
 Open access  Posted Content  DOI:10.1101/2021.06.14.448305

Analyzing the differences in olfactory bulb mitral cell spiking with ortho- and retronasal
stimulation — Source link 

Craft Mf, Andrea K. Barreiro, Shree Hari Gautam, Woodrow L. Shew ...+1 more authors

Institutions: Virginia Commonwealth University, Southern Methodist University, University of Arkansas

Published on: 14 Jun 2021 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Olfactory bulb mitral cell, Olfaction, Olfactory bulb and Olfactory receptor

Related papers:

 Differences in olfactory bulb mitral cell spiking with ortho- and retronasal stimulation revealed by data-driven models.

 
A computational approach for modeling the biological olfactory system during an odor discrimination task using spiking
neuron

 A model of the olfactory bulb and beyond

 Biophysical model of odor representation and processing in the rat olfactory bulb

 Increased pattern similarity in two major olfactory cortices despite higher sparseness levels

Share this paper:    

View more about this paper here: https://typeset.io/papers/analyzing-the-differences-in-olfactory-bulb-mitral-cell-
53lvgr4lyx

https://typeset.io/
https://www.doi.org/10.1101/2021.06.14.448305
https://typeset.io/papers/analyzing-the-differences-in-olfactory-bulb-mitral-cell-53lvgr4lyx
https://typeset.io/authors/craft-mf-4rtcu3i0io
https://typeset.io/authors/andrea-k-barreiro-1f2h05tlme
https://typeset.io/authors/shree-hari-gautam-3vds5qt5ip
https://typeset.io/authors/woodrow-l-shew-4oq3xyt7h1
https://typeset.io/institutions/virginia-commonwealth-university-zyrfe7ow
https://typeset.io/institutions/southern-methodist-university-15xwuye6
https://typeset.io/institutions/university-of-arkansas-3i19achk
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/olfactory-bulb-mitral-cell-gjqsprtw
https://typeset.io/topics/olfaction-1pj6lmon
https://typeset.io/topics/olfactory-bulb-1twtz5cn
https://typeset.io/topics/olfactory-receptor-3kxcjkxh
https://typeset.io/papers/differences-in-olfactory-bulb-mitral-cell-spiking-with-ortho-4afq02qbfv
https://typeset.io/papers/a-computational-approach-for-modeling-the-biological-3avjt54r1f
https://typeset.io/papers/a-model-of-the-olfactory-bulb-and-beyond-3hrf9dv3vh
https://typeset.io/papers/biophysical-model-of-odor-representation-and-processing-in-3frhqfur1b
https://typeset.io/papers/increased-pattern-similarity-in-two-major-olfactory-cortices-4in5f7ol3c
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/analyzing-the-differences-in-olfactory-bulb-mitral-cell-53lvgr4lyx
https://twitter.com/intent/tweet?text=Analyzing%20the%20differences%20in%20olfactory%20bulb%20mitral%20cell%20spiking%20with%20ortho-%20and%20retronasal%20stimulation&url=https://typeset.io/papers/analyzing-the-differences-in-olfactory-bulb-mitral-cell-53lvgr4lyx
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/analyzing-the-differences-in-olfactory-bulb-mitral-cell-53lvgr4lyx
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/analyzing-the-differences-in-olfactory-bulb-mitral-cell-53lvgr4lyx
https://typeset.io/papers/analyzing-the-differences-in-olfactory-bulb-mitral-cell-53lvgr4lyx


Analyzing the differences in olfactory bulb mitral cell spiking
with ortho- and retronasal stimulation

Michelle F. Craft1, Andrea K. Barreiro2, Shree Hari Gautam3, Woodrow L. Shew3,
Cheng Ly1,*

1 Department of Statistical Sciences and Operations Research, Virginia Commonwealth
University, Richmond, VA 23284 U.S.A.
2 Department of Mathematics, Southern Methodist University, Dallas, TX 75275 U.S.A.
3 Department of Physics, University of Arkansas, Fayetteville, AR 72701 U.S.A.

E-mail: craftm@vcu.edu ; abarreiro@smu.edu ; shgautam@uark.edu ;
woodrowshew@gmail.com
∗ To whom correspondences should be sent to: CLy@vcu.edu

Abstract

The majority of olfaction studies focus on orthonasal stimulation where odors enter via
the front nasal cavity, while retronasal olfaction, where odors enter the rear of the nasal
cavity during feeding, is understudied. The processing of retronasal odors via
coordinated spiking of neurons in the olfactory bulb (OB) is largely unknown. To this
end, we use multi-electrode array in vivo recordings of rat OB mitral cells (MC) in
response to a food odor with both modes of stimulation, and find significant differences
in evoked firing rates and spike count covariances (i.e., noise correlations). To better
understand these differences, we develop a single-compartment biophysical OB model
that is able to reproduce key properties of important OB cell types. Prior experiments
in olfactory receptor neurons (ORN) showed retro stimulation yields slower and
spatially smaller ORN inputs than with ortho, yet whether this is consequential for OB
activity remains unknown. Indeed with these specifications for ORN inputs, our OB
model captures the trends in our OB data. We also analyze how first and second order
ORN input statistics dynamically transfer to MC spiking statistics with a
phenomenological linear-nonlinear filter model, and find that retro inputs result in
larger temporal filters than ortho inputs. Finally, our models show that the temporal
profile of ORN is crucial for capturing our data and is thus a distinguishing feature
between ortho and retro stimulation, even at the OB. Using data-driven modeling, we
detail how ORN inputs result in differences in OB dynamics and MC spiking statistics.
These differences may ultimately shape how ortho and retro odors are coded.

Author summary

Olfaction is a key sense for many cognitive and behavioral tasks, and is particularly
unique because odors can naturally enter the nasal cavity from the front or rear, i.e.,
ortho- and retro-nasal, respectively. Yet little is known about the differences in
coordinated spiking in the olfactory bulb with ortho versus retro stimulation, let alone
how these different modes of olfaction may alter coding of odors. We simultaneously
record many cells in rat olfactory bulb to assess the differences in spiking statistics, and
develop a biophysical olfactory bulb network model to study the reasons for these
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differences. Using theoretical and computational methods, we find that the olfactory
bulb transfers input statistics differently for retro stimulation relative to ortho
stimulation. Furthermore, our models show that the temporal profile of inputs is crucial
for capturing our data and is thus a distinguishing feature between ortho and retro
stimulation, even at the olfactory bulb. Understanding the spiking dynamics of the
olfactory bulb with both ortho and retro stimulation is a key step for ultimately
understanding how the brain codes odors with different modes of olfaction.

Introduction 1

Olfactory processing naturally occurs in two distinct modes: orthonasal (ortho) where 2

odors enter the front of the nasal cavity and retronasal (retro) where odors enter the 3

rear. Despite the importance of retronasal olfaction, i.e., retro naturally occurs during 4

feeding, it is relatively understudied. Specifically, it is unknown whether odors in higher 5

brain regions are processed differently depending on the mode of olfaction (ortho versus 6

retro). The olfactory bulb (OB) is the main area where odor information is processed 7

and subsequently transferred to cortex via mitral cell (MC) (and tufted cell) spiking. 8

The differences in MC spiking with ortho and retro stimulation have implications for 9

odor processing, but any such differences are largely unknown. 10

Studies have shown that olfactory receptor neuron (ORN) activity, which are 11

presynaptic to the OB, differ for ortho versus retro stimulation. This has been shown in 12

various ways, including with fMRI [1], calcium imaging [2], and optical imaging in 13

transgenic mice [3]. These and other prior studies [4–6] suggest that ORN inputs likely 14

lead to any observed differences in OB activity. However, the implications of these 15

differences in ORN for MC spiking have yet to be explored. 16

We perform in vivo recordings of rat OB mitral cells using multi-electrode arrays 17

with a food odor stimulus, delivered by both modes of stimulation, to determine 18

whether there are differences in MC population spiking. We find significant differences 19

in odor-evoked MC spiking with ortho versus retro stimulation in both firing rate 20

(larger with retro) and spike count covariance (larger with ortho). Dissecting how 21

components of ORN inputs alter OB spiking is difficult experimentally due to the 22

complexity of both the recurrent circuitry in the OB [7,8] and resulting spatiotemporal 23

ORN responses [4, 6]. So we developed a single-compartment biophysical OB model to 24

investigate how ORN input statistics affect the first and second order MC spiking 25

statistics. Specifically, we model ORN input as a time-varying inhomogeneous Poisson 26

Process [9], where the input rate has slower increase and decay for retro than 27

ortho [2, 3], and the ORN input correlation is smaller for retro than ortho [2, 3]. With 28

these specifications, our biophysical OB network model is able to capture the ortho 29

versus retro MC spiking response trends in our experimental data. 30

Understanding how retro stimulation can elicit both larger firing rates and smaller 31

co-variablity than ortho is generally difficult in recurrent networks because of the 32

numerous attributes that shape spike statistics [10–13]. Since our biophysical OB model 33

is too complex to directly analyze, we use a linear-nonlinear (LN) model framework to 34

analyze how our realistic OB network transfers input statistics (from ORN) to outputs 35

(MC spike statistics). We find that with retro inputs, the OB network effectively filters 36

input statistics (in time) with larger absolute values than with ortho inputs. Thus the 37

OB network is more sensitive to fluctuations with retro-like inputs than with ortho. 38

Finally, we use our models examine which of these attribute(s) of ORN inputs 39

(temporal profile, amplitude, input correlation) are most significant for capturing our 40

data. We find that temporal profile is the critical attribute for ortho versus retronasal 41

stimulus response. 42

This work provides a framework for how to analyze the sources driving different OB 43
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spiking responses to different modes of olfaction, as well as important insights that have 44

implications for how the brain codes odors. 45

Results 46

We performed in vivo multi-electrode array recordings of the OB in the mitral cell layer 47

of anesthetized rats (see Materials and methods: Electrophysiological 48

recordings) to capture odor evoked spiking activity of populations of putative MCs. 49

This yielded a large number of cells (94) and simultaneously recorded pairs of cells 50

(1435) with which to assess population average spiking statistics. The first and second 51

order spike statistics are summarized in Figure 1, including the firing rate (peri-stimulus 52

time histogram, PSTH, Fig 1A), the spike count variance (Fig 1B), the spike count 53

covariance (Fig 1C), Fano Factor (variance divided by mean, Fig 1D), and Pearson’s 54

correlation (Fig 1E). Spike count statistics were calculated with half-overlapping 100ms 55

time windows. The time window 100ms is an intermediate value between shorter 56

(membrane time constants, AMPA, GABAA, etc.) and longer time scales (NMDA, 57

calcium, and other ionic currents) known to exist in the OB. 58

We find statistically significant differences between ortho and retro stimulation in 59

almost all of the first and second order MC spike count statistics. At odor onset, 60

orthonasal stimulation elicited larger firing rates with a faster rise than retronasal, after 61

which retronasal firing is larger and remains elevated longer than with orthonasal. These 62

trends are consistent with imaging studies of the glomeruli layer in OB in transgenic 63

mice (see [3], their figure 2) as well as EOG recordings of the superficial layers of the 64

OB in rats (see [5], their figure 7). More specifically, we find statistical significance 65

(α = 0.01) between ortho- and retronasal firing rate after and for the duration of the 66

odor stimulation. We also find that MC spike count covariance for orthonasal stimulus 67

was significantly larger than retronasal for the entirety of the evoked state. MC spike 68

count variance, however, was not significantly different between ortho and retronasal 69

stimulus. For detailed plots of significance in time of the first and second order spike 70

statistics, see Fig S1 in S1. Supplementary Material. Hereafter, we mainly focus on 71

understanding the differences in firing rate and spike count covariance because they 72

directly impact common coding metrics (e.g. the Fisher information) in contrast to 73

scaled measures of variability (Fano factor and Pearson’s correlation) which do not 74

directly impact common coding metrics [14]. Moreover, Fano factor and correlation 75

both depend on variance, which is not statistically different with ortho and retro (but 76

see Fig S1D and S1E in S1. Supplementary Material for completeness). 77

OB network model captures data trends 78

To better understand how differences in MC spiking with ortho and retro stimulation 79

come about, we developed a single-compartment OB network model based on Li & 80

Cleland’s multicompartment model [15,16]. Our model is more computationally efficient 81

than their larger multi-compartment models [15,16], requiring a fraction of the variables 82

(tens of state variables instead of thousands). Importantly, our single-compartment 83

model retains important biophysical features (Fig 2A). 84

In Fig 2A, we see in both models of MC (uncoupled) that the time to spiking 85

decreases with increasing current values, and the number of spikes in a cluster increases 86

with current values consistent with prior electrophysiological experiments [17–19]. In 87

our model, the spacing between spike clusters and number of spikes in a cluster in our 88

model (right) qualitatively match the Li & Cleland model (left). The sub-threshold 89

oscillations are not as prominent as in Li & Cleland, but still apparent. In the 90

uncoupled GC models, both exhibit a delay to the first spike with weak current step [20] 91
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Fig 1. Spike statistics from in vivo multi-electrode array recordings.
Population average spike statistics for orthonasal (blue) and retronasal (red) with
stimulus onset at time t = 0 s as indicated by black arrow for 1 s duration. A) Firing
rate (Hz) is statistically significantly different between ortho and retro for the duration
of the evoked period (0.4 ≤ t ≤ 1.1 s, see Fig S1 in S1. Supplementary Material).
B) Spike count variance has no statistical significant differences between ortho and
retro. C) Covariance of spike counts are statistically significant different throughout the
evoked state (0 ≤ t ≤ 2) with ortho having larger values. Scaled measures of variability
shown for completeness: Fano Factor (D) is the variance divided by mean spike count,
and Pearson’s correlation (E) is the covariance divided by the product of the standard
deviations; both are also different with ortho versus retro. Spike counts in 100ms
half-overlapping time windows averaging over all 10 trials. Significance: two-sample
t-tests (assuming unequal variances) for each time bin to assess differences in
population means, p < 0.01. From 94 total cells and 1435 simultaneously recorded cell
pairs; shaded regions show relative population heterogeneity: µ± 0.2std (standard
deviation across the population/pairs after trial-averaging; 0.2 scale for visualization).

(Fig 2A, bottom) and tonic firing without appreciable delay for higher current 92

injections [21] (Fig 2A, middle and top). In the uncoupled PGC models, we do not 93
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Fig 2. Biophysical OB model. A) Dynamics of the 3 uncoupled cell models. MC
voltage dynamics with current step inputs in Li & Cleland models (black curves on the
left, copied from Li & Cleland [15]) are captured by our single-compartment model
(blue on the right). Rows 5–8 show expanded time view of first 4 rows to highlight spike
cluster sizes and sub-threshold oscillations (same voltage axis for each). GC voltage
responses to three different levels of current injection in the Li & Cleland model (black
curves on the left) is similar to our model (green on the right). PGC responses with
depolarizing current steps again are similar in both models. Note that release from a
hyperpolarizing current injection leads to transient spiking in both models (bottom). B)
Coupled OB network model of 2 glomeruli with ORN inputs. ORN synapses are driven
by correlated inhomogeneous Poisson Processes (Eqs (9)–(11)). C) Based on ORN
imaging studies, we set λO(t) to increase and decay faster than λR(t) with odor onset at
time 0s (i). Similarly, we set the input correlation of ORN synapses to the 2 MCs to
cR/O(t) where cR(t) < cO(t) and cO(t) rises quicker than cR(t) (ii).

observe repetitive firing in either models (Fig 2A, top and middle). Also, releasing from 94

a hyperpolarizing current injection (bottom) can illicit spiking in both models, as 95
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observed by McQuiston & Katz [22]. Thus, we have condensed the OB model by using 96

far less equations than Cleland’s models while retaining many of the biophysical 97

dynamics known to exist in these 3 important OB cell types. 98

Since our focus is on first and second order population-averaged spiking statistics, 99

we use a minimal OB network model with 2 glomeruli (Fig. 2B). Each glomerulus has a 100

PGC, MC and GC cell; we also include a common GC that provides shared inhibition 101

to both MCs because GCs are known to span multiple glomeruli and shape MC spike 102

correlation [8, 23, 24]. Within the OB network, the PGC and GC cells provide 103

presynaptic GABAA inhibition to the MCs they are coupled to, while MC provide both 104

AMPA and NMDA excitation to PGC and GCs (see Materials and methods: 105

Single-Compartment Biophysical Model for further details). The ORN synaptic 106

inputs are an important component of this coupled OB network; they are driven by 107

correlated inhomogeneous Poisson Process with increases in rate and correlation at odor 108

onset. The specific time-varying input rate and correlation we use are shown in Figs. 109

2Ci and Cii, respectively. The differences in ortho versus retro (Fig. 2Ci and Cii) are 110

based on prior studies of ORN input to the OB in response to both ortho and retro 111

stimulation [2, 3]. 112

A comparison of first and second-order statistics between our OB model and in vivo 113

data is shown in Fig 3. With the ORN activity specified in Fig 2C, our OB model is 114

able to qualitatively capture trends seen in our data. Firing rates in Fig 3A show that 115

both the model and data exhibit larger firing rates for ortho at odor onset followed by a 116

sharper decline. After the initial increase in ortho firing rates, retro firing rates continue 117

to increase, eventually becoming larger than ortho and remaining elevated longer, 118

consistent with optical imaging experiments (see [3] their Fig 2). Although there is no 119

significant differences in the spike count variance between ortho and retro in our 120

experimental data, we show our data with model for completeness (Fig 3B). 121

Our OB model captures the trend that ortho spike count covariance is larger than 122

retro after odor onset, Fig 3C (left). The OB model certainly does not capture the 123

magnitude of the spike count covariance in the data; recall that covariance in our 124

experimental data is the population average over all 1435 simultaneously recorded pairs 125

with significant heterogeneity while our model is homogeneous. But the relative 126

differences between retro and ortho (as measured by the ratio of retro to ortho 127

covariance in the evoked state) are similar (Fig 3C, right). Thus our OB model captures 128

the trends of the population-averaged spike count statistics. We also show comparisons 129

of Fano Factor (Fig 3D) and Pearson’s correlation (Fig 3E) for completeness. Consistent 130

with our data, our OB model has larger Fano Factor and spike count correlation for 131

ortho than with retro. In the evoked state, the OB model matches spike count 132

correlation for both ortho and retro well. The larger ortho Fano factor in our data is 133

captured in our model, but the difference is very modest. 134

How OB network transfers ORN input statistics 135

We next sought to better understand how our OB network model operates with 136

different ORN inputs. In particular, we investigated whether the same OB network 137

model transferred ortho and retro ORN inputs to MC spike outputs differently or not. 138

We addressed this in a simple and transparent manner, using a phenomenological LN 139

model (Fig 4A) to approximate the overall effects of the OB network on ORN inputs. 140

LN-type models have often been to circumvent the complexities in biophysical spiking 141

models (see [25–27] and Discussion). 142

The LN model applies a temporal linear filter k (time-invariant) to the input S(t), 143

and shifts the result by b, followed by a static non-linearity (exponential function) to 144
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evoked state, t ≥ 0 s, shows that the model captures the relative differences between
ortho and retro. Comparisons of the (D) Fano factor and (E) Pearson’s spike count
correlation shown for completeness despite both measures depending on spike count
variance. D) The model has slightly larger Fano factor with ortho, consistent with the
data. E) The model does qualitatively capture the spike count correlation for both
ortho and retro, at least in the evoked state.

produce an output R(t): 145

R(t) = exp

(
∫ t

−∞

k(τ − t)S(τ)dτ + b

)

(1)

For our purposes, S(t) ∈ {µS(t), σ
2
S(t), Cov (S1(t), S2(t))} are the statistics of ORN 146

input synapses, and R(t) ∈ {PSTH(t) σ2
R(t), Cov (R1(t), R2(t))} are the statistics of 147
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Fig 4. LN framework used to analyze OB transfer of input statistics. A)
Schematic of the phenomenological linear-nonlinear (LN) model to approximate how the
OB network transfers input statistics. B) The actual ortho (top row) and retro (bottom
row) input synapses used in the biophysical OB model results in Figure 3. Comparisons
of the Monte Carlo simulations (Eqs (10)–(11)) and theoretical calculations (Eqs (12),
(17), (21) for respective columns) show smooth curve matches even for correlated
time-varying (inhomogeneous) Poisson processes.

MC spiking response. For simplicity, we only consider: 148

µS(t) −−→
LN

PSTH(t) (2)

σ2
S(t) −−→

LN
σ2
R(t), (spike count variance) (3)

Cov (S1(t), S2(t)) −−→
LN

Cov (R1(t), R2(t)) , (spike count covariance) (4)

The LN model only accounts for specific input statistics transferred to their 149

corresponding output statistics, without any mixing effects (e.g., σ2
S(t) does not directly 150

affect PSTH(t)). Although output statistics generally depend on all input 151

statistics [28–30], we emphasize that our ad-hoc approach here is meant to better 152

understand how the OB model operates and is not a principled alternative model. 153

For the inputs to the LN model, we use an exact theoretical calculation for 154

µS(t), σ
2
S(t),Cov (S1(t), S2(t)) rather than relying on Monte Carlo simulations. The 155

ORN input synapses are driven by correlated time-varying inhomogenous Poisson 156

processes yet we are still able to calculate the first and second order statistics of the 157

ORN inputs in the limit of infinite number of realizations; detailed in Materials and 158

methods: Calculating time-varying ORN input synapses, Eqs (12), (17), (21). 159

A comparison of Monte Carlo simulations of the actual ORN inputs used in our OB 160

model results (Eqs (10)–(11)) to the theoretical calculation (Eqs (12), (17), (21)) is 161

shown in Fig 4B. We clearly see that the calculations (labeled ‘Theory’) matches all 162

three ORN input statistics with smooth curves, properly accounting for both 163

time-varying ORN input and time-varying input correlation. These calculations do not 164

depend on any asymptotic assumptions; see Fig S2 in S1. Supplementary Material 165
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Fig 5. LN model shows that retronasal input results in temporal filters
with larger magnitudes. A) Comparison of LN model output (dashed black curves)
to OB network model output statistics for ortho (solid blue curves in top panels) and
retro (solid red curves in bottom panels) stimulus with onset at t = 0 s. The LN output
qualitatively captures OB model output statistics. B) Temporal filters k(t) in LN
model for ortho (in blue) and retro (in red) stimulus over time (−5ms≤ t ≤ 0ms).
Temporal filters for retro have larger positive and negative values than with ortho.

for more examples. 166

The fits of the LN model to the MC spike statistics (PSTH, variance, and covariance) 167

are shown in Fig 5A. The LN model is a decent approximation to the output statistics 168

obtained from the biophysical OB model for both ortho and retro stimuli. The resulting 169

temporal filters k(t) in Fig 5B succinctly show how the various input statistics are 170

filtered in time by the biophysical OB network model. For all 3 spike statistics, retro 171

input statistics are filtered with larger absolute values (both positive and negative) than 172

ortho, suggesting that the OB network is more sensitive to fluctuations with retro input. 173

The resulting b values are listed in Table 1; the b represent an absolute shift 174

independent of the temporal dynamics. They are similar for ortho and retro for all 175

statistics except spike count covariance. Although b is important for the resulting LN 176

curves (dot-black in Fig 5A), it is not a part of the temporal processing of ORN inputs. 177

Table 1. Parameter b for LN model fits to MC spiking statistics in Figure 5.

PSTH Variance Covariance

Orthonasal 2.10 -0.50 -1.56
Retronasal 1.94 -0.55 -3.02

The parameter b for the LN model fits (Eq (1)) between orthonasal and retronasal are similar for a given statistic, except for
spike count covariance.

ORN input signatures for ortho/retro 178

Despite retro eliciting larger firing rates than ortho, the spike count covariance (as well 179

as correlation and Fano factor) with retro stimulation is smaller than with ortho. It has 180
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long been known theoretically and experimentally that in uncoupled cells, the spike 181

correlation increases with firing rate (at least with moderate to larger window sizes) [31], 182

in contrast with our data. In coupled (recurrent) networks, the change in correlation 183

with firing rate is complicated and depends on numerous factors [10–13]. Thus, the 184

components of ORN inputs that result in these differences (higher firing and less 185

covariance for retro than with ortho) in the same OB network are not obvious. 186

So we use our computational framework to uncover the important feature(s) of ORN 187

input that: i) results in MC spike statistics consistent with our data trends, and ii) 188

filters with larger absolute values with retro than with ortho input. Here we disregard 189

the biological differences in ortho and retro ORN inputs to consider 3 core attributes of 190

ORN inputs that influence how the OB model operates: 191

• Temporal (faster increase and decay, or slower increase and decay; see Fig 6A, left) 192

• Amplitude (low or high, see Fig 6A, left) 193

• Input correlation (low or high, black and gray curves respectively, in Fig 6A, right) 194

We consider a total of 8 different ORN input profiles consisting of various combinations 195

of amplitude, input correlation, temporal profiles. The LN model fit to the OB model 196

(i.e., MC spike statistics) for these 8 different ORN input profiles are all similar, well 197

approximating how the OB coupled network transfers input statistics (see Fig 5A and 198

Fig S3 in S1. Supplementary Material). Figure 6B clearly shows that the slower 199

increase and decay in input rate (red and pink) consistently results in temporal filters 200

k(t) with larger absolute values than with faster increase/decay (light blue and blue). 201

This increased amplification in filter values is consistent with all 3 statistics, and is 202

observed with all variations of amplitude and input correlation. Thus, the OB network 203

consistently has temporal filters with larger absolute values when the input profile is 204

slower (i.e., retronasal-like). The resulting LN model b values are listed in Table 2 for 205

reference, although these values represent an absolute scaling independent of the 206

temporal dynamics. 207

Table 2. Parameter b for LN model fits to MC spiking statistics in Figure 6.

Temporal Amplitude ORN correlation PSTH Variance Covariance

Fast (ortho)

High High 2.10 -0.50 -1.56
High Low 1.99 -0.56 -1.35
Low High 2.03 -0.55 -1.62
Low Low 1.97 -0.61 -3.42

Slow (retro)

High High 2.04 -0.50 -1.11
High Low 1.94 -0.55 -3.02
Low High 1.70 -0.72 -1.36
Low Low 1.59 -0.81 -3.18

The parameter b for the LN model fits (Eq (1)) of the various parameters for temporal profile, amplitude, and input
correlation. Amplitude and ORN input correlation profiles as defined for Figs 3-5 and associated values previously listed in
Table 1 are noted in bold.

Figure 7 shows all 8 OB model results for each spike statistic. For all first and second 208

order statistics, including scaled measures of variability, the most distinct attribute that 209

distinguishes our model results is the temporal profile of input. Importantly, the 210

temporal profile is the key attribute to best capture the differences in ortho and retro 211

our experimental data (see Fig. 3). The slow increase and decay in input rate 212

consistently results in retro-like spiking trends while the fast increase and decay in input 213

rate results in ortho-like spiking trends. Thus, our models show that the temporal 214

profile is a signature of retro and ortho stimulation, and emphasizes the critical role of 215

ORN inputs for shaping how the same OB network modulates ortho and retro stimuli. 216
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Fig 7. Comparison of all 8 OB model results. The 8 different OB model results
are from varying temporal profile, amplitude height, and input correlation (2 ways each,
see Fig 6A). Different temporal profiles is key for both having different model spike
statistics and for best matching qualitative differences in our data (see Fig. 3). A)
Firing rate in Hz (left) is slightly lower with low input rate amplitude, but no significant
differences with different input correlations. B) Spike count variance, similar to firing
rate, has only slightly lower values with low input rate amplitude. C) Spike count
covariance is lower with lower input correlation for all of ortho evoked state (not
surprisingly). However, retro (fast) with lower amplitude steadily increases above higher
amplitude after about 1 s in the evoked state. D) Fano Factor model results only
change modestly. E) Pearson’s spike count correlation, similar to spike count covariance,
is lower with lower input correlation and similarly for retro (fast), there is an increase
with higher input correlation.
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Discussion 217

We have investigated how odors processed via the orthonasal and retronasal routes 218

result in different OB spike statistics, analyzing in detail how ORN inputs transfer to 219

MC spike outputs. Motivated by our in vivo rat recordings that show significant 220

differences in first and second order spiking statistics of MC, we developed a realistic 221

OB network model to investigate the dynamics of stimulus-evoked spike statistic 222

modulation (higher firing and lower covariance/correlation with retro than with ortho). 223

Our OB model balances biophysical attributes [15, 16] with computational efficiency. 224

The OB model is able to capture trends in our data with both ortho and retro 225

stimulation, and should be useful for future studies of OB. We successfully used the 226

biophysical OB model, paired with a phenomenological LN model, to analyze how 227

different ORN inputs lead to different dynamic transfer of input statistics. We also 228

showed that the temporal profile of ORN inputs is a key determinant of ortho versus 229

retro input via model matching our data. The output spike statistics are crucial because 230

the OB relays odor information to higher cortical regions, and thus our work may have 231

implications for odor processing with different modes of olfaction. 232

To the best of our knowledge, our experiments detail the differences in MC spiking 233

with ortho and retro stimuli for the first time. However, the work of Scott et al. [5] is 234

related; they used 4 electrodes to record OB spiking activity in the superficial layers of 235

OB in rats. Their results are difficult to directly compare to ours as they focus on 236

superficial OB in the epithelium rather than the mitral cell layer, but at least the 237

trial-averaged firing rates in their data appear to be consistent with our data. Moreover, 238

our multi-electrode array recordings enable us to consider trial-to-trial covariance of 239

spiking. 240

The key attribute(s) of ORN inputs that can result in different ortho and retro 241

statistics consistent with our data are not obvious. Indeed, retro stimulation resulted in 242

larger firing rates than ortho, and the spike count covariance (as well as correlation and 243

Fano factor) with retro stimulation is smaller than with ortho, in contrast to uncoupled 244

cells where correlation increases with firing rate [31]. Using various models, we were 245

able to consider how three components of ORN inputs (temporal profile, amplitude, and 246

input correlation) result in different OB dynamics with regards to transferring input 247

statistics to outputs. Prior experiments [1–3] have shown these input components can 248

differ with ortho and retro inputs. We found that the temporal profile (fast versus slow) 249

plays a critical role for both capturing our data and for shaping the transfer of inputs to 250

outputs, i.e., retro inputs consistently resulted in larger temporal filter values, so the 251

OB network is more sensitive to fluctuations of retro input statistics than ortho. The 252

slower input rate (rise and decay) is a key signature of retronasal stimulation [2, 3, 5] to 253

capture the trends in our data with retro stimulation, while faster rise and decay is 254

similarly a key signature of orthonasal stimulus. 255

The temporal differences between ortho versus retro have previously been thought to 256

play a role in distinguishing ortho/retro stimulation at the ORN [1–3,5, 6], but whether 257

this carried over to the OB and if this held at the level of spiking was unknown. Here 258

we demonstrate the importance of different temporal input to OB for ortho versus retro. 259

We used an ad-hoc LN model framework because many of biological complexities are 260

removed yet important features are retained. That is, neurons are known to linearly 261

filter inputs, i.e., finding linear filters of neurons is not new [27], and they are related to 262

the spike-triggered average [32], and spike generation is inherently nonlinear. Thus, 263

LN-type models have been used in many contexts, and often to circumvent biophysical 264

modeling, most notably with generalized linear models [33, 34] (also see [26]) where 265

various filters and model components are fit to data using maximum likelihood. 266

Connecting the large gap between biophysical models and LN models is daunting, but 267

see Ostojic and Brunel [25] who relate stochastic integrate-and-fire type models to LN. 268
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Our approach here is much simpler than the aforementioned works because we simply 269

wanted to assess how a particular statistic (mean, variance or covariance) mapped via 270

the OB network in a simple and transparent manner. 271

With a combination of experiments and different scales of neural network modeling, 272

we provide a basis for understanding how differences in OB spiking statistics arise with 273

these 2 natural modes of olfaction. More generally, our model framework provides a 274

road map for how to analyze attributes responsible for different OB spiking when driven 275

by differences in ORN inputs. 276

Materials and methods 277

See https://github.com/michellecraft64/OB for MATLAB code implementing the 278

single-compartment biophysical model, the equations for synaptic input statistics, and 279

the linear-nonlinear (LN) model. 280

Single-compartment biophysical OB model 281

Models of all three cell types (MC, PGC, GC) are based on models developed by the 282

Cleland Lab [15,16]. We consider two glomeruli each with a representative MC, PGC, 283

GC (see Fig 2B). Each cell is a conductance-based model with intrinsic ionic currents. 284

The voltage responses of all three cell types, measured in experiments and in a 285

multi-compartment model [15, 16], are generally captured in our single-compartmental 286

model, see Fig 2A. Here we describe all of the pertinent model details thoroughly; for 287

other extraneous details and implementation, please refer to provided code on GitHub. 288

Individual cell model 289

Cj
dVj

dt
= Ij,App −

∑

Ij,Ion −
∑

Ij,Synapse −
∑

Ij,ORN, (5)

The voltages of all model cells are governed by a Hodgkin-Huxley type current 290

balance equation (Eq (5) above for the jth cell) consisting of voltage (V ), membrane 291

capacitance (C), applied current (IApp), ionic currents (IIon), synaptic currents 292

(ISynapse), and ORN inputs (IORN); see Table 3 and 4 for units and numerical values, 293

respectively. For our modeling purposes, the ionic currents and the ORN inputs are 294

modified from [15,16] and described below. 295

Ionic currents 296

Ii = gim
phq(V − Ei), (6)

The ionic currents are defined by Eq (6) above (for specific ion type i) and account 297

for maximal conductance (g), activation variable (m) with exponent (p), inactivation 298

variable (h) with exponent (q), time-varying voltage (V assumed to be isopotential), 299

and reversal potential (Ei). All parameters and function for intrinsic ionic currents and 300

their gating variables are the same as in [15,16] with the exception of maximal 301

conductance. We chose to condense the model as defined in [15,16] by collapsing all 302

compartments to a single-compartment, and we set the maximal conductance as the 303

sum of all maximal conductance values (e.g., in PGC, INa has maximal conductance 304

gNa = 70mS/cm2 because [15] set gNa = 50mS/cm2 in the soma and gNa = 20mS/cm2
305

in the spine). All summed maximal conductance values used are listed for reference in 306

Table 4. The calcium dynamics used to define the calcium-related ionic currents are the 307

same as in [15,16]. 308
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Table 3. Description of model parameters.

Resistance and Capacitance

Variable Description
Rm Membrane Resistance (KΩ-cm2)
Cm Membrane Capacitance (µF/cm2)
Ra Cytoplasmic (Axial) Resistance (Ω-cm)

Ionic Currents (µA/cm2)

Variable Description
INa Fast, Spike-Generating Sodium Current
INaP Persistent Sodium Current
IDR Potassium Delayed Rectifier
IA Fast-Activating Transient Potassium Current
IM Noninactivating Muscarinic Potassium Current
IKS Slow-Inactivating Transient Potassium Current
IH Hyperpolarization-Activated Current
ICaL L-type Calcium Current

ICaP/N High-Threshold Calcium Current
ICaT Low-Threshold Inactivating Calcium Current
ICAN CA2+-Activated Nonspecific Cation Current
IKCa CA2+-Dependent Potassium Current

Reversal Potentials

Variable Description
EL Leak Current Reversal Potential
ENa Sodium Reversal Potential
EK Potassium Reversal Potential
EH Hyperpolarization-Activated Reversal Potential

Ecation Ca2+-Activated Nonspecific Cation Reversal Potential
ECa Calcium Reversal Potential

Calcium Dynamics

Variable Description
w Perimembrane Thickness
z Ca2+ Ion Valence
F Faraday Constant
τCa Ca2+ Removal Rate

[Ca2+]rest Ca2+ Resting Concentration

Synaptic currents 309

Isyn = wgsynsB(V )(V − Esyn), (7)

ds

dt
= αF (Vpre)(1− s) + βs, (8)

Eqs (7) and (8) are the equations for the synaptic variables, where all presynaptic 310

GCs and PGCs provide GABAA inputs, and all presynaptic MCs provide both AMPA 311

and NMDA inputs. B(V ) in Eq (7) is the NMDA-specific magnesium block function 312

(B(V ) = 1 for all other synapses), and s(t) is the fraction of open synaptic channels. 313

The channel opening rate constants (α and β) are normalized sigmoidal function of 314

presynaptic membrane potential (F (Vpre) in Eq (8)), the same as in [15,16]. We also 315

define the conductance parameter (gsyn) and reversal potentials (Esyn) as [15, 16] have, 316

with gGABA = 1.5 nS for GC→MC synapses, gGABA = 2nS for PGC→MC synapses, 317
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Table 4. Parameter values for each cell type. Each of these values are the same
as defined by [16] with the exception of maximal conductance values which are the sum
of all cell compartments (soma, dendrite, axon, etc.) as defined by [16]. Additionally,
any conductance value denoted by − implies that this ionic current is not included in
the associated cell.

Resistance and Capacitance

Variable MC Value GC Value PGC Value
Rm 30 30 20
Cm 1.2 2.0 1.2
Ra 70 70 80

Maximal Conductance (mS/cm2)

Variable MC Value GC Value PGC Value
gNa 120 70 70
gNaP 0.42 — —
gDR 70 25 25
gA 10 80 40
gM — 0.5 1.0
gKS 84 — —
gH — — 0.2
gCaL 0.85 — —

gCaP/N — 0.2 1.0
gCaT — 0.1 3.0
gCAN — 1.0 —
gKCa 5 0.5 2.0

Reversal Potentials (mV)

Variable MC Value GC Value PGC Value
EL -60 -60 -65
ENa 45 45 45
EK -80 -80 -80
EH 0 0 0

Ecation 10 10 10

Calcium Dynamics

Variable MC Value GC Value PGC Value
w 1 µm 0.2 µm 0.2 µm
z 2 2 2
τCa 10 ms 800 ms 800 ms

[Ca2+]rest 0.05 µmol/1 0.05 µmol/1 0.05 µmol/1

gAMPA = 2nS and gNMDA = 1nS for both MC→PGC and MC→GC synapses; 318

Esyn = 0mV for AMPA and NMDA currents, and Esyn = −80mV for GABAA currents. 319

In order to capture different effects of coupling, we include coupling strengths w. The 320

synaptic coupling strengths are fixed and set to: wM←G = 3 (independent inhibition), 321

wM←Gc = 0.3 (common inhibition to MC), wG←M = 1 (same for both AMPA, NMDA), 322

wGc←M = 0.5 (inhibition to common GC), wP←M = 1 and wM←P = 2 (same for both 323

AMPA, NMDA). These coupling strengths were established based on preliminary results 324

by Ly et. al [35] who use a related biophysical OB network model to evaluate regions of 325

parameter spaces that provide best model fits to our experimental data. Similar to as 326

seen in Ly et. al [35] (see their Figs 2 and 3) we define independent inhibition defined 327

for GC to be greater than excitation from MC and common GC inhibition to be less 328
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than both GC inhibition and MC excitation (i.e., wGc←M ≤ wG←M ≤ wM←G). 329

ORN input 330

IORN = S(t)(V − EX), (9)

τX
dS

dt
= −S + aXτX

∑

j

δ(t− tk), (10)

The ORN inputs for each cell consist of both excitatory and inhibitory inputs as 331

specified in Eqs (9) and (10) where X ∈ {E, I}. The reversal potential value (EX) is 332

much larger for excitatory inputs and smaller for inhibitory. The function 333

S(t+k ) = S(t−k ) + aX accounts for the random times (tk) when S instantaneously 334

increases by aX . The random times, tk, are governed by an inhomogeneous Poisson 335

process with rate λX(t). This aligns with experimental evidence that ORN spiking is 336

Poisson-like in the spontaneous state [9]. Thus, we extend the notion that ORN spiking 337

would be Poisson-like in the evoked state with increased rate λX(t) varying in time. 338

Finally, we set the synaptic rise and decay time constants (τX) to be 5.5ms for PGCs 339

and GCs, 10ms for MCs, as in [15, 16]. 340

In order to account for odor input response (i.e, spontaneous to evoked states), as 341

well as differentiating between ortho- vs. retronasal odor input, we modulate the 342

time-varying Poisson input rate (λX(t)). The ortho- vs. retronasal odor input rates, 343

λO/R(t), were constrained such that λO(t) increases faster and more abruptly than 344

λR(t) with odor, and λR(t) decays slower than λO(t) based on ORN imaging 345

studies [2, 3]. The time-varying λO/R(t) for ortho- and retronasal stimulus can be seen 346

plotted in blue and red, respectively, in Fig 2Ci. Inputs consist of both excitatory 347

synapses (with rate λO/R(t)) and inhibitory synapses (with rate 0.75λO/R(t)) to 348

capture other unmodeled inhibitory effects. For specific algebraic formula of λR/O(t), 349

please refer to code found in listed GitHub link. 350

The ORN input rates can be pairwise correlated, which is achieved by the parameter 351

cj,k ∈ [0, 1], for cells j and k detailed by Eq (11) below: 352

λj(t) = λ̃j(t)− λ̄(t)cj,k(t). (11)

where λ̃j(t) and λ̃k(t) are the individually defined ORN input rates for cells j and k, 353

and λ̄(t) := min(λ̃j(t), λ̃k(t)). 354

We set the correlation (cj,k) between the following cell pairs: MC and PGC pair 355

within a glomerulus that have inputs from the same ORN cells (cj,k = 0.3); two MCs as 356

they are known to have correlated ORN input [36] (cj,k(t) time-varying as in Fig 2Cii); 357

and between all 3 GCs because they are known to synchronize with common 358

input [16, 37] (cj,k = 0.3). All other pairs of cells have no background input correlation. 359

Specifically, input correlation for the 2 MCs (cj,k(t)) varied in time to mimic increased 360

correlation of glomeruli activity with odor onset and additionally account for ortho vs. 361

retronasal odor input (cO/R(t)). As seen in Fig 2Cii, input correlation for the 2 MCs 362

are constrained such that cR(t) < cO(t). This constraint is based on prior imaging 363

studies showing smaller spatial maps of retronasal response, and more specifically that 364

retronasal spatial maps are subsets of orthonasal [2, 3]. For specific algebraic formula of 365

cR/O(t), please refer to code found in listed GitHub link. 366

Calculating time-varying ORN input statistics of synapses 367

Here we describe a method to capture the effects of ORN input statistics of synapses to 368

the biophysical OB model, in the limit of infinite realizations. These methods are very 369
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useful as inputs for the LN model, without which one would have to use averages from 370

Monte Carlo simulations that contain deviations from finite size effects. Taking the 371

expected value of Eq (10) results in an equation for the average of S(t), µS(t): 372

τXµS(t) = −µS + τXaXλ(t), (12)

To derive the equation for variance σ2
S(t), we multiply Eq (10) by itself. We can 373

equivalently rewrite Eq (10) as an integral: 374

S(t) = aX

∫ t

−∞

e−(t−u)/τXD(u) du, (13)

where D(t) :=
∑

j

δ(t− tk). So 375

S2(t) = (aX)
2
∫ t

−∞

∫ t

−∞

D(u)D(v)e−(t−u)/τXe−(t−v)/τX dudv (14)

Recall that E [D(u)D(v)] = λ(v)δ(u− v) + λ(u)λ(v), so we have: 376

E
[

S2(t)
]

= (aX)
2
∫ t

−∞

λ(v)e−2(t−v)/τX dv +
(

µS(t)
)2

(15)

⇒ σ2
S(t) = (aX)

2
∫ t

−∞

λ(v)e−2(t−v)/τX dv, (16)

Equivalently, σ2
S(t) satisfies the ODE: 377

τX
dσ2

S(t)

dt
= −2σ2

S + τX(aX)2λ(t), (17)

Similarly for Sj(t)Sk(t) correlated synapses, we have: 378

Sj(t)Sk(t) =
(

aXj
aXk

)

∫ t

−∞

∫ t

−∞

D(u)D(v)e−(t−u)/τXj e−(t−v)/τXk dudv, (18)

By our model construction E [D(u)D(v)] = cj,k(v)λ̄(v)δ(u− v) + λj(u)λk(v), where 379

λ̄(t) := min (λj(t), λk(t)), so we have: 380

E [Sj(t)Sk(t)] =
(

aXj
aXk

)

∫ t

−∞

cj,k(v)λ̄(v)e
(−τXj

−τXk
)(t−v)/(τXj

τXk
)
dv + µSj

(t)µSk
(t)

(19)

⇒ Cov(Sj(t), Sk(t)) =
(

aXj
aXk

)

∫ t

−∞

cj,k(v)λ̄(v)e
(−τXj

−τXk
)(t−v)/(τXj

τXk
)
dv, (20)

Cov(Sj(t), Sk(t)) equivalently satisfies the ODE: 381

τXj
τXk

dCov(Sj(t), Sk(t))

dt
= −(τXj

+τXk
)Cov(Sj(t), Sk(t))+(τXj

τXk
)
(

aXj
aXk

)

cj,k(t)λ̄(t),

(21)
The calculations for the dynamic (time-varying) synapse statistics are important for 382

capturing realistic statistics because a steady-state approximation can be very 383

inaccurate, especially when the time-varying correlation and ORN spiking rate change 384

quickly relative to the time-scales (τX). The quasi-steady-state approximation is: 385

µS(t) ≈ τXaXλ(t) (22)

σ2
S(t) ≈

τX(aX)2λ(t)

2
(23)

Cov(Sj(t), Sk(t)) ≈
τXj

τXk

τXj
+ τXk

aXj
aXk

cj,k(t)λ̄(t) (24)
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Figure S2 in S1. Supplementary Material shows several more examples 386

demonstrating the accuracy of the calculations (Eqs (12), (17), (21)) and how 387

inaccurate Eqs (22)–(24) can be. 388

Linear-Nonlinear (LN) model 389

We use the above described ODEs (Eqs (12), (17), and (21)) to simplify the ORN input 390

statistics calculations for use with the LN model framework. Previous work has 391

implemented LN-type models as an alternative to biophysical spiking models with 392

various conditions (see [25–27] and Discussion). Fig 4A illustrates a schematic of the LN 393

model parameters, linear filter (k) and shift (b), that are used with the ORN input 394

statistics (S ∈ {µS , σ
2
S , Cov(S1, S2)}) in order to calculate output spike statistics 395

(R ∈ {µR, σ
2
R, Cov(R1, R2)}). The LN model is summarized as: 396

R(t) = f

(
∫ t

−∞

k(τ − t)S(τ)dτ + b

)

(25)

Where we define our function f as an exponential, and we can approximate the integral 397

numerically as follows: 398

∫ t

−∞

k(τ − t)S(τ)dτ + b ≈
n−1
∑

l=0

~k(l)~S(j − l)∆τ +~b (26)

Where n denotes the number of time points included in the linear filter, and j 399

denotes the points in time of input statistic ~S of size Lt. Then, we can rewrite Eq (26) 400

in matrix vector form A~x = ~y where: A is the Toeplitz matrix of size (Lt− n+ 1)× n 401

of our input statistic (~S) with an additional row of value one to account for shift; ~x is 402

our linear filter (~k) and shift (~b); and ~y is our OB network firing rate statistic to which 403

we fit our filter. Then, we solve for ~x using Least Squares approximation by QR 404

decomposition. The linear filter (k) converges to 0 by construction, therefore we 405

truncate the filter at −0.1 s and set k = 0 for the remaining time −1 ≤ t < −0.1. Then, 406

the output firing rate statistic (R) is calculated as follows: 407

R(t) = f
(

K · ~S +~b
)

(27)

Where K denotes the convolutional matrix constructed from the truncated linear filter 408

k. 409

Electrophysiological recordings 410

We decided to use recordings from a single rat, with recordings from 3 sessions. We took 411

this conservative approach to control differences in nasal cavity structure that can vary 412

across rats [38,39], which may shape differences in ortho versus retro activity [2,40]. See 413

provided GitHub code for statistical summary of experimental data. 414

All procedures were carried out in accordance with the recommendations in the 415

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health 416

and approved by University of Arkansas Institutional Animal Care and Use Committee 417

(protocol #14049). Data were collected from 11 adult male rats (240-427 g; Rattus 418

Norvegicus, Sprague-Dawley outbred, Harlan Laboratories, TX, USA) housed in an 419

environment of controlled humidity (60%) and temperature (23◦C) with 12h light-dark 420

cycles. The experiments were performed in the light phase. 421

Surgical preparations. Anesthesia was induced with isoflurane inhalation and 422

maintained with urethane (1.5 g/kg body weight (bw) dissolved in saline, 423
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intraperitoneal injection (ip)). Dexamethasone (2mg/kg bw, ip) and atropine sulphate 424

(0.4mg/kg bw, ip) were administered before performing surgical procedures. 425

Throughout surgery and electrophysiological recordings, core body temperature was 426

maintained at 37◦C with a thermostatically controlled heating pad. To isolate the 427

effects of olfactory stimulation from breath-related effects, we performed a double 428

tracheotomy surgery as described previously [2]. A Teflon tube (OD 2.1mm, upper 429

tracheotomy tube) was inserted 10mm into the nasopharynx through the rostral end of 430

the tracheal cut. Another Teflon tube (OD 2.3mm, lower tracheotomy tube) was 431

inserted into the caudal end of the tracheal cut to allow breathing, with the breath 432

bypassing the nasal cavity. Both tubes were fixed and sealed to the tissues using 433

surgical thread. Local anesthetic (2% Lidocaine) was applied at all pressure points and 434

incisions. Subsequently, a craniotomy was performed on the dorsal surface of the skull 435

over the right olfactory bulb (2mm × 2mm, centered 8.5mm rostral to bregma and 436

1.5mm lateral from midline). 437

Olfactory Stimulation. A Teflon tube was inserted into the right nostril and the 438

left nostril was sealed by suturing. The upper tracheotomy tube inserted into the 439

nasopharynx was used to deliver odor stimuli retronasally. Odorized air was delivered 440

for 1 s in duration at 1 minute intervals. The odorant was Ethyl Butyrate (EB, 441

saturated vapor). We note that the full experimental data set included additional odors, 442

but here we consider only EB. 443

Electrophysiology. A 32-channel microelectrode array (MEA, A4x2tet, 444

NeuroNexus, MI, USA) was inserted 400µm deep from dorsal surface of OB targeting 445

tufted and mitral cell populations. The MEA probe consisted of 4 shanks (diameter: 446

15µm, inter-shank spacing: 200µm), each with eight iridium recording sites arranged in 447

two tetrode groups near the shank tip (inter-tetrode spacing: 150µm, within tetrode 448

spacing 25µm). Simultaneous with the OB recordings, we recorded from a second MEA 449

placed in anterior piriform cortex. Voltage was measured with respect to an AgCl 450

ground pellet placed in the saline-soaked gel foams covering the exposed brain surface 451

around the inserted MEAs. Voltages were digitized with 30 kHz sample rate (Cereplex 452

+ Cerebus, Blackrock Microsystems, UT, USA). Recordings were band-pass filtered 453

between 300 and 3000Hz and semiautomatic spike sorting was performed using 454

Klustakwik software, which is well suited to the type of electrode arrays used here [41]. 455

Supporting Information 456

S1. Supplementary Material. Other parts of the research that support 457

the main results but are separated for a more streamlined exposition. 458
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