), local memory or remote memory. And IMC also can 
deal with request from other nodes. So they need the support of request queuing and 
arbitrating mechanism. According to the official material, LS 3A use the HT port to 
send remote memory access request and it will contend the X1 switch network with 
native memory access request issued by the 4 local processor cores (include direct 
access to DDR and those access the LLC). And there is no detail explanation about 
how it arbitrates the request, so we need to figure out its inner mechanism through 
experiments. But from the architecture we can tell it is much different about remote 
memory access and local memory access path from Intel Xeon E5620. The later 
NUMA system is illustrated as Fig.1(b), the QPI connection, processor core and LLC 
layout is different from LS 3A. In E5620, the processor cores shared the L3 cache, 
GQ (Global Queue) is used for dealing with request from L3 cache, IMC and QPI. 
IMC have 4 channels and is used to connect 4 DDR3-1066 (2GB each, the total 
memory is 8GB). It can provide 25.6GB/s peak bandwidth. Two QPIs separately used 
for connecting with I/O and processors, the unidirectional peak bandwidth is 
11.72GB/s and the bidirectional peak bandwidth is 23.44GB/s 

The uncore unit in Intel E5620 processor is shown in Fig.2. It includes 3 compo-
nents, LLC, IMC and QPI, and connected with each other with GQ. In GQ component 
(based on crossbar switch), there are 3 queues to deal with the miss request and up-
date request from L2 cache and the remote access request from QPI. These queues’ 
length is 32 items, 16 items and 12 items respectively[13]. Since every memory re-
quest goes through GQ, there are many contentions among local memory request and 
remote memory request on it. And GQ can reserve about 50% bandwidth for remote 
memory access request (This is the maximum bandwidth of remote memory access). 
Early version of E5500 reserves less than 50% of total bandwidth. 

PMU (Performance Monitoring Unit) can used for observing and analyzing per-
formance issues in Intel E5620 [13]. This paper used Intel E5620 for comparison, the 
same tests will perform on both platform. 

Cache plays an important role in memory tests. In order to measure the bandwidth, 
we need to take advantage of cache and reduce the interference of cache. The detail 
information of cache on LS 3A is described in [14]. LS 3A have implement a  
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Fig. 2. Intel E5620 uncore unit 

non-blocking cache technology. It can support up to 24 misses in LS 3A’s cache. The 
Westmere (Nehalem’s successor) core of Intel E5620 has private L1 and L2 cache, 
four Westmere cores of E5620 shared the L3 cache (LLC). Its non-blocking technolo-
gy can support up to 16 caches misses. Since LS and Intel have different cache levels, 
capacity and pre-fetch mechanism, we need to avoid their influence about measuring 
the bandwidth. 

2.2 Software and Benchmarks 

The Linux kernel on LS 3A platform is Linux 2.6.36, the compiler version is GCC 
4.4.5 and the compile parameter is gcc –fopenmp –O3. The Intel platform use Linux 
2.6.32 as its kernel and the compiler version is also GCC 4.4.5, the compile parameter 
is gcc –fopenmp –O3 –mcmodel=medium. 

This paper use STREAM [15] to test the memory access performance of each pro-
cessor core, each processor and the whole system. Traid has an intensive memory 
access cycle. It accesses 3 arrays (a[], b[] and c[]). Their sizes all exceed the size of 
LLC, so they can issue enough memory access requests. The kernel cycle of Triad is 
showed in Fig.3. 

 

Fig. 3. kernel cycle of Triad 

In fact, an instance or thread is not able to saturate the maximum bandwidth of 
IMC, so we can’t just use one Triad program to study the memory access characteris-
tic of Intel or LS NUMA systems. Besides, we need to study the memory contention 
of local request and remote request. We must use at least 2 Triad instances to fulfill 
our work. So we made some modification on Triad and made it can produce multiple 
processes or threads to execute concurrently. Through using OpenMP, we can use  
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For direction and static schedule direction to parallelize it, the threads can share the 3 
arrays and access their data set alone at the same time. The threads share the arrays, 
but the processes didn’t share any data. 

The advantage of Triad is described as below: The first one is that it is cache-
starve-style[17] application and the cache will have steady missing rate, each Triad 
thread will not influence the cache missing of LLC[16]. The second advantage is that 
94% to 99%’s read operation will reach the main memory [12], it will not be im-
pacted by confliction on cache line. 

2.3 Measurement and Methodology 

We use numactl [18] tool to control the data distribution on every node’s memory and 
bind the threads to corresponding nodes. 

To study the interference and contention on IMC and cross-process connection 
(HT/QPI), we defined three configurations, as fig.4 shows, about the layout of threads 
and data. The first configuration put threads in both L(Local, on node0) site and 
R(Remote, on node1) site, and put all data in L site. The second configuration put 
threads and data on both nodes in a cross accessing style. The third configuration put 
threads on L site and issue memory access to both nodes. 

 

 

Fig. 4. Threads and data layout configurations 

When measuring the memory access bandwidth, it needs to obtain the total number 
of memory access that arrived IMC and the time elapsed. But we can’t get the total 
amount of memory access direct for the program or source code. The Intel’s processor 
hardware counter can give accurate cache line size, missing rate and processor fre-
quency [12]. But we haven’t got the proper tools for LS 3A to do this, so we use the 
execution time of Triad as a reference. This is mainly due to Triad has a steady  
memory access workload, and every data only accessed once, this kind of applica-
tion’s execution time is decided by memory access operation[13]. In addition, both 
LS 3A and E5620 processor’s L1 instruction cache have enough capacity to hold 
Triad’s main cycle instructions, which means fetching instruction will not occupy the 
memory controller’s bandwidth. So we can compute the bandwidth as below: 
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Bandwidth୲୭୲ୟ୪ ൌ Bandwidth୪୭ୡୟ୪ ൅ Bandwidth୰ୣ୫୭୲ୣ Bandwidth୪୭ୡୟ୪ሺ୭୰ ୰ୣ୫୭୲ୣሻ ൌ  Memory Access SizeExe Time ሺMB/sሻ 

Due to local process and remote process need different time to finish the workload, 
the contention will not exist when one of them exit. We execute the processes repeat-
edly to keep the bandwidth contention. Therefore, the date we get is under contention. 

The Intel’s Nehalem micro architecture use MESIF protocol to keep cache cohe-
rent, different access states in cache line will cause different access delay. The states 
of LS 3A are INV、SHD and EXC, L2 cache use directory to find cache stay in 
which processor core. Since the modified Triad code doesn’t share data, cache line 
will only exist M, E and I state, we don’t have to take the delay variation into account. 

At last, Nehalem micro architecture’ SpeedStep and Turbo Burst technology [13] 
can change the clock frequency according to power consumption and fever situation. 
Therefore we close this function in BIOS to exclude its influence and provide a steady 
easy measure system environment. 

3 Experimental Data of Memory Performance 

We divide the work into several parts. The first test, using Conf.1 configuration, is to 
measure the local or remote bandwidth from threads on one single node, on both LS 
and Intel platform. The second one (still using Conf.1) then combines the local and 
remote access together to show the contention on one IMC. The third test is based on 
Conf.3 which focus on the total bandwidth of whole system based on the same confi-
guration as previous tests. The forth test is based on Conf.2 which setup a cross ac-
cessing scenery. The last one study the confliction of local and remote access issued 
from same node, using Conf.3. The details are described in following sections. 

3.1 Local and Remote Bandwidth for One Single IMC 

In order to study the behavior of IMC serving the local and remote requests, the first 
test using conf. 1. In this section (xL,yR) represents the threads binding, x represents 
the number of local threads (on node0) and y represents the number of remote threads 
(on node1). There will be x+y threads executing concurrently. 

The setup of (xL,0R), which means no remote access, is used to measure the local 
accessing. From Fig.7(a) we can see the bandwidth of serving the local access on LS 
platform continues to increase till it reaches the maximum thread number on signal 
node. And the remote memory bandwidth (with setup of 0L,yR) is about 20% less 
than local access bandwidth. On Intel platform, it nearly reaches the maximum band-
width with 2 threads, and the maximum bandwidth of remote memory is 20%~30% 
less than local memory bandwidth. 

The data show that LS can obtain increasing bandwidth with more threads, but Intel 
can reach the maximum bandwidth with fewer threads. 
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       (a) LS 3A NUMA                        (b) Intel E5620 NUMA 

Fig. 5. The memory bandwidth of local and remote access with signal node 

3.2 Local and Remote Memory Contention on One IMC 

Now we test the memory contention for local and remote memory access on one node 
under configuration 1. In order to check out how remote access interferes with local 
bandwidth, we set xL from 1 to 4 with yR increased from 0 to 4 and illustrate it as 
Fig.6. From the figure we can see the bandwidth decreased steady with more remote 
access on LS 3A NUMA. But on Intel E5620 the local bandwidth decreased dramati-
cally with 1 remote thread, and the local bandwidth decreased little when there are 
more than 1 remote threads. Another difference is that more local threads will obtain 
more local bandwidth on LS platform, while Intel platform remains the same except a 
little increment for 4 local threads.  

 

       
(a) LS 3A NUMA                         (b) Intel E5620 NUMA 

Fig. 6. The impact of remote access to local bandwidth 

We also measure the remote bandwidth impact by local threads. The details are 
showed in Fig.7, where remote thread number varies from 1 to 4 with local thread 
number varies from 0 to 4. It can say that this case is similar to previous case. 
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    (a) LS 3A NUMA                              (b) Intel E5620 NUMA 

Fig. 7. Remote bandwidth impact by local memory contention 

3.3 Total Memory Bandwidth 

Table 1 is the total memory bandwidth with different (xL,yR) combination under 
configuration 1. The total memory bandwidth in this table is the normalized sum of 
local and remote bandwidth. 

These 2 tables show that on both platform the maximum bandwidth is not at 
(4L,4R). The maximum for LS platform is at (4L, 3R) and the Intel platform is at 
(3L,2R). If there are 6 threads, the maximum bandwidth for LS is not at (4L,2R) but 
at (3L,3R), it is similar on both platforms. From the data we can find that on both 
NUMA platforms, maximizing local access can’t obtain the maximum bandwidth, 
and when move some threads to remote node may increase the total bandwidth. 

Table 1. Normalized total bandwidth with different (xL, yR) combination 

(a) LS 3A NUMA 

  0R 1R 2R 3R 4R 

0L 0 0.268604753 0.489641936 0.669026213 0.796305483 

1L 0.510155182 0.76435979 0.93206135 1.071639386 1.167414268 

2L 0.807668329 1.077136439 1.21477007 1.061157669 1.327363384 

3L 0.957279374 1.221851671 1.294655035 1.428549427 1.026310918 

4L 1 1.244672139 1.395384964 1.480886933 1.458042771 

 
(b) Intel E5620 NUMA 

  0R 1R 2R 3R 4R 

0L 0 0.469004798 0.675381934 0.714149411 0.718478895 

1L 0.660250795 1.034590501 1.073531914 1.056589576 1.047122689 

2L 0.980231839 1.205814996 1.253073808 1.245351318 1.237903597 

3L 0.989410094 1.18881594 1.260403052 1.252844415 1.243145613 

4L 1 1.059521274 1.057766793 1.029016999 1.021363832 
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3.4 Cross Pattern 

We place the threads and the data they access on different nodes according to confi-
guration2, which is defined by in Fig.4(b), to check out how the remote access of 
node0 and node1 interfere with each other. The detail is showed in Fig.8. On Intel’s 
platform, when there is one opposite thread, the referenced threads’ bandwidth will 
decrease about 30% (except for the case of 1 local threads), and there is not band-
width lost when the remote thread number increase further. And when there is only 
one referenced thread, the bandwidth will decrease less than 5%. On LS Platform, the 
opposite thread impact is much less, with the maximum no more than 10%.  This test 
shows that LS’s remote access’s influence is much smaller than that of Intel. 

 

   
                  (a) LS                                      (b) Intel 

Fig. 8. Bandwidth for cross pattern 

3.5 Split Pattern 

The last test setup is according to configuration 3 in Fig.4(c), and we want to check 
out how the local and remote access of the threads on the same node interferes with 
each other. We call this access pattern as split pattern. The result is showed in Fig.9.  

 

     
                 (a)LS  local                                (b) LS remote 

Fig. 9. Bandwidth for split pattern 
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(c) Intel local                              (d) Intel remote 

Fig. 9. (continued) 

The Fig.9(a) and Fig.9(b) showed that LS NUMA platform have little impact on each 
other. But Fig.9 (c) and Fig.9(d) shows that, on Intel NUMA platform, there is  
continually impact on local accesses when increasing the remote accesses. The result 
from split pattern apparently shows that the optimization on Intel’s platform will not 
fit for LS platform. 

4 Discussion and Conclusion 

In this section, we first discuss the architectural differences between these NUMAs 
concerning the memory access, and then try to explain their diverse behavior. 

Local threads in E5620 only need to go through GQ and IMC to access the memo-
ry, and the remote threads must go through GQ, QPI and IMC to access the memory, 
as illustrated in Fig.10(b). The LS 3A local access need to go through X1, X2 and 
IMC, and the remote access must go through X1, HT, X2 and IMC, as shown in 
Fig.10(a). 

 

 

                (a) LS 3A         (b) E5620 

Fig. 10. Local and remote access channels (2L,1R) 
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When considering the rate to issue memory access, the individual LS core is not 
such powerful as E5620 core, because the later can saturate the IMC by only two 
threads/cores as Fig.5 shown. The remote access is much slower than local access, on 
both platforms, due to the overhead of cross-processor interconnection. 

When local and remote accesses compete for the same IMC, the LS demonstrates a 
equally free competition and Intel demonstrates a arbitrated behavior. As Fig.6 and 
Fig.7 shows, the local bandwidth on LS will decrease as more remote competitive 
threads and vice versa, but the Intel limit the tense of competition to some degree. The 
arbitrative action on Intel platform will reserve 50%~60% IMC bandwidth for local 
accessing and 40%~50% for remote accessing, not matter how many threads/cores 
take part in the competition. 

The total bandwidth of two IMCs demonstrates the characteristics that previous 
study have point out[12]. As Tab.1 shows, the best performance occurs at (3L,3R)for 
LS with 6 threads. 

For the cross pattern case, there is little contention on LS platform because of the 
full duplex HT connections, but an obvious contention on GQ in Intel platform. That 
explain why there is a dramatic drop for Intel and a slightly decrease for LS in Fig.8. 

For the last case of split pattern, there is not variation on LS platform due to the 
crossbar switch routing, but there is a nearly linear decrease on Intel platform due to 
the queuing on GQ.  

Because of the different philosophies of designing, these two NUMA systems 
demonstrate apparently diverse behavior of memory subsystem. With GQ might make 
Intel platform get a better bandwidth and a little longer delay. And the GQ’s arbitra-
tive action will contain the competition between local and remote threads. With barely 
crossbar switch LS allow the free competition and overcome the performance degra-
dation of unnecessary arbitrating (as the cases of cross pattern and split pattern). 

When optimizing the memory performance on these platforms, the thread amount, 
thread binding, and memory layout should be considered with the memory subsys-
tem’s characteristics together. The best mapping of thread and data can be found  
according to the measured data other than barely maximizing the memory locality. 
Basically speaking, it needs more threads to compete for a higher bandwidth on LS 
architecture. 
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