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Abstract This chapter deals with the analysis of interpersonal communication dy-

namics in online social networks and social media. Communication is central to

the evolution of social systems. Today, the different online social sites feature var-

iegated interactional affordances, ranging from blogging, micro-blogging, sharing

media elements (i.e. image, video) as well as a rich set of social actions such as tag-

ging, voting, commenting and so on. Consequently, these communication tools have

begun to redefine the ways in which we exchange information or concepts, and how

the media channels impact our online interactional behavior. Our central hypothesis

is that such communication dynamics between individuals manifest themselves via

two key aspects: the information or concept that is the content of communication,

and the channel i.e. the media via which communication takes place. We present

computational models and discuss large-scale quantitative observational studies for

both these organizing ideas. First, we develop a computational framework to de-

termine the “interestingness” property of conversations cented around rich media.

Second, we present user models of diffusion of social actions and study the impact

of homophily on the diffusion process. The outcome of this research is twofold.

First, extensive empirical studies on datasets from YouTube have indicated that on

rich media sites, the conversations that are deemed “interesting” appear to have con-

sequential impact on the properties of the social network they are associated with: in

terms of degree of participation of the individuals in future conversations, thematic

diffusion as well as emergent cohesiveness in activity among the concerned par-
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ticipants in the network. Second, observational and computational studies on large

social media datasets such as Twitter have indicated that diffusion of social actions

in a network can be indicative of future information cascades. Besides, given a topic,

these cascades are often a function of attribute homophily existent among the par-

ticipants. We believe that this chapter can make significant contribution into a better

understanding of how we communicate online and how it is redefining our collective

sociological behavior.

1 Introduction

During the past decade, the advent of the “social Web” has provided considerable

leeway to a rich rubric of platforms that promote communication among users on

shared spaces. These interpersonal interactions often take place in the pretext of

either a shared media e.g. an image (Flickr), a video (YouTube), a ‘blog’ / ‘mi-

croblog’ (Twitter); or are built across social ties that reflect human relationships

in the physical world (Facebook). The resultant impact of the rapid proliferation

of these social websites has been widespread. Individuals today, can express their

opinions on personal blogs as well as can share media objects to engage themselves

in discussion. Right from shopping a new car, to getting suggestions on investment,

searching for the next holiday destination or even planning their next meal out, peo-

ple have started to rely heavily on opinions expressed online or social resources that

can provide them with useful insights into the diversely available set of options.

Moreover, personal experiences as well as thoughts and opinions on external events

also manifest themselves through “memes”, “online chatter” or variegated “voting”

mechanisms in several peoples blogs and social profiles.

As a positive outcome of all these interactional affordances provided by the on-

line social media and social network sites, a broad podium of opportunities and am-

ple scope have begun to emerge to the social network analysis community. Instead

of focusing on longitudinal studies of relatively small groups such as participant

observation [31, 16] and surveys [8], researchers today can study social processes

such as information diffusion or community emergence at very large scales. This is

because electronic social data can be collected at comparatively low cost of acqui-

sition and resource maintenance, can span over diverse populations and be acquired

over extended time periods. The result is that study of social processes on a scale

of million nodes, that would have been barely possible a few years back, is now

looming a lot of interest currently [20, 22].

Our broad goal is to study how such online communication today is reshaping

and restructuring our understanding of different social processes. Communication

is the process by which participating individuals create and share information with

one another in order to reach a mutual understanding [6]. Typically communication

involves a form of a channel, or a media by means of which information, in the

form of concepts get transmitted from one individual to another. An illustrative ex-

ample that describes the key ideas in the online communication process is shown in
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Figure 1. Note, mass media channels are more effective in creating knowledge of

innovations [5], whereas channels promoting social engagement are more effective

in forming and changing attitudes toward a new concept, and thus in influencing the

decision to adopt or reject a new concept or information1.

Fig. 1 Illustration of the two key organizing ideas that embody online interpersonal communica-
tion processes: namely, the information or concept that is the content of communication and the
channel or the media via which communication takes place.

It, thus, goes without saying that communication is central to the evolution of

social systems. To support this empirical finding, over the years, numerous stud-

ies on online social communication processes have indicated that studying prop-

erties of the associated social system, i.e. the network structure and dynamics can

be useful pointers in determining the outcome of many important social and eco-

nomic relationships [1, 2]. Despite the fundamental importance laid on the under-

standing of these structures and their temporal behavior in many social and eco-

nomic settings [8, 10, 9, 20, 21], the development of characterization tools, founda-

tional theoretical models as well as insightful observational studies on large-scale

social communication datasets is still in its infancy. This is because communica-

tion patterns on online social platforms are significantly distinct from their physical

world counterpart—consequently often invalidating the methods, tools and studies

designed to cater to longitudinal ethnographic studies on observed physical world

interactions. This distinction can be viewed on several aspects relating to the nature

of the online communication process itself: such as inexpensive reach to a global au-

dience, volatility of content and easy accessibility of publishing information content

online. The outcome of these differences is that today there is an ardent necessity to

develop robust computational frameworks to characterize, model and conduct ob-

servational studies on online communication processes prevalent, rather pervasively,

on the online domain.

1 Also referred to in popular culture as a “meme”.
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The contributions of this chapter are also motivated from the potential ability of

online communication patterns in addressing multi-faceted sociological, behavioral

as well as societal problems. For example, the patterns of social engagement, re-

flected via the networks play a fundamental role in determining how concepts or

information are exchanged. Such information may be as simple as an invitation to a

party, or as consequential as information about job opportunities, literacy, consumer

products, disease containment and so on. Additionally, understanding the evolution

of groups and communities can lend us meaningful insights into the ways in which

concepts form and aggregate, opinions develop as well as ties are made and broken,

or even how the decisions of individuals contribute to impact on external tempo-

ral occurrences. Finally, studies of shared user-generated media content manifested

via the communication channel can enable us re-think about the ways in which our

communication patterns affect our social memberships or our observed behavior on

online platforms.

In the light of the above observations, the following two parts summarize our key

research investigations:

• Rich Media Communication Patterns. This part investigates rich media commu-

nication patterns, i.e. the characteristics of the emergent communication, cen-

tered around the channel or the shared media artifact. The primary research ques-

tion we address here is: what are the characteristics of conversations centered

around shared rich media artifacts?

• Information Diffusion. This part instruments the characterization of the concept,

or the information or meme, involved in the social communication process. Our

central idea encompasses the following question: how do we model user com-

munication behavior that affects the diffusion of information in a social network

and what is the impact of user characteristics, such as individual attributes in this

diffusion process?

The rest of the chapter is organized as follows. In section 2, we present the ma-

jor characteristics of online communication dynamics. Next two sections deal with

the methods that help us study rich media communication patterns (section 3) and

impact of communication properties on diffusion processes (section 4). They also

present some experimental studies conducted on large-scale datasets to evaluate our

proposed methods of communication analysis. Finally we conclude in section 5 with

a summary of the contributions and future research opportunities.

2 Characteristics of Online Communication

We present key characteristics of the online communication process. First we

present a background survey of the different aspects of online communication. Next

we discuss the different forms of communication affordances that are provided by

different online social spaces today and discuss an overview of prior work on the

different modalities.
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Table 1 Some social media statistics.

SOCIAL MEDIA TYPE KEY STATISTICS

YouTube 139M users; US$200M [Forbes]

Flickr 3.6B images; 50M users

Facebook 350M active users; 1B pieces of content shared each week

MySpace 110M monthly active users; 14 B comments on the site

Digg 3M unique users; $40M

Engadget 1,887,887 monthly visitors

Huffington Post 8.9M visitors

Live Journal 19,128,882 accounts

2.1 Background

There are several ways in which online social media has revolutionized our means

and manner of social communication today: naturally making a huge impact on the

characteristics of the social systems that encompass them. We discuss some of the

characteristics of this widespread change in the communication process as follows:

1. Reach. Social media communication technologies provide scale and enable any-

one to reach a global audience.

2. Accessibility. Social media communication tools are generally available to any-

one at little or no cost, converting every individual participant in the online social

interaction into a publisher and broadcaster of information content on their own.

3. Usability. Most social media do not, or in some cases reinvent skills, so anyone

can operate the means of content production and subsequent communication,

eliminating most times the need for specialized skills and training.

4. Recency. Social media communication can be capable of virtually instantaneous

responses; only the participants determining any delay in response; making the

communication process extremely reciprocative, with low lags in responses.

5. Permanence. unlike industrial media communication, which once created, cannot

be altered (e.g. once a magazine article is printed and distributed changes cannot

be made to that same article), social media communication is extremely volatile

over time, because it can be altered almost instantaneously by comments, editing,

voting and so on.

These key characteristics of online social communication have posed novel chal-

lenges on the study of social systems in general. To highlight some of the key statis-

tics of different social sites available on the Web today, we compiled Table 1. The

natural question that arises is that: how are online social communication patterns

today affecting our social lives and our collective behavior? As is obvious from the

statistics, traditional tools to understand social interactions in physical spaces or

over industrial media or even prior work involving longitudinal studies of groups

of individuals are therefore often only partially capable of characterizing, modeling

and observing the modern online communication of today.
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In this chapter, we therefore identify two key components that subsume these

diverse characteristics of the online social communication process on social media

today. These two components are manifested as below:

1. The entity or the concept (e.g. information, or ‘meme’).

2. The channel or the media (e.g. textual, audio, video or image-based interactive

channel).

2.2 Communication Modes in Social Networks

We discuss several different communication modes popularly existent in social net-

works and social media sites today. These diverse modalities of communication

allow users to engage in interaction often spanning a commonly situated interest,

shared activities or artifacts, geographical, ethnic or gender-based co-location, or

even dialogue on external news events. In this chapter, we have focused on the

following forms of communication among users, that are likely to promote social

interaction:

1. Messages. Social websites such as MySpace feature an ability to users to post

short messages on their friends’ profiles. A similar feature on Facebook allows

users to post content on another user’s “Wall”. These messages are typically short

and viewable publicly to the common set of friends to both the users; providing

evidences of interaction via communication.

2. Blog Comments / Replies. Commenting and replying capability provided by dif-

ferent blogging websites, such as Engadget, Huffington Post, Slashdot, Mash-

able or MetaFilter provide substantial evidence of back and forth communica-

tion among sets of users, often relating to the topic of the blog post. Note, replies

are usually shown as an indented block in response to the particular comment in

question.

3. Conversations around Shared Media Artifact. Many social websites allow users

to share media artifacts with their local network or set of contacts. For example,

on Flickr a user can upload a photo that is viewable via a feed to her contacts;

while YouTube allows users to upload videos emcompassing different topical

categories. Both these kinds of media sharing allow rich communication activity

centered around the media elements via comments. These comments often take a

conversational structure, involving considerable back and forth dialogue among

users.

4. Social Actions. A different kind of a communication modality provided by cer-

tain social sites such as Digg or del.icio.us involves participation in a variety of

social actions by users. For example, Digg allows users to vote (or rate) on shared

articles, typically news, via a social action called “digging”. Another example is

the “like” feature provided by Facebook on user statuses, photos, videos and

shared links. Such social action often acts as a proxy for communication activ-



Analyzing the Dynamics of Communication in Online Social Networks 7

ity, because first, it is publicly observable, and second it allows social interaction

among the users.

5. Micro-blogging. Finally, we define a communication modality based on micro-

blogging activity of users, e.g. as provided by Twitter. The micro-blogging fea-

ture, specifically called “tweeting” on Twitter, often takes conversational form,

since tweets can be directed to a particular user as well. Moreover, Twitter allows

the “RT” or re-tweet feature, allowing users to propagate information from one

user to another. Hence micro-blogging activity can be considered as an active

interactional medium.

2.3 Prior Work on Communication Modalities

In this section we will survey some prior work on the above presented communica-

tion modalities.

Conversations. Social networks evolve centered around communication artifacts.

The conversational structure by dint of which several social processes unfold, such

as diffusion of innovation and cultural bias, discovery of experts or evolution of

groups, is valuable because it lends insights into the nature of the network at multi-

grained temporal and topological levels and helps us understand networks as an

emergent property of social interaction.

Comments and messaging structure in blogs and shared social spaces have been

used to understand dialogue based conversational behavior among individuals [34]

as well as in the context of summarization of social activity on the online platform

or to understand the descriptive nature of web comments [32]. Some prior work

have also deployed conversational nature of comments to understand social network

structure as well as in statistical analysis of networks [15]. There has also been

considerable work on analyzing discussions or comments in blogs [28] as well as

utilizing such communication for prediction of its consequences like user behavior,

sales, stock market activity etc.

Prior research has also discovered value in using social interactional data to un-

derstand and in certain cases predict external behavioral phenomena [11]. There has

been considerable work on analyzing social network characteristics in blogs [20] as

well as utilizing such communication for prediction of its consequences like user

behavior, sales, stock market activity etc [3, 17]. In [17] Gruhl et al. attempt to de-

termine if blog data exhibit any recognizable pattern prior to spikes in the ranking

of the sales of books on Amazon.com. Adar et al. in [3] present a framework for

modeling and predicting user behavior on the web. They created a model for sev-

eral sets of user behavior and used it to automatically compare the reaction of a user

population on one medium e.g. search engines, blogs etc to the reactions on another.

Social Actions. The participation of individual users in online social spaces is one

of the most noted features in the recent explosive growth of popular online commu-
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nities ranging from picture and video sharing (Flickr.com and YouTube.com) and

collective music recommendation (Last.fm) to news voting (Digg.com) and social

bookmarking (del.icio.us). However in contrast to traditional communities, these

sites do not feature direct communication or conversational mechanisms to its mem-

bers. This has given rise to an interesting pattern of social action based interaction

among users. The users’ involvement and their contribution through non-message-

based interactions, e.g. digging or social bookmarking have become a major force

behind the success of these social spaces. Studying this new type of user interac-

tional modality is crucial to understanding the dynamics of online social communi-

ties and community monetization.

Social actions [12] performed on shared spaces often promote rich communica-

tion dynamics among individuals. In prior work, authors have discussed how the

voting i.e. digging activity on Digg impacts the discovery of novel information [37].

Researchers [35] have also examined the evolution of activity between users in the

Facebook social network to capture the notion of how social links can grow stronger

or weaker over time. Their experiments reveal that links in the activity network on

Facebook tend to come and go rapidly over time, and the strength of ties exhibits

a general decreasing trend of activity as the social network link ages. Social ac-

tions revealed via third party applications as featured by Facebook have also lent

interesting insights into the social characteristics of online user behavior.

In this chapter, we organize our approach based on these two different modali-

ties of online communication, i.e. conversations and social actions. We utilize the

former to study the dynamic characterization of the media channel that embodies

online communication. While the latter is used to study the diffusion properties of

the concept or the unit of information that is transmitted in a network via the com-

munication process. This is presented in the following two sections.

3 Rich Media Communication Patterns

An interesting emergent property of large-scale user-generated content on social me-

dia sites is that these shared media content seem to generate rich dialogue of com-

munication centered round shared media objects, e.g. YouTube, Flickr etc. Hence

apart from impact of communication on the dynamics of the individuals’ actions,

roles and the community in general, there are additional challenges on how to char-

acterize such “conversations”, understanding the relationship of the conversations to

social engagement i.e. the community under consideration, as well as studying the

observed user behavior responsible for publishing and participation of the content.

Today, there is significant user participation on rich media social networking

websites such as YouTube and Flickr. Users can create (e.g. upload photo on Flickr),

and consume media (e.g. watch a video on YouTube). These websites also allow

for significant communication between the users—such as comments by one user

on a media uploaded by another. These comments reveal a rich dialogue structure

(user A comments on the upload, user B comments on the upload, A comments in
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response to B’s comment, B responds to A’s comment etc.) between users, where the

discussion is often about themes unrelated to the original video. In this section, the

sequence of comments on a media object is referred to as a conversation. Note the

theme of the conversation is latent and depends on the content of the conversation.

The fundamental idea explored in this section is that analysis of communication

activity is crucial to understanding repeated visits to a rich media social network-

ing site. People return to a video post that they have already seen and post further

comments (say in YouTube) in response to the communication activity, rather than

to watch the video again. Thus it is the content of the communication activity itself

that the people want to read (or see, if the response to a video post is another video,

as is possible in the case of YouTube). Furthermore, these rich media sites have

notification mechanisms that alert users of new comments on a video post / image

upload promoting this communication activity.

We denote the communication property that causes people to further participate

in a conversation as its “interestingness.” While the meaning of the term “inter-

estingness” is subjective, we decided to use it to express an intuitive property of

the communication phenomena that we frequently observe on rich media networks.

Our goal is to determine a real scalar value corresponding to each conversation in

an objective manner that serves as a measure of interestingness. Modeling the user

subjectivity is beyond the scope of this section.

What causes a conversation to be interesting to prompt a user to participate?

We conjecture that people will participate in conversations when (a) they find the

conversation theme interesting (what the previous users are talking about) (b) see

comments by people that are well known in the community, or people that they

know directly comment (these people are interesting to the user) or (c) observe

an engaging dialogue between two or more people (an absorbing back and forth

between two people). Intuitively, interesting conversations have an engaging theme,

with interesting people. Example of an interesting conversation from YouTube is

shown in Figure 2.

A conversation that is deemed interesting must be consequential [13]—i.e. it

must impact the social network itself. Intuitively, there should be three consequences

(a) the people who find themselves in an interesting conversation, should tend to

co-participate in future conversations (i.e. they will seek out other interesting peo-

ple that they’ve engaged with) (b) people who participated in the current interest-

ing conversation are likely to seek out other conversations with themes similar to

the current conversation and finally (c) the conversation theme, if engaging, should

slowly proliferate to other conversations.

There are several reasons why measuring interestingness of a conversation is of

value. First, it can be used to rank and filter both blog posts and rich media, partic-

ularly when there are multiple sites on which the same media content is posted,

guiding users to the most interesting conversation. For example, the same news

story may be posted on several blogs, our measures can be used to identify those

sites where the postings and commentary is of greatest interest. It can also be used

to increase efficiency. Rich media sites, can manage resources based on changing

interestingness measures (e.g. and cache those videos that are becoming more in-
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Fig. 2 Example of an interesting conversation from YouTube. Note it involves back-and-forth
dialogue between participants as well as evolving themes over time.

teresting), and optimize retrieval for the dominant themes of the conversations. Be-

sides, differentiated advertising prices for ads placed alongside videos can be based

on their associated conversational interestingness.

3.1 Problem Formulation

3.1.1 Definitions

Conversation. We define a conversation in online social media (e.g., an image, a

video or a blog post) as a temporally ordered sequence of comments posted by indi-

viduals whom we call “participants”. In this section, the content of the conversations

are represented as a stemmed and stop-word eliminated bag-of-words.

Conversational Themes. Conversational themes are sets of salient topics associated

with conversations at different points in time.

Interestingness of Participants. Interestingness of a participant is a property of her

communication activity over different conversations. We propose that an interest-

ing participant can often be characterized by (a) several other participants writing
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comments after her, (b) participation in a conversation involving other interesting

participants, and (c) active participation in “hot” conversational themes.

Interestingness of Conversations. We now define “interestingness” as a dynamic

communication property of conversations which is represented as a real non-negative

scalar dependent on (a) the evolutionary conversational themes at a particular point

of time, and (b) the communication properties of its participants. It is important to

note here that “interestingness” of a conversation is necessarily subjective and often

depends upon context of the participant. We acknowledge that alternate definitions

of interestingness are also possible.

Conversations used in this section are the temporal sequence of comments as-

sociated with media elements (videos) in the highly popular media sharing site

YouTube. However our model can be generalized to any domain with observable

threaded communication. Now we formalize our problem based on the following

data model.

3.1.2 Data Model

Our data model comprises the tuple C,P having the following two inter-related en-

tities: a set of conversations, C on shared media elements; and a set of participants

P in these conversations. Each conversation is represented with a set of comments,

such that each comment that belongs to a conversation is associated with a unique

participant, a timestamp and some textual content (bag-of-words).

We now discuss the notations. We assume that there are N participants, M con-

versations, K conversation themes and Q time slices. Using the relationship between

the entities in the tuple C,P from the above data model, we construct the following

matrices for every time slice q,1 ≤ q ≤ Q:

• PF
(q) ∈ R

N×N : Participant-follower matrix, where PF
(q)(i, j) is the probability

that at time slice q, participant j comments following participant i on the conver-

sations in which i had commented at any time slice from 1 to (q−1).
• PL

(q) ∈ R
N×N : Participant-leader matrix, where PL

(q)(i, j) is the probability that

in time slice q, participant i comments following participant j on the conversa-

tions in which j had commented in any time slice from 1 to (q− 1). Note, both

PF
(q) and PL

(q) are asymmetric, since communication between participants is

directional.

• PC
(q) ∈ R

N×M: Participant-conversation matrix, where PC
(q)(i, j) is the proba-

bility that participant i comments on conversation j in time slice q.

• CT
(q) ∈ R

M×K : Conversation-theme matrix, where CT
(q)(i, j) is the probability

that conversation i belongs to theme j in time slice q.

• TS
(q) ∈ R

K×1: Theme-strength vector, where TS
(q)(i) is the strength of theme i

in time slice q. Note, TS
(q) is simply the normalized column sum of CT

(q).

• PT
(q) ∈ R

N×K : Participant-theme matrix, where PT
(q)(i, j) is the probability that

participant i communicates on theme j in time slice q. Note, PT
(q) = PC

(q) ·CT
(q).
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• IP
(q) ∈ R

N×1: Interestingness of participants vector, where IP
(q)(i) is the inter-

estingness of participant i in time slice q.

• IC
(q) ∈ R

M×1: Interestingness of conversations vector, where IC
(q)(i) is the in-

terestingness of conversation i in time slice q.

For simplicity of notation, we denote the i-th row of the above 2-dimensional

matrices as X(i, :).

3.1.3 Problem Statement

Now we formally present our problem statement: given a dataset C,P and associated

meta-data, we intend to determine the interestingness of the conversations in C,

defined as IC
(q) (a non-negative scalar measure for a conversation) for every time

slice q,1 ≤ q ≤ Q. Determining interestingness of conversations involves two key

challenges:

1. How to extract the evolutionary conversational themes?

2. How to model the communication properties of the participants through their

interestingness?

Further in order to justify interestingness of conversations, we need to address

the following challenge: what are the consequences of an interesting conversation?

In the following three sections, we discuss how we address these three chal-

lenges through: (a) detecting conversational themes based on a mixture model that

incorporates regularization with time indicator, regularization for temporal smooth-

ness and for co-participation; (b) modeling interestingness of participants; and of

interestingness of conversations; and using a novel joint optimization framework of

interestingness that incorporates temporal smoothness constraints and (c) justifying

interestingness by capturing its future consequences.

3.2 Conversational Themes

In this section, we discuss the method of detecting conversational themes. We elab-

orate on our theme model in the following two sub-sections—first a sophisticated

mixture model for theme detection incorporating time indicator based, temporal and

co-participation based regularization is presented. Second, we discuss parameter es-

timation of this theme model.

3.2.1 Chunk-based Mixture Model of Themes

Conversations are dynamically growing collections of comments from different par-

ticipants. Hence, static keyword or tag based assignment of themes to conversations

independent of time is not useful. Our model of detecting themes is therefore based
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on segmentation of conversations into ‘chunks’ per time slice. A chunk is a repre-

sentation of a conversation at a particular time slice and it comprises a (stemmed

and stop-word eliminated) set of comments (bag-of-words) whose posting times-

tamps lie within the same time slice. Our goal is to associate each chunk (and hence

the conversation at that time slice) with a theme distribution. We develop a sophis-

ticated multinomial mixture model representation of chunks over different themes

(a modified pLSA [18]) where the theme distributions are (a) regularized with time

indicator, (b) smoothed across consecutive time slices, and (c) take into account the

prior knowledge of co-participation of individuals in the associated conversations.

Let us assume that a conversation ci is segmented into Q non-overlapping chunks

(or bag-of-words) corresponding to the Q different time slices. Let us represent the

chunk corresponding to the i-th conversation at time slice q(1 ≤ q ≤ Q) as λi,q.

We further assume that the words in λi,q are generated from K multinomial theme

models θ1,θ2, · · · ,θK whose distributions are hidden to us. Our goal is to determine

the log likelihood that can represent our data, incorporating the three regulariza-

tion techniques mentioned above. Thereafter we can maximize the log likelihood to

compute the parameters of the K theme models.

However, before we estimate the parameter of the theme models, we refine our

framework by regularizing the themes temporally as well as due to co-participation

of participants. This is discussed in the following two sub-sections.

Temporal Regularization. We incorporate temporal characterization of themes in

our theme model [27]. We conjecture that a word in the chunk can be attributed

either to the textual context of the chunk λi,q, or the time slice q—for example,

certain words can be highly popular on certain time slices due to related external

events. Hence the theme associated with words in a chunk λi,q needs to be regular-

ized with respect to the time slice q. We represent the chunk λi,q at time slice q with

the probabilistic mixture model:

p(w : λi,q,q) =
K

∑
j=1

p(w,θ j|λi,q,q) (1)

where w is a word in the chunk λi,q and θ j is the j-th theme. The joint probability

on the right hand side can be decomposed as:

p(w,θ j|λi,q,q) = p(w|θ j) · p(θ j|λi,q,q)

= p(w|θ j) · ((1− γq) · p(θ j|λi,q)+ γq · p(θ j|q)),
(2)

where γq is a parameter that regulates the probability of a theme θ j given the chunk

λi,q and the probability of a theme θ j given the time slice q. Note that since a con-

versation can alternatively be represented as a set of chunks, the collection of all

chunks over all conversations is simply the set of conversations C. Hence the log

likelihood of the entire collection of chunks is equivalent to the likelihood of the

M conversations in C, given the theme model. Weighting the log likelihood of the
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model parameters with the occurrence of different words in a chunk, we get the

following equation:

L(C) = log p(C) = ∑
λi,q∈C

∑
w∈λi,q

n(w,λi,q) · log
K

∑
j=1

p(w,θ j|λi,q,q), (3)

where n(w,λi,q) is the count of the word w in the chunk λi,q and p(w,θ j|λi,q,q) is

given by eqn. 2. However, the theme distributions of two chunks of a conversation

across two consecutive time slices should not too divergent from each other. That is,

they need to be temporally smooth. For a particular topic θ j this smoothness is thus

based on minimization of the following L2 distance between its probabilities across

every two consecutive time slices:

dT ( j) =
Q

∑
q=2

(p(θ j|q)− p(θ j|q−1))2. (4)

Incorporating this distance in eqn. 3 we get a new log likelihood function which

smoothes all the K theme distributions across consecutive time slices:

L1(C) = ∑
λi,q∈C

∑
w∈λi,q

n(w,λi,q) · log
K

∑
j=1

(p(w,θ j|λi,q,q)+ exp(−dT ( j))). (5)

Now we discuss how this theme model is further regularized to incorporate prior

knowledge about co-participation of individuals in the conversations.

Co-participation based Regularization. Our intuition behind this regularization is

based on the idea that if several participants comment on a pair of chunks, then their

theme distributions are likely to be closer to each other.

To recall, chunks being representations of conversations at a particular time slice,

we therefore define a participant co-occurrence graph G(C,E) where each vertex in

C is a conversation ci and an undirected edge ei,m exists between two conversations

ci and cm if they share at least one common participant. The edges are also associated

with weights ωi,m which define the fraction of common participants between two

conversations. We incorporate participant-based regularization based on this graph

by minimizing the distance between the edge weights of two adjacent conversations

with respect to their corresponding theme distributions.

The following regularization function ensures that the theme distribution func-

tions of conversations are very close to each other if the edge between them in the

participant co-occurrence graph G has a high weight:

R(C) = ∑
ci,cm∈C

K

∑
j=1

(ωi,m − (1− ( f (θ j|ci)− f (θ j|cm))2))2, (6)

where f (θ j|ci) is defined as a function of the theme θ j given the conversation ci

and the L2 distance between f (θ j|ci) and f (θ j|cm) ensures that the theme distribu-



Analyzing the Dynamics of Communication in Online Social Networks 15

tions of adjacent conversations are similar. Since a conversation is associated with

multiple chunks, thus f (θ j|ci) is given as in [26]:

f (θ j|ci) = p(θ j|ci) = ∑
λi,q∈ci

p(θ j|λi,q) · p(λi,q|ci). (7)

Now, using eqn. 5 and eqn. 6, we define the final combined optimization function

which minimizes the negative of the log likelihood and also minimizes the distance

between theme distributions with respect to the edge weights in the participant co-

occurrence graph:

O(C) = −(1− ς) ·L1(C)+ ς ·R(C), (8)

where the parameter ς controls the balance between the likelihood using the multi-

nomial theme model and the smoothness of theme distributions over the participant

graph. It is easy to note that when ς = 0, then the objective function is the tempo-

rally regularized log likelihood as in eqn. 5. When ς = 1, then the objective func-

tion yields themes which are smoothed over the participant co-occurrence graph.

Minimizing O(C) for 0 ≤ ς ≤ 1 would give us the theme models that best fit the

collection.

Now to learn the hidden parameters of the theme model in eqn. 8, we use a

different technique of parameter estimation based on the Generalized Expectation

Maximization algorithm (GEM [26]). Details of the estimation can be referred to

in [13].

3.3 Interestingness

In this section we describe our interestingness models and then discuss a method that

jointly optimizes the two types of interestingness incorporating temporal smooth-

ness.

3.3.1 Interestingness of Participants

We pose the problem of determining the interestingness of a participant at a certain

time slice as a simple one-dimensional random walk model where she communi-

cates either based on her past history of communication behavior in the previous

time slice, or relies on her independent desire of preference over different themes

(random jump). This formulation is described in Figure 3.

We conjecture that the state signifying the past history of communication be-

havior of a participant i at a certain time slice q, denoted as A(q− 1) comprises

the variables: (a) whether she was interesting in the previous time slice, IP
(q−1)(i),

(b) whether her comments in the past impacted other participants to communi-
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Fig. 3 Random walk model for determining interestingness of participants.

cate and their interestingness measures, PF
(q−1)(i, :) · IP

(q−1)2, (c) whether she fol-

lowed several interesting people in conversations at the previous time slice q− 1,

PL
(q−1)(i, :)·IP

(q−1), and (d) whether the conversations in which she participated be-

came interesting in the previous time slice q−1, PC
(q−1)(i; :) · IC

(q1). The indepen-

dent desire of a participant i to communicate is dependent on her theme distribution

and the strength of the themes at the previous time slice q−1: PT
(q−1)(i, :) ·TS

(q−1).

Thus the recurrence relation for the random walk model to determine the inter-

estingness of all participants at time slice q is given as:

IP
(q) = (1−β ) ·A(q−1) +β · (PT

(q−1) ·TS
(q−1)), (9)

where,

A(q−1) = α1 ·PL
(q−1) · IP

(q−1) +α2 ·PF
(q−1) · IP

(q−1) +α3 ·PC
(q−1) · IC

(q1). (10)

Here α1, α2 and α3 are weights that determine mutual relationship between the

variables of the past history of communication state A(q−1), and β the transition pa-

rameter of the random walk that balances the impact of past history and the random

jump state involving participant’s independent desire to communicate. In this paper,

β is empirically set to be 0.5.

3.3.2 Interestingness of Conversations

Similar to interestingness of participants, we pose the problem of determining the

interestingness of a conversation as a random walk where a conversation can be-

2 To recall, X(i, :) is the i-th row of the 2-dimensional matrix X.
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come interesting based on two states as shown in Figure 4. Hence to determine the

interestingness of a conversation i at time slice q, we conjecture that it depends

on whether the participants in conversation i became interesting at q− 1, given as,

PC
(q−1)(i, :)t · IP

(q−1), or whether the conversations belonging to the strong themes

in q−1 became interesting, which is given as, diag(CT
(q−1)(i, :) ·TS

(q−1)) · IC
(q−1).

Thus the recurrence relation of interestingness of all conversations at time slice q is:

IC
(q) = ψ ·PC

(q−1)t
· IP

(q−1) +(1−ψ) ·diag(CT
(q−1) ·TS

(q−1)) · IC
(q−1), (11)

where ψ is the transition parameter of the random walk that balances the impact

of interestingness due to participants and due to themes. Clearly, when ψ = 1, the

interestingness of conversation depends solely on the interestingness of the partici-

pants at q−1; and when ψ = 1, the interestingness depends on the theme strengths

in the previous time slice q−1.

Fig. 4 Random walk model for determining interestingness of conversations.

3.3.3 Joint Optimization of Interestingness

We observe that the measures of interestingness of participants and of conversa-

tions described in previous sections involve several free (unknown) parameters. In

order to determine optimal values of interestingness, we need to learn the weights

α1, α2 and α3 in eqn. 10 and the transition probability for the conversations in

eqn. 11. Moreover, the optimal measures of interestingness should ensure that the

variations in their values are smooth over time. Hence we present a novel joint opti-

mization framework, which maximizes the two interestingness measures for optimal

(α1,α2,α3,ψ) and also incorporates temporal smoothness.
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The joint optimization framework is based on the idea that the optimal parameters

in the two interestingness equations are those which maximize the interestingness

of participants and of conversations jointly. Let us denote the set of the parameters

to be optimized as the vector, X = [α1,α2,α3,ψ]. We can therefore represent IP and

IC as functions of X. We define the following objective function g(X) to estimate X

by maximizing g(X):

g(X) = ρ · ‖IP(X)‖2 +(1−ρ) · ‖IC(X)‖2, (12)

s.t. 0 ≤ ψ1,α1,α2,α3 ≥ 0,IP ≥ 0,IC ≥ 0,α1 +α2 +α3 = 1.

In the above function, ρ is an empirically set parameter to balance the impact of

each interestingness measure in the joint optimization. Now to incorporate temporal

smoothness of interestingness in the above objective function, we define a L2 norm

distance between the two interestingness measures across all consecutive time slices

q and q−1:

dP =
Q

∑
q=2

(‖IP
(q)(X)‖2 −‖IP

(q−1)(X)‖2),

dC =
Q

∑
q=2

(‖IC
(q)(X)‖2 −‖IC

(q−1)(X)‖2).

(13)

We need to minimize these two distance functions to incorporate temporal

smoothness. Hence we modify our objective function,

g1(X) = ρ · ‖IP(X)‖2 +(1−ρ) · ‖IC(X)‖2 + exp(−dP)+ exp(dC), (14)

where 0 ≤ ψ1,α1,α2,α3 ≥ 0,IP ≥ 0,IC ≥ 0,α1 +α2 +α3 = 1.

Maximizing the above function g1(X) for optimal X is equivalent to minimizing

−g1(X). Thus this minimization problem can be reduced to a convex optimiza-

tion form because (a) the inequality constraint functions are also convex, and (b)

the equality constraint is affine. The convergence of this optimization function is

skipped due to space limit.

Now, the minimum value of −g1(X) corresponds to an optimal X* and hence we

can easily compute the optimal interestingness measures IP* and IC* for the opti-

mal X*. Given our framework for determining interestingness of conversations, we

now discuss the measures of consequence of interestingness followed by extensive

experimental results.
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3.4 Consequences of Interestingness

An interesting conversation is likely to have consequences. These include the (com-

menting) activity of the participants, their cohesiveness in communication and an

effect on the interestingness of the themes. It is important to note here that the con-

sequence is generally felt at a future point of time; that is, it is associated with a

certain time lag (say, δ days) with respect to the time slice a conversation becomes

interesting (say, q). Hence we ask the following three questions related to the future

consequences of an interesting conversation:

Activity. Do the participants in an interesting conversation i at time q take part in

other conversations relating to similar themes at a future time, q+δ We define this

as follows,

Actq+δ (i) =
1

ϕi,q+δ

|ϕi,q+δ |

∑
k=1

|Pi,q|

∑
j=1

PC
(q+δ ( j,k), (15)

where Pi,q is the set of participants on conversation i at time slice q, and ϕi,q+δ is

the set of conversations m such that, m ∈ ϕi,q+δ if the KL-divergence of the theme

distribution of m at time q + δ from that of i at q is less than an empirically set

threshold: D(C
(q)
T (i, :)||C

(q+δ )
T (m, :)) ≤ ε .

Cohesiveness. Do the participants in an interesting conversation i at time q exhibit

cohesiveness in communication (co-participate) in other conversations at a future

time slice, q + δ In order to define cohesiveness, we first define co-participation of

two participants, j and k as,

O(q+δ )( j;k) =
PP

(q+δ )( j,k)

PC
(q+δ )( j,k)

, (16)

where PP
(q+δ )( j,k) is defined as the participant-participant matrix of co-participation

constructed as, P
(q+δ )
C ·(P

(q+δ )
C )t . Hence the cohesiveness in communication at time

q+δ between participants in a conversation i is defined as,

Co(q+δ )(i) =
1

|Pi,q|

Pi,q

∑
j=1

|Pi,q|

∑
k=1

O(q+δ )( j;k). (17)

Thematic Interestingness. Do other conversations having similar theme distribu-

tion as the interesting conversation ci (at time q), also become interesting at a future

time slice q + δ We define this consequence as thematic interestingness and it is

given by,
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Table 2 Political events in the time period of analysis.

DATE EVENT

Jul 23’08 Obama makes trip to the Europe and Middle East

Aug 29’08 Alaska Governor Sarah Palin is selected by McCain as his choice for the Republican
VP candidate

Sep 1’08 2008 Republican National Convention convenes in Minneapolis-St.Paul, Minnesota

Sep 15’08 Lehman Brothers goes bankrupt, Merrill Lynch is dissolved

Sep 24’08 President Bush addresses the nation on the financial crisis

T Int(q+delta)(i) =
1

ϕi,q+delta

|ϕi,q+delta|

∑
j=1

I
(q+δ )
C ( j). (18)

To summarize, we have developed a method to characterize interestingness of

conversations based on the themes, and the interestingness property of the partic-

ipants. We have jointly optimized the two types of interestingness to get optimal

interestingness of conversations. And finally we have discussed three metrics which

account for the consequential impact of interesting conversations. Now we would

discuss the experimental results on this model.

3.5 Experimental Studies

The experiments performed to test our model are based on a dataset from the largest

video-sharing site, YouTube, which serves as a rich source of online conversations

associated with shared media elements. We crawled a total set of 132,348 videos

involving 8,867,284 unique participants and 89,026,652 comments over a period of

15 weeks from June 20, 2008 to September 26, 2008. Now we discuss the results

of experiments conducted to test our framework. First we present the results on the

interestingness of participants, followed by that of conversations.

The results of interestingness of the participants of conversations are shown in

a visualization in Figure 5. We have visualized a set of 45 participants over the

period of 15 weeks by pooling the top three most interesting participants from each

week. The participants are shown column-wise in the visualization with decreasing

mean number of comments written from left to right. The intensity of the red block

represents the degree of interestingness of a participant at a particular time slice.

The figure also shows plots of the comment distribution and the interestingness

distributions for the participants at each time slice.

In order to analyze the dynamics of interestingness, we also qualitatively observe

its association with a set of external events collected from The New York Times,

related to Politics. The events along with their dates are shown in Table 2.

From the results of interestingness of participants, we observe that interesting-

ness closely follows the number of comments on weeks which are not associated

with significant external events (weeks 1-4, 6-10). Whereas on other weeks, espe-

cially the last three weeks 13, 14 and 15, we observe that there are several politi-
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Fig. 5 Interestingness of 45 participants from YouTube, ordered by decreasing number of com-
ments from left to right, is visualized. Interestingness is less affected by number of comments
during periods of several external events..

cal happenings and as a result the interestingness distribution of participants does

not seem to follow well the comment distribution. Hence we conclude that during

periods of significant external events, participants can become interesting despite

writing fewer comments—high interestingness can instead be explained due to their

preference for the conversational theme which reflects the external event.

The results of the dynamics of interestingness of conversations are shown in Fig-

ure 6. We conceive a similar visualization as Figure 5 presented previously. Conver-

sations are shown column-wise and time row-wise (15 weeks). A set of 45 conversa-

tions are pooled based on the top three most interesting conversations at each week.

From left to right, the conversations are shown with respect to decreasing number

of comments. We also show a temporal plot of the mean interestingness per week in

order to understand the relationship of interestingness to external happening from

Table 2.

From the visualization in Figure 6, we observe that the mean interestingness of

conversations increase significantly during weeks 11-15. This is explained when

we observe the association with large number of political happening in the said

period (Table 2). Hence we conclude that conversations in general become more

interesting when there are significant events in the external world—an artifact that

online conversations are reflective of chatter about external happenings.

In closing for this problem, note that today there is significant online chatter, dis-

cussion and thoughts that are expressed over shared rich media artifacts, e.g. pho-

tos, videos etc, often reflecting public sentiment on socio-political events. While

different media sites can provide coverage over the same information content with

variable degrees of associated chatter, it becomes imperative to determine suitable

methods and techniques to identify which media sources are likely to provide in-

formation that can be deemed to be “interesting” to a certain user. Suppose a user

Alice is interested in identifying “interesting” media sources dissipating informa-

tion on public sentiments regarding the recent elections in Iran back in 2009. To
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Fig. 6 Interestingness of 45 conversations from YouTube, ordered by decreasing number of com-
ments from left to right, is visualized. Mean interestingness of conversations increases during pe-
riods of several external events.

serve Alice’s needs, we need to be able to characterize chatter or conversations that

emerge centered around rich media artifacts, that she would find useful. We believe

the proposed framework can serve the needful to tackle the modern day information

needs on the social Web.

Nevertheless, it goes without saying that human communication activity, mani-

fested via such “conversations” involves mutual exchange of information, and the

pretext of any social interaction among a set of individuals is a reflection of how

our behavior, actions and knowledge can be modified, refined, shared or amplified

based on the information that flows from one individual to another. Thus, over sev-

eral decades, the structure of social groups, society in general and the relationships

among individuals in these societies have been shaped to a great extent by the flow

of information in them. Diffusion is hence the process by which a piece of informa-

tion, an idea or an innovation flows through certain communication channels over

time among the individuals in a social system.

The pervasive use of online social media has made the cost involved in propa-

gating a piece of information to a large audience extremely negligible, providing

extensive evidences of large-scale social contagion. There are multifaceted personal

publishing modalities available to users today, where such large scale social conta-

gion is prevalent: such as weblogs, social networking sites like MySpace and Face-

book as well as microblogging tools such as Twitter. These communication tools

are open to frequent widespread observation to millions of users, and thus offer an

inexpensive opportunity to capture large volumes of information flows at the indi-

vidual level. If we want to understand the extent to which ideas are adopted via

these communication affordances provided by different online social platforms, it

is important to understand the extent to which people are likely to be affected by

decisions of their friends and colleagues, or the extent to which “word-of-mouth”

effects will take hold via communication. In the following section we propose mod-
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els of diffusion of information in the light of how similar user attributes, that embody

observed “homophily” in networks, affect the overall social process.

4 Information Diffusion

The central goal in this section is to investigate the relationship between homophily

among users and the social process of information diffusion. By “homophily,” we

refer to the idea that users in a social system tend to bond more with ones who are

“similar” to them than ones who are dissimilar. The homophily principle has been

extensively researched in the social sciences over the past few decades [7, 25, 24].

These studies were predominantly ethnographic and cross-sectional in nature and

have revealed that homophily structures networks. That is, a person’s ego-centric

social network is often homogeneous with regard to diverse social, demographic, be-

havioral, and intra-personal characteristics [24] or revolves around social foci such

as co-location or commonly situated activities [14]. Consequently, in the context of

physical networks, these works provide evidence that the existence of homophily is

likely to impact the information individuals receive and propagate, the communica-

tion activities they engage in, and the social roles they form.

Homophilous relationships have also been observed on online media such as

Facebook, Twitter, Digg and YouTube. These networks facilitate the sharing and

propagation of information among members of their networks. In these networks,

homophilous associations can have a significant impact on very large scale social

phenomena, including group evolution and information diffusion. For example, the

popular social networking site Facebook allows users to engage in community ac-

tivities via homophilous relationships involving common organizational affiliations.

Whereas on the fast-growing social media Twitter, several topics such as ‘#Elec-

tions2008’, ‘#MichaelJackson’, ‘Global Warming’ etc have historically featured ex-

tensive postings (also known as “tweets”) due to the common interests of large sets

of users in politics, music and environmental issues respectively.

These networks, while diverse in terms of their affordances (i.e. what they al-

low users to do), share some common features. First, there exists a social action

(e.g. posting a tweet on Twitter) within a shared social space (i.e. the action can

be observed by all members of the users’ contact network), that facilitates a social

process (e.g. diffusion of information). Second, these networks expose attributes in-

cluding location, time of activity and gender to other users. Finally, these networks

also reveal these users attributes as well as the communication, to third party users

(via the API tools); thus allowing us to study the impact of a specific attribute on

information diffusion within these networks.

The study of the impact of homophily on information diffusion can be valuable

in several contexts. Today, due to the plethora of diverse retail products available

online to customers, advertising is moving from the traditional “word-of-mouth”

model, to models that exploit interactions among individuals on social networks. To

this effect, previously, some studies have provided useful insights that social rela-
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tionships impact the adoption of innovations and products [19]. Moreover there has

been theoretical and empirical evidence in prior work [36] that indicates that indi-

viduals have been able to transmit information through a network (via messages) in

a sufficiently small number of steps, due to homophily along recognizable personal

identities. Hence a viral marketer attempting to advertise a new product could ben-

efit from considering specific sets of users on a social space who are homophilous

with respect to their interest in similar products or features. Other contexts in which

understanding the role of homophily in information diffusion can be important, in-

clude, disaster mitigation during crisis situations, understanding social roles of users

and in leveraging distributed social search.

4.1 Preliminaries

4.1.1 Social Graph Model

We define our social graph model as a directed graph G(V,E)3, such that V is the

set of users and ei j ∈ E if and only if user ui and u j are “friends” of each other

(bi-directional contacts). Let us further suppose that each user ui ∈V can perform a

set of “social actions”, O = {O1,O2, . . .}, e.g. posting a tweet, uploading a photo on

Flickr or writing on somebody’s Facebook Wall. Let the users in V also be associated

with a set of attributes A = {ak} (e.g. location or organizational affiliation) that are

responsible for homophily. Corresponding to each value υ defined over an attribute

ak ∈ A , we construct a social graph G(ak = υ) such that it consists of the users in

G with the particular value of the attribute, while an edge exists between two users

in G(ak) if there is an edge between them in G.4 E.g., for location, we can define

sets of social graphs over users from Europe, Asia etc.

In this section, our social graph model is based on the social media Twitter. Twit-

ter features a micro-blogging service that allows users to post short content, known

as “tweets”, often comprising URLs usually encoded via bit.ly, tinyurl, etc. The

particular “social action” in this context is the posting of a tweet; also popularly

called “tweeting”. Users can also “follow” other users; hence if user ui follows u j,

Twitter allows ui to subscribe to the tweets of u j via feeds; ui is then also called

a “follower” of u j. Two users are denoted as “friends” on Twitter if they “follow”

each other. Note that, in the context of Twitter, using the bi-directional “friend” link

is more useful compared to the uni-directional “follow” link because the former is

more likely to be robust to spam—a normal user is less likely to follow a spam-like

account. Further, for the particular dataset of Twitter, we have considered a set of

four attributes associated with the users:

3 Henceforth referred to as the baseline social graph G.
4 For simplicity, we omit specifying the attribute value υ in the rest of the section, and refer to
G(ak = υ) as the “attribute social graph” G(ak).
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Location of users, extracted using the timezone attribute of Twitter users. Specifi-

cally, the values of location correspond to the different continents, e.g. Asia, Europe

and North America.

Information roles of users, we consider three categories of roles: “generators”,

“mediators” and “receptors”. Generators are users who create several posts (or

tweets) but few users respond to them (via the @ tag on Twitter, which is typically

used with the username to respond to a particular user, e.g. @BillGates). While

receptors are those who create fewer posts but receive several posts as responses.

Mediators are users who lie between these two categories.

Content creation of users, we use the two content creation roles: “meformer”

(users who primarily post content relating to self) and “informer” (users posting

content about external happenings) as discussed in [29].

Activity behavior of users, i.e. the distribution of a particular social action over a

certain time period. We consider the mean number of posts (tweets) per user over 24

hours and compute similarities between pairs of users based on the Kullback-Leibler

(KL) divergence measure of comparing across distributions.

4.1.2 Attribute Homophily

Attribute homophily [25, 24] is defined as the tendency of users in a social graph to

associate and bond with others who are “similar” to them along a certain attribute

or contextual dimension e.g. age, gender, race, political view or organizational affil-

iation. Specifically, a pair of users can be said to be “homophilous” if one of their

attributes match in a proportion greater than that in the network of which they are a

part. Hence in our context, for a particular value of ak ∈ A , the users in the social

graph G(ak) corresponding to that value are homophilous to each other.

4.1.3 Topic Diffusion

Diffusion with respect to a particular topic at a certain time is given as the flow of

information on the topic from one user to another via the social graph, and based on

a particular social action. Specifically,

Definition 1. Given two users ui and u j in the baseline social graph G such that

ei j ∈ E, there is diffusion of information on topic θ from u j to ui if u j performs a

particular social action Or related to θ at a time slice tm−1 and is succeeded by ui in

performing the same action on θ at the next time slice tm, where tm−1 < tm.5

5 Since we discuss our problem formulation and methodology for a specific social action, the
dependence of different concepts on Or is omitted in the rest of the section for simplicity.
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Further, topic diffusion subject to homophily along the attribute ak is defined as

the diffusion over the attribute social graph G(ak).

Fig. 7 Example of different diffusion series from Twitter on three different topics. The nodes are
users involved in diffusion while the edges represent “friend links” connecting two users.

In the context of Twitter, topic diffusion can manifest itself through three types of

evidences: (1) users posting tweets using the same URL, (2) users tweeting with the

same hashtag (e.g. #MichaelJackson) or a set of common keywords, and (3) users

using the re-tweet (RT) symbol. We utilize all these three cases of topic diffusion in

this work.

4.1.4 Diffusion Series

In order to characterize diffusion, we now define a topology called a diffusion series6

that summarizes diffusion in a social graph for a given topic over a period of time.

Formally,

Definition 2. A diffusion series sN(θ) on topic θ and over time slices t1 to tN is

defined as a directed acyclic graph where the nodes represent a subset of users in

the baseline social graph G, who are involved in a specific social action Or over θ
at any time slice between t1 and tN .

Note, in a diffusion series sN(θ) a node represents an occurrence of a user ui

creating at least one instance of the social action Or about θ at a certain time slice

tm such that t1 ≤ tm ≤ tN . Nodes are organized into “slots”; where nodes associated

with the same time slice tm are arranged into the same slot lm. Hence it is possible

6 Note, a diffusion series is similar to a diffusion tree as in [23, 4], however we call it a “series”
since it is constructed progressively over a period of time and allows a node to have multiple
sources of diffusion.
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that the same user is present at multiple slots in the series if s/he tweets about the

same topic θ at different time slices. Additionally, there are edges between nodes

across two adjacent slots, indicating that user ui in slot lm performs the social action

Or on θ at tm, after her friend u j has performed action on the same topic θ at the

previous time slice tm−1 (i.e. at slot lm−1). There are no edges between nodes at

the same slot lm: a diffusion series sN(θ) in this work captures diffusion on topic

θ across time slices, and does not include possible flow occurring at the same time

slice.

For the Twitter dataset, we have chosen the granularity of the time slice tm to be

sufficiently small, i.e. a day to capture the dynamics of diffusion. Thus all the users

at slot lm tweet about θ on the same day; and two consecutive slots have a time

difference of one day. Examples of different diffusion series constructed on topics

from Twitter have been shown in Figure 7.

Since each topic θ can have multiple disconnected diffusion series sN(θ) at any

given time slice tN , we call the family of all diffusion series a diffusion collection

SN(θ) = {sN(θ)}. Corresponding to each value of the attribute ak, the diffusion

collection over the attribute social graph G(ak) at tN is similarly given as SN;ak
(θ) =

{sN;ak
(θ)}.

4.2 Problem Statement

Given, (1) a baseline social graph G(V,E); (2) a set of social actions O = {O1,O2, . . .}
that can be performed by users in V , and (3) a set of attributes A = {ak} that are

shared by users in V , we perform the following two preliminary steps. First, we

construct the attribute social graphs {G(ak)}, for all values of ak ∈ A . Second, we

construct diffusion collections corresponding to G and {G(ak)} for a given topic θ
(on which diffusion is to be estimated over time slices t1 to tN) and a particular so-

cial action Or: these are given as SN(θ) and {SN;ak
(θ)} respectively. The technical

problem addressed in this section involves the following:

1. Characterization: Based on each of the diffusion collections SN(θ) and {SN;ak
(θ)},

we extract diffusion characteristics on θ at time slice tN given as: dN(θ) and

{dN;ak
(θ)} respectively (section 4.3);

2. Prediction: We predict the set of users likely to perform the same social action

at the next time slice tN+1 corresponding to each of the diffusion collections

SN(θ) and {SN;ak
(θ)}. This gives the diffusion collections at tN+1: ŜN+1(θ)

and {ŜN+1;ak
(θ)}∀ak ∈ A (section 4.4);

3. Distortion Measurement: We extract diffusion characteristics at tN+1 over the

(predicted) diffusion collections, ŜN+1(θ) and {ŜN+1;ak
(θ)}, given as, d̂N+1(θ)

and {d̂N+1;ak
(θ)} respectively. Now we quantify the impact of attribute ho-

mophily on diffusion based on two kinds of distortion measurements on d̂N+1(θ)
and {d̂N+1;ak

(θ)}. A particular attribute ak ∈ A would have an impact on diffu-

sion if d̂N+1;ak
(θ), avergaed over all possible values of ak: (a) has lower distortion
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with respect to the actual (i.e. dN+1(θ)); and (b) can quantify external time series

(search, news trends) better, compared to either d̂N+1(θ) or {d̂N+1;a′
k
(θ)}, where

k′ 6= k (section 4.7).

4.3 Characterizing Diffusion

We describe eight different measures for quantifying diffusion characteristics given

by the baseline and the attribute social graphs on a certain topic and via a particular

social action.

Volume: Volume is a notion of the overall degree of contagion in the social graph.

For the diffusion collection SN(θ) over the baseline social graph G, we formally

define volume vN(θ) with respect to θ and at time slice tN as the ratio of nN(θ) to

ηN(θ), where nN(θ) is the total number of users (nodes) in the diffusion collection

SN(θ), and ηN(θ) is the number of users in the social graph G associated with θ .

Participation: Participation pN(θ) at time slice tN [4] is the ratio of the number of

non-leaf nodes in the diffusion collection SN(θ), normalized by ηN(θ).

Dissemination: Dissemination δN(θ) at time slice tN is given by the ratio of the

number of users in the diffusion collection SN(θ) who do not have a parent node,

normalized by ηN(θ). In other words, they are the “seed users” or ones who get

involved in the diffusion due to some unobservable external influence, e.g. a news

event.

Reach: Reach rN(θ) at time slice tN [23] is defined as the ratio of the mean of the

number of slots to the sum of the number of slots in all diffusion series belonging to

SN(θ).

Spread: For the diffusion collection SN(θ), spread sN(θ) at time slice tN [23] is

defined as the ratio of the maximum number of nodes at any slot in sN(θ) ∈ SN(θ)
to nN(θ).

Cascade Instances: Cascade instances cN(θ) at time slice tN is defined as the ratio

of the number of slots in the diffusion series sN(θ) ∈ SN(θ) where the number of

new users at a slot lm (i.e. non-occurring at a previous slot) is greater than that at the

previous slot lm−1, to LN(θ), the number of slots in sN(θ) ∈ SN(θ).

Collection Size: Collection size αN(θ) at time slice tN is the ratio of the number

of diffusion series sN(θ) in SN(θ) over topic θ , to the total number of connected

components in the social graph G.
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Rate: We define rate γN(θ) at time slice tN as the “speed” at which information on

θ diffuses in the collection SN(θ). It depends on the difference between the median

time of posting of tweets at all consecutive slots lm and lm−1 in the diffusion series

sN(θ) ∈ SN(θ). Hence it is given as:

γN(θ) = 1/(1+
1

LN(θ) ∑
lm−1,lm∈SN(θ)

(tm(θ)− tm−1(θ)), (19)

where tm(θ) and tm−1(θ) are measured in seconds and tm(θ) corresponds to the

median time of tweet at slot lm in sN(θ) ∈ SN(θ).
These diffusion measures thus characterize diffusion at time slice tN over SN(θ)

as the vector: dN(θ) = [vN(θ), pN(θ),δN(θ),rN(θ),sN(θ),cN(θ),αN(θ),γN(θ)].
Similarly, we compute the diffusion measures vector over {SN;ak

(θ)}, given by:

{dN;ak
(θ)}, corresponding to each value of ak.

4.4 Prediction Framework

In this section we present our method of predicting the users who would be part of

the diffusion collections at a future time slice for the baseline and attribute social

graphs. Our method comprises the following steps. (1) Given the observed diffusion

collections until time slice tN (i.e. SN(θ) and SN;ak
(θ)), we first propose a prob-

abilistic framework based on Dynamic Bayesian networks [30] to predict the users

likely to perform the social action Or at the next time slice tN+1. This would yield us

users at slot lN+1 in the different diffusion series at tN+1. (2) Next, these predicted

users give the diffusion collections at tN+1: ŜN+1(θ) and {ŜN+1;ak
(θ)}.

We present a Dynamic Bayesian network (DBN) representation of a particular

social action by a user over time, that helps us predict the set of users likely to

perform the social action at a future time (Figure 8(a)). Specifically, at any time

slice tN , a given topic θ and a given social action, the DBN captures the relationship

between three nodes:

Fig. 8 (a) Structure of the Dynamic Bayesian network used for modeling social action of a user
ui. The diagram shows the relationship between environmental features (Fi,N(θ)), hidden states
(Si,N(θ)) and the observed action (Oi,N(θ)). (b) State transition diagram showing the ‘vulnerable’
(Si = 1) and ‘indifferent’ states (Si = 0) of a user ui.
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Environmental Features. That is, the set of contextual variables that effect a user

ui’s decision to perform the action on θ at a future time slice tN+1 (given by Fi,N(θ)).
It comprises three different measures: (1) ui’s degree of activity on θ in the past,

given as the ratio of the number of posts (or tweets) by ui on θ , to the total number

of posts between t1 and tN ; (2) mean degree of activity of ui’s friends in the past,

given as the ratio of the number of posts by ui’s friends on θ , to the total number

of posts by them between t1 and tN ; and (3) popularity of topic θ at the previous

time slice tN , given as the ratio of the number of posts by all users on θ , to the total

number of posts at tN .

States. That is, latent states (Si,N(θ)) of the user ui responsible for her involvement

in diffusion at tN+1. Our motivation in conceiving the latent states comes from the

observation that, in the context of Twitter, a user can tweet on a topic under two

kinds of circumstances: first, when she observes her friend doing so already: mak-

ing her vulnerable to diffusion; and second, when her tweeting is indifferent to the

activities of her friends. Hence the state node at tN+1 that impacts ui’s action can

have two values as the vulnerable and the indifferent state (Figure 8(b)).

Observed Action. That is, evidence (Oi,N(θ)) of the user ui performing (or not

performing) the action, corresponding values being: {1,0} respectively.

Now we show how to predict the probability of the observed action at tN+1 (i.e.

Ôi,N+1(θ)) using Fi,N(θ) and Si,N+1(θ), based on the DBN model. Our goal is to

estimate the following expectation7:

Ôi,N+1 = E(Oi,N+1|Oi,N ,Fi,N). (20)

This involves computing P(Oi,N+1|Oi,N ,Fi,N). This conditional probability can

be written as an inference equation using the temporal dependencies given by the

DBN and assuming first order Markov property:

P(Oi,N+1|Oi,N ,Fi,N)

= ∑
Si,N+1

[P(Oi,N+1|Si,N+1,Oi,N ,Fi,N).P(Si,N+1|Oi,N ,Fi,N)] .

= ∑
Si,N+1

P(Oi,N+1|Si,N+1).P(Si,N+1|Si,N ,Fi,N).

(21)

Our prediction task thus involves two parts: predicting the probability of the hid-

den states given the environmental features, P(Si,N+1|Si,N ,Fi,N); and predicting the

probability density of the observation nodes given the hidden states, P(Oi,N+1|Si,N+1),
and thereby the expected value of observation nodes Ôi,N+1. These two steps are

discussed in the following subsections.

7 Without loss of generalization, we omit the topic θ in the variables in this subsection for the sake
of simplicity.
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4.5 Predicting Hidden States

Using Bayes rule, we apply conditional independence between the hidden states

and the environmental features at the same time slice (ref. Figure 8(a)). The prob-

ability of the hidden states at tN+1 given the environmental features at tN , i.e.

P(Si,N+1|Si,N ,Fi,N) can be written as:

P(Si,N+1|Si,N ,Fi,N) ∝ P(Fi,N |Si,N).P(Si,N+1|Si,N). (22)

Now, to estimate the probability density of P(Si,N+1|Si,N ,
Fi,N) using eqn. 22 we assume that the hidden states Si,N+1 follows a multinomial

distribution over the environmental features Fi,N with parameter φi,N , and a conju-

gate Dirichlet prior over the previous state Si,N with parameter λi,N+1. The optimal

parameters of the pdf of P(Si,N+1|Si,N ,Fi,N) can now be estimated using MAP:

L (P(Si,N+1|Si,N ,Fi,N))

= log(P(Fi,N |Si,N))+ log(P(Si,N+1|Si,N))

= logmultinom(vec(Fi,N);φi,N)

+ logDirichlet(vec(Si,N+1);λi,N+1)

= log
∑ jk Fi,N; jk!

∏ jk Fi,N; jk! ∏
jk

φ
Fi,N; jk

i,N; jk + log
1

B(λi,N+1)
∏

jl

S
Si,N; jl

i,N+1

= ∑
jk

Fi,N; jk. logφi,N; jk +∑
jl

Si,N; jl . logSi,N+1; jl + const.

(23)

where B(λi,N+1) is a beta-function with the parameter λi,N+1. Maximizing the log

likelihood in eqn 23 hence yields the optimal parameters for the pdf of P(Si,N+1|Si,N ,Fi,N).

4.6 Predicting Observed Action

To estimate the probability density of the observation nodes given the hidden states,

i.e. P(Oi,N+1|Si,N+1) we adopt a generative model approach and train two discrim-

inative Hidden Markov Models—one corresponding to the class when ui performs

the action, and the other when she does not. Based on observed actions from t1 to

tN , we learn the parameters of the HMMs using the Baum-Welch algorithm. We

then use the emission probability P(Oi,N+1|Si,N+1) given by the observation-state

transition matrix to determine the most likely sequence at tN+1 using the Viterbi

algorithm. We finally substitute the emission probability P(Oi,N+1|Si,N+1) from

above and P(Si,N+1|Si,N ,Fi,N) from eqn. 23 into eqn. 21 to compute the expectation

E(Oi,N+1|Oi,N ,Fi,N) and get the estimated observed action of ui: Ôi,N+1 (eqn. 20).

The details of this estimation can be found in [33].

We now use the estimated social actions Ôi,N+1(θ) of all users at time slice tN+1

to get a set of users who are likely to involve in the diffusion process at tN+1 for
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both the baseline and the attribute social graphs. Next we use G and {G(ak)} to

associate edges between the predicted user set, and the users in each diffusion series

corresponding to the diffusion collections at tN . This gives the diffusion collection

tN+1, i.e. ŜN+1(θ) and {ŜN+1;ak
(θ)} (ref. section 4.1.4).

4.7 Distortion Measurement

We now compute the diffusion feature vectors d̂N+1(θ) or {d̂N+1;ak
(θ)} based on

the predicted diffusion collections ŜN+1(θ) and {ŜN+1;ak
(θ)} from section 4.4.

To quantify the impact of attribute homophily on diffusion at tN+1 corresponding to

ak ∈ A , we define two kinds of distortion measures—(1) saturation measurement,

and (2) utility measurement metrics.

Saturation Measurement. We compare distortion between the predicted and actual

diffusion characteristics at tN+1. The saturation measurement metric is thus given as

1−D(d̂N+1(θ),dN+1(θ)) and 1−D(d̂N+1;ak
(θ),dN+1(θ)), avergaed over all val-

ues of ∀ak ∈A respectively for the baseline and the attribute social graphs. dN+1(θ)
gives the actual diffusion characteristics at tN+1 and D(A,B) Kolmogorov-Smirnov

(KS) statistic, defined as max(|A−B|).

Utility Measurement. We describe two utility measurement metrics for quanti-

fying the relationship between the predicted diffusion characteristics d̂N+1(θ) or

{d̂N+1;ak
(θ)} on topic θ , and the trends of same topic θ obtained from external

time series. We collect two kinds of external trends: (1) search trends–the search

volume of θ over t1 to tN+1
8; (2) news trends—the frequency of archived news ar-

ticles about θ over same period9. The utility measurement metrics are defined as

follows:

Search trend measurement: We first compute the cumulative distribution func-

tion (CDF) of diffusion volume as ED
N+1(θ) = ∑m≤(N+1) |lm(ŜN+1(θ))|/QD, where

|lm(ŜN+1(θ))| is the number of nodes at slot lm in the collection ŜN+1(θ). QD is the

normalized term and is defined as ∑m |lm(ŜN+1(θ))|. Next, we compute the CDF

of search volume as ES
N+1(θ) = ∑m≤(N+1) f S

m(θ)/QS, where f S
m(θ) is the search

volume at tm, and QS is the normalization term. The search trend measurement is

defined as 1−D(ED
N+1(θ),ES

N+1(θ)), where D(A,B) is the KS statistic.

News trend measurement: Similarly, we compute the CDF of news volume as

EN
N+1(θ) = ∑m≤(N+1) f N

m (θ)/QN , where f N
m (θ) is the number of archived news

articles available from Google News for tm, and QN is the normalization term. The

news trend measurement is similarly defined as 1−D(ED
N+1(θ),EN

N+1(θ)).

8 http://www.google.com/intl/en/trends/about.html
9 http://news.google.com/
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Using the same method as above, we compute the search and news trend mea-

surement metrics for the attribute social graphs—given as, 1−D(ED
N+1;ak

(θ),ES
N+1(θ))

and 1−D(ED
N+1;ak

(θ),EN
N+1(θ)), averaged over all values of ∀ak ∈ A respectively.

4.8 Experimental Studies

We present our experimental results in this section that validate the proposed frame-

work of modeling diffusion. We utilize a dataset that is a snowball crawl from Twit-

ter, comprising about 465K users, with 837K edges and 25.3M tweets over a time

period between Oct’06 and Nov’09. For our experiments, we focus on a set of 125

randomly chosen “trending topics” that are featured on Twitter over a three month

period between Sep to Nov 2009. For the ease of analysis, we organize the different

trending topics into generalized themes based on the popular open source natural

language processing toolkit called “OpenCalais” (http://www.opencalais.com/).

We discuss attribute homophily subject to variations across the different themes,

and averaged over time (Oct-Nov 2009). Figure 9 shows that there is considerable

variation in performance (in terms of saturation and utility measures) over the eight

themes.

In the case of saturation measurement, we observe that the location attribute

(LOC) yields high saturation measures over themes related to events that are of-

ten “local” in nature: e.g. (1) ‘Sports’ comprising topics such as ‘NBA’, ‘New York

Yankees’, ‘Chargers’, ‘Sehwag’ and so on–each of them being of interest to users

respectively from the US, NYC, San Diego and India; and (2) ‘Politics’ (that in-

cludes topics like ‘Obama’, ‘Tehran’ and ‘Afghanistan’)—all of which were asso-

ciated with important, essentially local happenings during the period of our anal-

ysis. Whereas for themes that are of global importance, such as ‘Social Issues’,

including topics like ‘#BeatCancer’, ‘Swine Flu’, ‘#Stoptheviolence’ and ‘Unem-

ployment’, the results indicate that the attribute, information roles (IRO) yields the

best performance—since it is able to capture user interests via their information

generation and consumption patterns.

From the results on utility measurement, we observe that for themes associated

with current external events (e.g. ‘Business-Finance’, ‘Politics’, ‘Entertainment-

Culture’ and ‘Sports’), the attribute, activity behavior (ACT) yields high utility mea-

sures. This is because information diffusing in the network on current happenings,

are often dependent upon the temporal pattern of activity of the users, i.e. their time

of tweeting. For ‘Human-Interest’, ‘Social Issues’ and ‘Hospitality-Recreation’, we

observe that the content creation attribute (CCR) yields the best performance in pre-

diction, because it reveals the habitual properties of users in dissipating information

on current happenings that they are interested in.

From these studies, we interestingly observe that attribute homophily indeed im-

pacts the diffusion process; however the particular attribute that can best explain the

actual diffusion characteristics often depends upon: (1) the metric used to quantify

diffusion, and the (2) topic under consideration.
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Fig. 9 Mean saturation and utility measurement of predicted diffusion characteristics shown
across different themes.

5 Summary and Future Work

Our central research goal in this chapter has been to instrument the three organizing

principles that characterize our communication processes online: the information or

concept that is the content of communication, and the channel i.e. the media via

which communication takes place. We have presented characterization techniques,

develop computational models and finally discuss large-scale quantitative observa-

tional studies for both of these organizing ideas

Based on all the outcomes of the two research perspectives that we discussed

here, we believe that this research can make significant contribution into a better

understanding of how we communicate online and how it is redefining our collec-

tive sociological behavior. Beyond exploring new sociological questions, the collec-

tive modeling of automatically measurable interactional data will also enable new

applications that can take advantage of knowledge of a person’s social context or

provide feedback about her social behavior. Communication modeling may also

improve the automated prediction and recognition of human behavior in diverse so-

cial, economic and organizational settings. For collective behavior modeling, the

social network can define dependencies between people’s behavior with respect to

their communication patterns, and features of the social network may be used to

improve prediction and recognition. Additionally, some of the statistical techniques

developed in this thesis for analyzing interpersonal communication may find new

application to behavior modeling (collective or otherwise) and machine learning.

In the future, we are interested in two different non-trivial problems that can

provide us with a deeper and more comprehensive understanding of the online com-

munication process. The first of the two problems deals with the idea of evolution

of network structure from an ego-centric perspective, in the context of online social

spaces that feature multiplex ties. The second problem is geared towards exploring

how sociological principles such as homophily (or heterophily) impacts media cre-

ation (e.g. uploading a photo on Flickr, or favorting a video on YouTube) on the

part of the users. We are interested to study how the observed social interactions

among the individuals impact such dynamics. Note, both of the proposed problems

consider an observed sociological phenomena prevalent on the social media sites,
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and attempts to understand it with the help of large-scale quantitative observational

studies.
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