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ABSTRACT 
Understanding the factors influencing transit ridership is central to decisions on transportation 
system investments and the pricing and deployment of transit services.  Yet most previous 
analyses of transit ridership have examined one or just a few systems, have not included many of 
the control variables thought to influence transit use, and have not addressed the simultaneous 
relationship between transit supply and demand.  This study addresses the shortcomings in the 
previous research by (1) conducting a cross-sectional analysis of transit use in 265 urbanized 
areas, (2) testing an array of variables measuring transit system characteristics, auto system 
characteristics, geography, metropolitan economy, and population characteristics, and (3) 
constructing two-stage least squares regression models to account for simultaneity between 
supply and demand.  We find that most of the variation in transit ridership can be explained by 
(1) the size (population and area) of the metropolitan area, (2) the vitality of the regional 
economy (median housing costs), and (3) the share of the population with low levels of private 
vehicle access (carless households).  We find further that transit patronage is to a lesser extent, 
explained by transit service levels and fares.  The observed influence of fares on ridership is 
consistent with the literature.  Likewise, the relative influence of transit service levels on 
ridership is greater than the influence of transit fares.  Finally, our separation of transit service 
supply into two variables – an instrumental control variable and a residual policy variable – 
allows for more nuanced assessments of the ridership effects of changes in transit service. 
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INTRODUCTION 
What explains transit ridership?  Why does public transit carry a relatively large share of 
metropolitan trips in New York City, but such a small share in places like Houston, Atlanta, and 
Indianapolis?  The answers to these simple questions are both obvious and elusive. 

Public transit systems carry larger shares of person travel in older, larger metropolitan 
areas around the globe, but in most places – old and new, large and small – transit is losing 
market share to private vehicles.  Figure 1 shows that both annual transit ridership and annual 
ridership per capita in the U.S. peaked during the 1940s.  But, with the exception of the fuel, tire, 
and steel rationing years during and immediately following the Second World War, per capita 
transit use began to decline significantly during the 1930s and, despite four decades of increasing 
public subsidy in the U.S., has remained essentially constant since 1970. 

 
[FIGURE 1] 
 

In terms of the market share of metropolitan travel, public transit has for decades been 
losing customers to private vehicles.  Nationally, only 2.1 percent of all trips were on public 
transit in 2001, compared to 85.8 percent by private vehicles, 9.9 percent by foot and bicycle, 
and 2.2 percent by other means (1).  But consumption of transit service varies dramatically from 
place to place.  Transit use is highest in the centers of the oldest and largest metropolitan areas, 
and virtually non-existent in many smaller cities and towns.  In the U.S., New York City is the 
800-pound transit gorilla – nearly 4 in 10 transit trips nationally in 2000 (38 percent) (2) were 
made in the greater New York City area. 

Even the most casual observer of cities can offer informed speculation on why, for 
example, the share of year 2000 commuters using public transit in metropolitan San Francisco 
(19 percent) was nearly five times higher than in metropolitan Atlanta (4 percent) (3).  
Population density, levels of private vehicle ownership, topography, freeway network extent, 
parking availability and cost, transit network extent, service frequency, transit fares, transit 
system safety and cleanliness, and so on all surely play a role.  The relative importance of these 
various factors, and the interaction between them is far from obvious.  Yet understanding the 
influence of these factors is central to public policy debates over transportation system 
investments and the pricing and deployment of transit services.  The research literature on 
explaining transit ridership, however, is surprisingly uneven – in some cases poorly conceived – 
with results that are often ambiguous or contradictory. 

This paper presents an analysis that attempts to address some of the shortcomings present 
in previous studies of the determinants of transit patronage.  We begin by developing a simple 
causal model hypothesizing the collective influence of a wide range of factors on transit 
ridership.  Given this model, we briefly review and critique the previous research, emphasizing 
both the principal supportable findings and identifying many of the methodological problems 
plaguing this research.  We then describe the national data set developed from the National 
Transit Database (NTD) and several other sources.  We use this data in a cross-sectional 
regression analysis of transit ridership with a two-stage least squares model.  Through this 
approach, we identify an array of factors thought to significantly influence transit ridership, 
while taking into account both the small samples sizes and the simultaneity conundrum of transit 
supply and transit demand common to many previous studies.  We then present our models 
results and conclude with a discussion of the implications for policy. 
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  In a nutshell, we find that most of the variation in transit ridership between urbanized 
areas – in both absolute and relative terms – can be explained by (1) the size (both population 
and area) of the metropolitan area, (2) the vitality of the regional economy (measured in terms of 
median housing costs), and (3) the share of the population with low levels of private vehicle 
access (measured in terms of the percent of zero-vehicle households).  We find further that 
transit patronage is to a lesser, but still significant extent, explained by transit service levels and 
fares.  Consistent with research on transit service elasticities, we find the relative influence of 
transit service levels on ridership to be greater than the relative influence of transit fares.  Finally, 
by separating the service supply variable into an instrumental control variable and a residual 
policy variable, we estimate that large changes (particularly increases) in transit service are likely 
to have far less influence on transit ridership than many of the previous aggregate models of 
transit patronage would suggest. 

 
What Determines Transit Demand? 
Basic consumer economics theory tells us that a person consumes a good when the utility of 
consuming the good is higher than the disutility of its cost.  A basic demand function presents the 
relationship between the cost (or price) of a good and the level of demand.  As long as the cost of 
consuming a good is lower than an individual’s willingness to pay, the good is consumed (4,5).  
While the demand for transportation is often viewed as derived from the demand for other 
goods,services, and activities, the application of basic consumer economics theory still holds 
(6,7,8).  Thus the demand for a transit trip can be viewed as a function of both the utility of the 
trip and its costs: time (access time, wait time, travel time), money (transit fare), and uncertainty 
(schedule adherence, safety). 

Estimating transit demand functions is complex, however, because the perceived utility 
and disutility of transit trips varies significantly from person to person and from trip to trip, even 
for the same person.  First, the utility of a transit trip is to a large extent a function of the utility 
of the activity from which the demand for a transit trip is derived.  While the utility, and hence, 
demand for a particular good, service, or activity can be ascertained, transit is likely just one of 
many possible ways to reach the desired good, service, or activity.  Second, the perceived 
disutility of transit trip costs varies dramatically.  Numerous studies have found that travelers 
perceive out-of-vehicle time (walking to and from transit stops, transferring, waiting at transit 
stops) as more onerous (and therefore more costly) than in-vehicle time (9,10,11,12).  Therefore, 
someone who lives and works near transit stops on a particular line will likely perceive lower 
costs for a peak-hour, peak-direction trip than will a person traveling between the same two 
stops, but who lives and works farther from the stops and who is traveling at night.  This is 
because the former person has a shorter out-of-vehicle time than the latter person, although the 
entire trip takes both of them the same total time.  Third, some people do not have realistic 
substitutes for transit trips, but most do.  Relatively fast, flexible private vehicles dominate 
metropolitan travel, and as noted earlier, even walking now far exceeds the number of trips made 
on public transit.  Thus, most travelers find the relative utility of traveling by other modes 
(particularly private vehicles) to be greater than of public transit. 
 The characteristics of the transit service obviously affect the perceived costs of transit 
travel.  Basic economic theory tells us that the actual consumption of goods is determined by the 
equilibrium point between the demand and supply curves under free market conditions (4,5).  Put 
simply, in the absence of transit service, no service will be consumed, regardless of transit 
demand.  On the other hand, increasing the network density, reducing headways, and/or lowering 
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fares all lower the perceived cost of transit travel, move the demand and supply equilibrium 
point, and result in increased transit patronage.  Further, if buses and trains are packed full and 
service supply is insufficient to accommodate demand, increased service supply will lead to 
increased consumption of transit trips by accommodating demand previously suppressed due to  
inadequate supply. 

Thus, we can think of aggregate demand for public transit as a function of the collective 
characteristics of travelers, the physical and economic characteristics of metropolitan areas, the 
availability of substitute modes for travel, and the price, quantity, and quality of transit services 
(Figure 2).  

 
[FIGURE 2] 
 
 Empirically, the level of service supply (usually measured in terms of vehicle service 
hours or vehicle service miles) is highly correlated with the consumption of transit trips in an 
area.  Nationwide, 95 percent of the variation in transit trips in 2000 was explained by level of 
vehicle service hours. Obviously, the level of transit demand largely determines the supply of 
transit service.  And just as obviously, the level of transit service supplied largely determines the 
level of consumption of transit trips.  Given ongoing efforts to increase public transit patronage 
around the U.S., the nature and significance of this circular causality is especially relevant to 
public policy.  For example, if service supply is largely a function of transit demand, increasing 
transit service may prove a costly and relatively ineffective way to increase transit use.  If, on the 
other hand, transit demand is strongly influenced by transit service supply, then increasing transit 
service – by, for example, reducing headways – may be a more cost-effective way to increase 
ridership than reducing transit fares.  Because the levels of transit supply and demand are jointly 
determined, it is impossible to consider one in isolation from the other.  While this conundrum is 
well understood in economic theory (13, 14), it has largely gone unaddressed in the literature 
examining the factors explaining transit ridership.  We now turn to this previous research. 
Previous Research on the Factors Affecting Transit Ridership 
Studies of the determinants of transit ridership can be grouped into two general categories:  (1) 
research that focuses on traveler attitudes and perceptions, with both travelers and operators as 
the units of analysis, and (2) studies that examine the environmental, system, and behavioral 
characteristics associated with transit ridership.  In general, the studies of attitudes and 
perceptions are descriptive in character, while system-focused studies tend to be structured as 
causal analyses.  Both descriptive and causal analyses examine a host of factors related to transit 
ridership.  These elements can be broadly divided into two categories:  (1) internal (or policy) 
factors, and (2) external (or control) factors.  Internal factors are those over which transit 
managers exercise some control, such as fares and service levels.  External factors are largely 
exogenous to the system and its managers and include factors such as service area population 
and employment.   

Descriptive analyses generally use survey and interview data of transit system managers 
and transit patrons to assess perceptions of the factors affecting ridership (15, 16, 17, 18, 19, 20, 
21).  Of the studies of operator perceptions and views, most, not surprisingly, emphasize internal 
factors.  In general, transit managers report five general categories of strategies, programs, and 
initiatives affecting transit ridership: service improvements and adjustments; fare innovation and 
changes; marketing and information; new planning approaches and partnerships; and service 
quality and coordination. 
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Causal analyses are an attempt to posit and test hypotheses about the factors influencing 
transit ridership (22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36).  While this is clearly 
an important area of inquiry for transportation policy research, studies of this type share 
surprisingly little in terms of data, methods, or findings.  Many, but not all, of these studies use 
multivariate regression analysis to identify the factors most strongly related to changes in transit 
ridership.  One unfortunate commonality between many of the previous studies – small sample 
sizes – raises questions about generalizability and statistical significance of findings (23, 24, 27, 
31, 32, 34, 35).  Furthermore, the broad conceptual factors hypothesized to influence ridership 
and the variables operationalized in these models vary widely.  Not surprisingly, these models 
tend to find that a combination of internal and external variables explains transit ridership.  Of 
the two, external factors (e.g., income, parking policies, development, employment, fuel prices, 
car ownership, and density levels) are found to have greater effects on ridership than internal 
factors.  Of the internal factors, service quality is often found to be more important than low 
fares. 

Descriptive and causal analyses both offer a range of various advantages and 
disadvantages.  Descriptive analyses are based on sets of often interesting and rich qualitative 
data from surveys of and interviews with transit operators.  This is a valid attempt to identify the 
factors experts believe affect ridership.  However, these data pose methodological and 
interpretive concerns.  This information is subjective and dependent on respondents’ perceptions 
and assumptions about internal and external factors related to ridership (19, 20, 21).  The data are 
subject to biases based on limited or incorrect information.  Other descriptive studies fail to 
outline the specific data collection processes used to obtain information (16).  In addition, the 
causal linkages between perceived factors and actual ridership are often simply asserted.  Many 
of these studies are relatively old, and most of them do not specifically ask about perceptions of 
causality or the relative influence of internal and external factors.  Some identify commonalities 
among agencies with ridership growth and conclude that they are related to ridership increases 
(18,37). 

Causal analyses have the advantage of being more sophisticated empirical studies – of 
one, a few, or many agencies – that allow researchers to obtain better quality and a wider array of 
data than those found in descriptive studies.  The generalizability of studies looking at a small 
number of systems is limited, but there is more opportunity for the conceptual development of 
models.  In empirical causal analyses of many agencies, the use of data from a large number of 
agencies and outcomes produces more robust results.  In addition, the results are more likely 
generalizable to other places and systems.  However, these data sets have their own limitations.  
Some studies include data that are the most readily available, particularly Census data (35) to 
measure external variables.   Most studies look only at unlinked trips (23, 24, 26, 27, 28, 30, 32, 
35) rather than linked trips, a more accurate measure of transit ridership, because linked trips are 
more difficult to measure.  Several studies consider only work trips in the models (26, 33).  
Finally, data aggregation and collinearity of variables can lead to spurious conclusions. 

Moreover, the models developed in these studies are often not fully specified and there is 
inconsistency in the variables included in the models.  For example, the studies vary widely in 
the modes examined; some focus specifically on rail or bus (23, 27, 28) and others consider 
multimodal systems (24, 26).  Additionally, some factors, such as driver friendliness and other 
service-quality issues, are potentially important, but are difficult, if not impossible, to quantify.  
Auto access and operating costs measures are clearly important to transit use, but difficult to 
operationalize at the level of the transit system or metropolitan area.  Further, measures of transit 
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service quality – including reliability, comfort, and convenience – and service efficiency are 
widely viewed as important, but difficult to quantify in the aggregate. 
As discussed in the previous section, serious endogeneity problems between service supply 
variables and transit demand can arise, and most studies employing multiple regression analysis 
do not take into account the simultaneity between transit supply and demand (23, 24, 25, 27, 28, 
30, 31, 32). The causality arrow points in both directions.  In practice, transit operators typically 
respond to observed changes in service demand by adjusting service supply, which in turn 
further influences demand. 

Only a few previous studies have tried to account for the simultaneity of transit supply 
and demand (31, 38, 39, 40, 41, 42, 43).  Gaudry (39) uses a recursive model in which only the 
ridership level of the previous year, not the current year, affects the level of supply.  Peng, et al. 
(41) use three-stage least squared estimation models to solve both demand and supply equations 
separately.  Alperovich et al. (38) and Kemp (42) use structural equation models to relate 
variables of demand, supply, and service quality.  Kyte, et al. (44) use simultaneous equation 
transfer function (STF) models to conduct a time series analysis.  Interestingly, Liu (31) 
compares coefficients from structural equation ridership models with those obtained in single 
equation models and concludes that the simultaneous effect between transit demand and supply 
is likely small.  Most of these studies consider the simultaneity of transit demand and supply to 
develop time-series analyses for particular agencies with the goal of developing projections of 
future transit demand in order to modify service levels and routes (38, 39, 40, 41, 43).  While 
such time series analyses of individual transit operators are certainly relevant to service planning, 
the findings of these studies may not generalizable. 
 Thus, most previous aggregate analyses of the factors influencing transit ridership have 
examined one or just a few systems, have not included many of the external, control variables 
thought to influence transit use, and have not addressed the simultaneous relationship between 
transit service supply and transit patronage demand.  This study has attempted to simultaneously 
address each of these shortcomings in the previous research by (1) conducting a cross-sectional 
analysis of transit use in 265 urbanized areas, (2) testing a wide array of variables measuring 
transit system characteristics, auto/highway system characteristics, regional geography, 
metropolitan economy, and population characteristics, and (3) constructing two-stage regression 
models to account for simultaneity between transit supply and demand.  How we address each of 
these issues is detailed in the following section. 
 
DESCRIPTION OF THE DATA AND MODEL FORMULATION 
In the following discussion, we will show how simultaneity of demand and supply leads to 
inefficient and inconsistent estimate of coefficients in the ordinary least squares (OLS) model. 
Following Berechman (45), we can write the demand and supply functions as follows: 
 
The general form of the demand function can be written as: 

D = D(P, T, Y, Q, I, V, Z, R)        (1) 
 
The general form of the supply function can be written as: 

Y = Y(D, E)          (2) 
 

D: a transit demand function for the service area 
P: transit fare 
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T: a vector of travel times  
Y: a vector of outputs (service supply) 
Q: a vector of service attributes 
I: a vector of passenger characteristics 
V: a vector of prices of alternative modes 
Z: a vector of urban characteristics 
R: a vector of regional characteristics 
E: a vector of exogenous factors to determine service supply 
 

Assume that each vector has only one variable.  Y has only one variable measured in terms of 
vehicle hours such as YVHi, and there are not any other endogenous variables.  Then a 
simultaneous equation model is expressed by the following: 
 
 D = b0 + b1* YVHi + b2*Pi + b3*Ti + b4*Qi + b5*Ii + b6*Vi + b7*Zi + ui  (3) 

YVHi = c0 + c1*D + c2*Ei + vi        (4) 
 
When Di is regressed on YVHi and the other variables in equation 3 without taking into account 
the endogeneity of two variables, the estimated coefficient for YVHi will be biased and 
inconsistent.   
 
In order to understand intuitively, simplify equations (3), (4) 
 Di = b0 + b1* YVHi + ui        (5) 

YVHi = c0 + c1* Di + c2*Ei + vi       (6) 
Substitute (5) into (6) to get: 

YVHi = c0 + c1* (b0 + b1* YVHi + ui) + c2*Ei + vi     (7) 
YVHi = {1/(1 - b1 c1)}{c0 + c1* b0 + c2*Ei + c1* ui + vi}    (8) 

Therefore,  
 Cov(YVHi, ui) = E(YVHi ui) ≠ 0       (9) 
 
Equation 9 indicates a violation of one of the conditions of OLS, and therefore leads to 
inefficient and inconsistent estimation.  In order to understand this problem, assume that ui 
increases as YVHi increases.  That is, YVHi and ui (or Di and ui) are positively correlated.  Then 
OLS will produce a slope for the regression model in equation 5 that is larger than the actual 
slope.  
 
In order to address this simultaneity problem, we need use a two-stage least squared (2SLS) 
regression method. 

• Step 1: Regress YVHi on all exogenous variables for YVHi, ignoring Di. 
• Step 2: Obtain estimated values for YVHi, YVHi. 
• Step 3: Regress Di on YVHi and other exogenous variables for Di.  

 
Model Variables 
Data were assembled from a variety of sources.  The primary source for transit-related data was 
the National Transit Database (NTD), which is compiled annually by the Federal Transit 
Administration (46). All transit variables listed in this paper are for the year 2000. The data are 
compiled individually for each system operator.  However, because we are unable to match other 
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characteristics associated with the actual service areas of each transit provider, we chose to 
aggregate transit variables to a common level of geography. Because of federal funding 
strategies that use urbanized areas (UZAs), we chose this as the applicable level of geography.   

Most of the demographic and other control variables were compiled from the 2000 U.S. 
Census, Summary File 3 (SF3), and which were also aggregated to UZAs.  Examples of these 
variables include median rent, median household income, total population, and total land area.  
The bulk of the variables in the models either came from the Census or the NTD.  A few others 
were taken from other sources.  Among these are gas prices (47), and sprawl (48).  

Some of the variables required construction from other, simpler variables within each 
data set.  For example, our measure of route coverage (rtdens) is the total annual service hours, 
divided by the land area of the urbanized area. Variable construction details are summarized in 
the following table.  

 
[TABLE 1] 
 

As the table shows, we did not include some conceptual variables in our models. We 
considered these variables important in determining transit ridership, but the variables could not 
be found or constructed for a variety of reasons.  For example, we know that restricted parking 
tends to result in higher transit usage.  However, such data are not readily available for the 265 
urbanized areas included in this study.  Other variables are not included for a similar reason.  
That is, we expect them to be important for predicting transit ridership, but we were unable to 
find adequate measures. Most of our conceptual variables measuring urban form fall into this 
category.  

 
Model Specification 
Our first step is to test a model similar to Kain and Liu (28) in which the simultaneity is not 
addressed. Like Kain and Liu, we also use the natural logarithm to transform variables on both 
sides of the equation. This transformation is necessary due to the extreme skewness of the 
distributions in key variables such as revenue hours and UZA population. Other variables are 
transformed to allow easy interpretation of their coefficients. 
 This single stage model is summarized in equation 10: 
 

D^ = f(Y,Q, V, Z, I, R)+ ε  (10) 
 

In this and following models, all terms are as previously described in equations 1 and 2. The 
stochastic term is denoted ‘ε.’ In testing this model, we initially included as many of the key 
measures identified in Table 2 as possible.  We then used this as a basis for creating a 
parsimonious model, removing terms that were either collinear with other terms, or that were not 
significantly correlated with the outcome measure.  
 
[TABLE 2] 
 
 After confirming that our results were consistent with previous studies, we constructed a 
two stage model. The first stage uses exogenous variables to estimate the supply of transit; this 
term is then fed into the second stage.    We also include the residual from the first stage (ε1) as a 
policy variable in the second stage: 
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Y = g(E) + ε1 (11) 
D^ = f(Y, Q, V, Z, I, R, ε1)+ ε2 (12) 
 
We produced two forms of this general model.  The first was based on total supply and 

demand.  Because the size of the metropolitan area was such a dominant term, we also produced 
a second set of models using per capita measures. 
 
Model Results 
We present our model results here in two parts.  The first examines the factors influencing total 
urbanized area transit ridership, and the second examines the factors influencing urbanized area 
transit ridership per capita.  In these two parts we present models that test a wide array of 
external and internal factors hypothesized to influence transit patronage – both without and with 
instrumental variables to predict transit service levels.  We conclude each part by presenting and 
discussing our most parsimonious models to estimate total and per capita urbanized area transit 
ridership. 

 
Total Urbanized Area Transit Ridership 
Model 1 below presents the results of our initial regression of a wide array of external and 
internal factors hypothesized to influence aggregate transit ridership (Table 3).  As with most 
other analyses of this sort, the results indicate service levels (measured here as vehicle hours of 
service (lnv31)) is – by far – more strongly associated with transit ridership than  any of the other 
variables tested.  The relationship is so strong that it leaves little unexplained variance to be 
accounted for by the other variables.  In fact, a simple one variable regression finds that, in this 
sample of 265 urbanized areas, vehicle hours of service explains 95 percent (R2 = 0.9503) of the 
variation in transit patronage. 
 
[TABLE 3] 
 
 Among the other Transit System Characteristics tested, transit fare (lnfare) exhibited the 
expected negative and significant relationship with ridership.  The dominance of a single transit 
operator in area (domin) was also positively and significantly related to patronage, though like 
all independent variables other than vehicle hours of service, the magnitude of the effect was 
relatively small.  Two service quality variables – route network density (lnrtdens) and service 
intensity (lnsrvlv) – exhibited unexpected negative relationships with ridership.  But these 
unexpected results are due to multicollinearity with the vehicle hours of service variable.  In fact, 
a simple, two-variable regression model using route network density and service intensity as 
independent variables explains 55 percent (R2 = 0.5529) of the variation in transit ridership.  In 
this model, both service quality variables are positively and significantly related to ridership, 
with service intensity (Std Est = 0.67575) explaining about 50 percent more variation than route 
network density (Std Est = 0.42086). 

For the Auto/Highway System variables tested, the percent of zero-vehicle households 
(pct_nocar) was positively and significantly related to transit patronage, as expected.  In contrast, 
regional gasoline prices (ln_gas) were not significantly related to ridership.  This is likely due to 
the relatively low levels of variation of average fuels prices (less than $0.30 for 95 percent of the 
urbanized areas in our sample) between one urbanized area and another. 
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Among the Regional Geography variables tested, population density (lndens) had the 
expected positive and significant effect on ridership, while population (lnpop) had an unexpected 
negative effect; this was due primarily to the high correlation between urbanized area population 
and service hours (R2 = .893).  For the Metropolitan Economy variables tested, median 
household income (ln_inc) and median monthly housing cost (ln_rent) exhibited the expected 
positive and significant relationships with ridership.  None of the three Population 
Characteristics tested – percent of households below 150 percent of the poverty line 
(pct_lt150pl), percent of recent immigrants (pct_recimm), or percent African American 
(pct_blk_alone) – were significantly associated with ridership, at least at the metropolitan level 
analyzed here.  The insignificance of the poverty variable is likely due to the fact that the highest 
apparent poverty rates among urbanized areas are in college towns, like Gainesville, Florida, and 
Iowa City, Iowa, which have relatively high levels of transit ridership, and in smaller, 
agriculturally-based cities, like Brownsville, Texas, and Bakersfield, California, which tend to 
have relatively low levels of transit ridership.  The percent of recent immigrants is highly, 
positively correlated with urbanized area population.  

Given the obvious simultaneity between transit service supply (measured here as vehicle 
service hours) and transit service demand (measured as passenger boardings), interpreting the 
results of Model 1 is problematic.  To address this issue, we use a simultaneous equations 
approach to first develop a model to predict transit service supply, and then to use the predicted 
service supply variable from this first model as an instrumental variable in a second model to 
predict transit service demand. 

Table 4 presents the second-stage results of the two sequential models.  While a variety 
of models to predict total vehicle service hours were tested, we settled on a simple one-variable 
model for the first stage using urbanized area population (lnpop) which explains about 80 percent 
(R2 = 0.7968) of the variation in vehicle hours of service. 

 
[TABLE 4] 
 

The predicted vehicle service hours variable (lv31hat) from the first-stage model was 
then used as an instrumental variable in a second model to predict transit patronage.  In addition 
to this predicted vehicle service hours variable, a second policy service hours variable (v31rsd) 
was created by subtracting the predicted level of service from the actual vehicle service hours in 
an urbanized area.  The logic here is that, at the margin, metropolitan areas choose to provide 
more or less transit service than would otherwise be predicted by overall levels of transit 
demand.  Some areas, like Honolulu, Hawaii, and Ithaca, New York, provide substantially more 
transit service than would be predicted by urbanized area population, while others, like 
Montgomery, Alabama, and Nashua, New Hampshire, provide substantially less transit service.  
Thus, this second variable can be interpreted as a policy variable which measures the effects of 
transit service supply on transit ridership at the margin.  Table 2 lists the ten urbanized areas 
where actual transit service levels most exceed predicted levels (apparent oversupply), and the 
ten urbanized areas where actual transit service levels are furthest below predicted levels 
(apparent undersupply).   

In examining the urbanized areas that diverge most dramatically from the expected values 
of transit supply, several things jump out.  Among urbanized areas with more transit than would 
be expected, many are dominated by large universities, which frequently have substantial transit 
systems designed to serve the university community.  Others, like San Francisco, have urban 
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densities conducive to transit and/or have restricted parking. The cities with less transit than 
predicted tend to be relatively small metropolitan areas.  

Among the Transit System Characteristics variables, the predicted vehicle service hours 
variable (lv31hat), not surprisingly, explains most (Std Est = 0.83890) of the variation in transit 
ridership.  However, the policy vehicle service hours variable (v31rsd), which measures how 
much the actual supply of transit service varies above or below the level of service predicted for 
a given urbanized area, also explains a very large share of the variation in transit ridership (Std 
Est = 0.50900), suggesting relatively elastic responses to changes in transit service at the margin. 

In addition to these predicted and policy variables for transit service supply, we also 
included the same set of variables representing Transit System Characteristics, Auto/Highway 
System, Regional Geography, Metropolitan Economy, and Population Characteristics tested 
above.  As expected, the all of the other variables perform identically to Model 1 above. 

Given the high level of collinearity between many of the independent variables tested, we 
tested several models in developing parsimonious two-stage regression models to predict overall 
transit ridership in an urbanized area (Table 4, Model C).  The models developed include 
variables for three (external) factors outside of the control of transit systems:  (1) the ambient 
level of transit service demand (measured by the predicted level of vehicle service hours 
estimated in the first model), (2) the economic vitality of the region (measured by median 
housing costs), and (3) the proportion of the population with little or no access to private vehicles 
(measured by the percent of zero-vehicle households).  The models also include two (internal) 
factors over which transit systems exercise control:  (1) the level of transit service provided 
above or below what would otherwise be predicted by the size of the urbanized area, measured 
as the actual vehicle service hours provided less the predicted level of vehicle service hours, and 
(2) the transit fare, measured by total fare revenues minus total boardings. 

Collectively, these five variables explain 97 percent (R2 = 0.9702) of the variation in 
overall transit boardings between the urbanized areas analyzed.  While the external, control 
variables (predicted service level, housing prices, and zero-vehicle households) in the second 
model account for about three-fourths of the variation in ridership, about a quarter of the 
variation is explained by the two internal, policy variables (service supply and fare levels).  
Importantly, and consistent with previous studies of service and fare elasticities (22), variations 
in service supply appear to have substantially more influence on transit patronage than do transit 
fare levels. 

 
Per Capita Urbanized Area Transit Ridership 
Because analyses of overall levels of transit ridership are so strongly influenced by the overall 
urbanized area population, we conducted a second analysis of the factors influencing per capita 
levels of transit ridership. 
 Reliably predicting vehicle service hours per capita proved far more challenging than 
predicting overall levels of transit service (Table 5).  Our final first-stage model (Model D) to 
estimate vehicle service hours per capita was comprised of three independent variables:  
population density (lndens), proportion of zero vehicle households (pct_nocar), and percent 
African American (pct_blk_alone).  Collectively, these three variables explained 28 percent (R2 
= 0.2756) of the variation in vehicles service hours per capita, substantially less than the 80 
percent explained in first stage of the total ridership models. 
 
[TABLE 5] 
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The less robust first-stage prediction of vehicle service hours per capita almost certainly 

explains the stronger influence of policy service hours (v31rsd) variable in the second-stage 
model.  Here, the influence of both predicted (Std Est = 0.70954) and policy service levels 
(0.75633) are estimated to be approximately equal.  We speculate, however, that, were we able to 
construct a more robust first-stage model, the estimated influence of varying service levels above 
or below predicted levels would decline.  With respect to other Transit System Characteristics, 
all operate similarly what we observed in the overall ridership models.  Transit fares and the 
relative dominance of a single transit system operate as expected, while collinearity with vehicle 
service hours causes the two other service level measures to produce unexpected signs.  As 
discussed above, when vehicle service hours are excluded, both variables operate as expected. 

Among the Auto/Highway System, Regional Geography, Metropolitan Economy, and 
Population Characteristics variables, land area (lnarea), median household income (ln_inc), 
percent of population below 150 percent of the poverty line (pct_lt150vl) all operate as expected, 
while median housing costs (ln_rent), average fuel prices (ln_gas), percent of trips made by 
means other than private vehicles or transit (pct_not_trans_sov), and percent of recent 
immigrants (pct_recimm) were not statistically significant. 

To address the problem of collinearity among many of the independent variables 
evaluated, we again tested a variety of more parsimonious models, settling on the final model 
listed in Table 5-Model E.  While these per capita transit ridership models control for urbanized 
area population size, the results of this final model are quite similar to the final total ridership 
model discussed above.  The model explains 90 percent (R2 = 0.8945) of the variation in transit 
patronage per capita among the urbanized areas analyzed.  The only significant difference 
between the total and per capita ridership models is that the size (land area) of the urbanized area 
(lnarea) replaced the proportion of zero-vehicle households (pct_nocar) in the per capita model. 

As with the final total ridership model above, three external control factors – ambient 
levels of transit demand (predicted vehicle service hours), urbanized area size (land area), and 
economic vitality (housing costs) – explain most of the observed variation in transit patronage.  
But the two internal, policy factors – service supply (actual less predicted vehicle service hours) 
and fare levels – are substantially related to per capita transit ridership.  However, given the lack 
of robustness in the model estimating the predicted vehicle service hours variable, we do not feel 
confident in estimating the relative influence of the two policy variables on per capita transit 
ridership. 
 
CONCLUSION:  IMPLICATIONS FOR POLICY 
Most previous aggregate analyses of the factors influencing transit ridership have examined one 
or just a few systems, have not included many of the external, control variables thought to 
influence transit use, and have not addressed the simultaneous relationship between transit 
service supply and transit patronage demand.  This study has attempted to address each of these 
shortcomings in the previous research by (1) conducting a cross-sectional analysis of transit use 
in 265 urbanized areas, (2) testing a wide array of variables measuring transit system 
characteristics, auto/highway system characteristics, regional geography, metropolitan economy, 
and population characteristics, and (3) constructing two-stage simultaneous equation regression 
models to account for simultaneity between transit supply and demand. 

Aggregate analyses like these clearly have limitations.  While using urbanized areas, 
rather than individual transit systems, as our unit of analysis allowed us to include and test a 
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wide array of regional, economic, and demographic variables on aggregate transit ridership, such 
a relatively coarse unit of analysis does not allow us to meaningfully evaluate a wide array of 
factors – such as personal safety, schedule reliability, and parking availability and costs – 
thought to significantly influence transit use.  Further, aggregating to the urbanized area allows 
for between-group comparisons, but ignores the significant within group variation in nearly 
every record in our sample.  This is particularly important for public transit because the transit 
use varies dramatically across metropolitan areas; in many areas, a substantial share of transit 
ridership is concentrated on just a few lines in and around the central parts of central cities, with 
far lower levels of patronage elsewhere.  Such variation is not captured in this analysis.  Our 
planned next steps with this research are to (1) include additional auto/highway system variables 
– such as roadway extent and congestion levels – in future models, (2) develop better aggregate 
measures of service quality (such as cumulative levels of schedule adherence), and (3) develop a 
series of models analyzing changes in transit ridership during the 1990s. 

To conclude, we find that most of the variation in transit ridership between urbanized 
areas – in both absolute and relative terms – can be explained by (1) the size (both population 
and area) of the metropolitan area, (2) the vitality of the regional economy (measured in terms of 
median housing costs), and (3) the share of the population with low levels of private vehicle 
access (measured in terms of zero-vehicle households).  We find further that transit patronage is 
to a lesser, but still significant extent, explained by transit service levels and fares.  The observed 
influence of fares on ridership is consistent with the literature.  And, consistent with research on 
transit service elasticities, we find the relative influence of transit service levels on ridership to 
be greater than the relative influence of transit fares.  Finally, separating the service supply 
variable into two parts – an instrumental control variable and a residual policy variable – makes 
clear that large changes in transit service – such as a doubling of service supply – will not result 
in a near doubling of patronage, as many of the models developed in earlier research would 
imply.   
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FIGURE 3 Trends in Transit Ridership. 
(Source: American Public Transportation Association, 2000). 
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Auto/Highway System
• Total Lane Miles of Roads
• Lane Miles of Freeways
• Congestion Levels
• Vehicles Per Capita
• Proportion of Carless Households
• Fuel Prices
• Parking Availability/Prices
________________________________

Transit System Characteristics
• Dominance of primary operator
• Route Coverage/Density
• Headways/Service Frequency
• Service Safety/Reliability
• Fares
• Transit Modes (Bus, Rail, Paratransit, 
etc)

Regional Geography
• Population
• Population Density
• Regional Topography/Climate
• Metropolitan Form/Sprawl
• Area of Urbanization
• Employment Concentration/Dispersion

Population Characteristics
• Racial/Ethnic Composition
• Proportion of Immigrant Population
• Age Distribution
• Income Distribution
• Proportion of Population in Poverty

Metropolitan Economy
• Gross Regional Product
• Employment Levels
• Sectoral Composition of Economy
• Per Capita Income
• Land Rents/Housing Prices

Transit Patronage

 
FIGURE 4 Conceptual Model of the Factors Influencing Aggregate Transit Demand. 
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Category Variable Used ? Source Variable Construction
Expected 

Relationship

Regional Geography
Population Yes Census 2000 SF3 Total Population +
Population Density Yes Census 2000 SF3 Population÷Geographic Area +
Regional Topography/Climate No Undetermined 
Metropolitan Form/Sprawl Yes TCRP Sprawl Index -
Area of Urbanization Yes Census 2000 SF3 Land Area +
Employment Concentration/Dispersion No Undetermined

Metropolitan Economy
Gross Regional Product No Undetermined
Employment Levels No Bureau of Labor Statistics
Sectoral Composition of Economy No Bureau of Labor Statistics
Personal/Household Income Yes Census 2000 SF3 Median Household Income -
Land Rents/Housing Prices Yes Census 2000 SF3 Median Rent +

Population Characteristics
Racial/Ethnic Composition Yes Census 2000 SF3 Single Race Population ÷ Total Population ?
Proportion of Immigrant Population Yes Census 2000 SF3 Immigrant Population ÷ Total Population +
Age Distribution Yes Census 2000 SF3 Age Group Population ÷ Total Population ?
Income Distribution No Undetermined
Proportion of Population in Poverty Yes Census 2000 SF3 Poverty Population ÷ Total Population +

Auto/Highway System
Total Lane Miles of Roads No FHA Highway Statistics 2000
Lane Miles of Freeways No FHA Highway Statistics 2000
Congestion Levels No FHA Highway Statistics 2000
Vehicles Per Capita No Census 2000 SF3
Proportion of Carless Households Yes Census 2000 SF3 Carless Households ÷ Total Households +
Fuel Prices Yes Bureau of Labor Statistics Average Gas Price +
Parking Availability/Prices No Undetermined

Transit System Characteristics
Dominance of Primary Operator Yes NTD 2000 VRH of Largest Operator ÷ Total VRH +
Route Coverage/Density Yes NTD 2000 Route Miles ÷ Land Area +
Headways/Service Frequency Yes NTD 2000 VRM ÷ Route Miles +
Service Safety/Reliability No Undetermined
Fares Yes NTD 2000 Average Fares -
Transit Modes No NTD 2000  

 
 
 
 
 
 
 
 
 
 
 
 

TABLE 3 Conceptual Variables and Their Operationalization 
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TABLE 4 Urbanized Areas with the Greatest Deviations from Predicted Values 

 Name 

Vehicle 
Revenue 
Hours 

Unlinked 
Trips 

Total 
Population 

Denton--Lewisville, TX Urbanized Area 15202 92743 299823 

Montgomery, AL Urbanized Area 9657 21363 196892 

Kingsport, TN--VA Urbanized Area 5957 53872 95766 

Nashua, NH--MA Urbanized Area 13950 257895 197155 

Panama City, FL Urbanized Area 9036 66482 132419 

Palm Bay--Melbourne, FL Urbanized Area 30895 302322 393289 

Benton Harbor--St. Joseph, MI Urbanized Area 3899 27805 61745 

Springfield, MA--CT Urbanized Area 59797 2262306 573610 

Greenville, SC Urbanized Area 33015 578508 302194 

U
nd

er
su

pp
ly

 

Fayetteville--Springdale, AR Urbanized Area 20188 1178999 172585 

Duluth, MN--WI Urbanized Area 139374 3016317 118265 

San Francisco--Oakland, CA Urbanized Area 5847653 433108429 2995769 

San Juan, PR Urbanized Area 4303756 131998311 2216616 

Honolulu, HI Urbanized Area 1245021 66602820 718182 

Santa Cruz, CA Urbanized Area 234757 6333449 157348 

Seaside--Monterey--Marina, CA Urbanized Area 189351 4016332 125503 

State College, PA Urbanized Area 106193 5331947 71301 

Champaign, IL Urbanized Area 216932 8724038 123938 

Ithaca, NY Urbanized Area 115688 2571605 53528 

O
ve

rs
up

pl
y 

Iowa Falls, IA Urban Cluster 45716 1256482 4908 
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TABLE 3 Single Stage Regression Model 

Model A 

 Adj R-Sq 0.9713 

Variable 
Parameter 

Estimate Pr > |t| 
Standardized 

Estimate 

Intercept -6.68605 0.0124 0 

Revenue Hours (lnv31)* 1.53424 <.0001 1.20614 

Population Density (lndens)* 0.48863 0.0113 0.08545 

Total Population (lnpop)* -0.39029 0.0341 -0.24650 

Median Income (ln_inc)* 0.45850 0.0650 0.04705 

Median Rent (ln_rent)* 0.33781 0.0871 0.03828 

Average Gas Price (ln_gas)* 0.59816 0.1368 0.02231 

Percent Carless Households (pct_nocar) 3.88929 <.0001 0.06673 

Percent Low-Income Population (pct_lt150pl) 0.24833 0.7398 0.00855 

Percent Recent Immigrant (pct_recimm) 3.16463 0.1417 0.02701 

Percent African American (pct_blk_alone) 0.26281 0.2871 0.01624 

Transit Fare (lnfare)* -0.32602 <.0001 -0.09921 

Route Density (lnrtdens)* -0.37499 0.0331 -0.13801 

Service Level (lnsrvlv)* -0.35368 0.0652 -0.09771 

Dominant Operator (domin) 0.39954 0.0764 0.02505 

* Natural Log 
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TABLE 4 Total Ridership Models—Second Stage, Full and Parsimonious 

Model B 

 Adj R-Sq 0.9713 

Variable 
Parameter 

Estimate Pr > |t| 
Standardized 

Estimate 

Intercept -7.48552 0.0051 0 

Predicted Revenue Hours (lv31hat)* 1.18581 <.0001 0.83890 

Residual Policy Variable (v31rsd) 1.53424 <.0001 0.50900 

Population Density (lndens)* 0.48863 0.0113 0.08545 

Median Income (ln_inc)* 0.45850 0.0650 0.04705 

Median Rent (ln_rent)* 0.33781 0.0871 0.03828 

Average Gas Price (ln_gas)* 0.59816 0.1368 0.02231 

Percent Carless Household (pct_nocar) 3.88929 <.0001 0.06673 

Percent Low-Income Population (pct_lt150pl) 0.24833 0.7398 0.00855 

Percent Recent Immigrants (pct_recimm) 3.16463 0.1417 0.02701 

Percent African American (pct_blk_alone) 0.26281 0.2871 0.01624 

Transit Fare (lnfare)* -0.32602 <.0001 -0.09921 

Route Density (lnrtdens)* -0.37499 0.0331 -0.13801 

Service Level (lnsrvlv)* -0.35368 0.0652 -0.09771 

Dominant Operator (domin) 0.39954 0.0764 0.02505 

Model C 

 Adj R-Sq 0.9702 

Variable 
Parameter 

Estimate Pr > |t| 
Standardized 

Estimate 

Intercept -3.81447 <.0001 0 

Predicted Revenue Hours (lv31hat)* 1.17894 <.0001 0.83404 

Residual Policy Variable (v31rsd) 1.17808 <.0001 0.39084 

Median Rent (ln_rent)* 0.67348 <.0001 0.07632 

Percent Carless Household (pct_nocar) 4.58217 <.0001 0.07861 

Transit Fare (lnfare)* -0.31441 <.0001 -0.09567 

* Natural Log 
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TABLE 5 Per Capita Ridership Models—Second Stage, Full and Parsimonious 

Model D 

 Adj R-Sq 0.9005 

Variable 
Parameter 

Estimate Pr > |t| 
Standardized 

Estimate 

Intercept -5.31810 0.0482 0 

Predicted Revenue Hours (lv31hat)* 1.99194 <.0001 0.70954 

Residual Policy Variable (v31rsd) 1.43284 <.0001 0.75633 

Total Land Area (lnarea)* 0.16485 <.0001 0.17307 

Median Income (ln_inc)* 0.77061 0.0022 0.14526 

Median Rent (ln_rent)* 0.30720 0.1689 0.06395 

Average Gas Prices (ln_gas)* 0.17836 0.6429 0.01222 

Non-Car/Transit Commute 
(pct_not_trans_sov) 

0.94843 0.3290 0.04073 

Percent African American (pct_lt150pl) 1.11407 0.0958 0.07047 

Percent Recent Immigrant (pct_recimm) 2.55803 0.2477 0.04011 

Transit Fare (lnfare)* -0.30447 <.0001 -0.17020 

Route Density (lnrtdens)* -0.26991 0.0120 -0.18248 

Service Level (lnsrvlv)* -0.24126 0.0458 -0.12243 

Dominant Operator (domin) 0.40178 0.0776 0.04627 

Model E 

 Adj R-Sq 0.8945 

Variable 
Parameter 

Estimate Pr > |t| 
Standardized 

Estimate 

Intercept -0.38590 0.5686 0 

Predicted Revenue Hours (lv31hat) 1.61076 <.0001 0.57376 

Residual Policy Variable (v31rsd) 1.17944 <.0001 0.62258 

Total Land Area (lnarea)* 0.19332 <.0001 0.20296 

 Median Rent (ln_rent) 0.46022 <.0001 0.09580 

Transit Fare (lnfare) -0.27415 <.0001 -0.15325 

* Natural Log    

 
 


