
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Hassanzadeh, Reza, Nayak, Richi, & Stebila, Douglas
(2012)
Analyzing the effectiveness of graph metrics for anomaly detection in on-
line social networks.
In Wang, X S, Cruz, I, Delis, A, & Huang, G (Eds.) Web Information Sys-
tems Engineering: 13th International Conference, WISE 2012, Proceed-
ings [Lecture Notes in Computer Science, Vol 7651].
Springer, Germany, pp. 624-630.

This file was downloaded from: https://eprints.qut.edu.au/57995/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1007/978-3-642-35063-4_45

https://eprints.qut.edu.au/view/person/Hassanzadeh,_Reza.html
https://eprints.qut.edu.au/view/person/Nayak,_Richi.html
https://eprints.qut.edu.au/view/person/Stebila,_Douglas.html
https://eprints.qut.edu.au/57995/
https://doi.org/10.1007/978-3-642-35063-4_45


Analyzing the Effectiveness of Graph Metrics for 
Anomaly Detection in Online Social Networks  

Reza Hassanzadeh, Richi Nayak, Douglas Stebila  

School of Electrical Engineering and Computer Science, Science and Engineering Faculty, 
Queensland University of Technology, Brisbane, Australia 

{r.hassanzadeh,r.nayak,Stebila}@qut.edu.au 
  

Abstract. Online social networks can be modelled as graphs; in this paper, we 
analyze the use of graph metrics for identifying users with anomalous relation-
ships to other users. A framework is proposed for analyzing the effectiveness of 
various graph theoretic properties such as the number of neighbouring nodes 
and edges, betweenness centrality, and community cohesiveness in detecting 
anomalous users. Experimental results on real-world data collected from online 
social networks show that the majority of users typically have friends who are 
friends themselves, whereas anomalous users’ graphs typically do not follow 
this common rule. Empirical analysis also shows that the relationship between 
average betweenness centrality and edges identifies anomalies more accurately 
than other approaches. 

Keywords: Anomaly detection, Graph mining, Data mining, Online Social 
Networks.  

1  Introduction  

Online social networks are being used in various domains such as business, education, 
telemarketing and many others. With increasing use of social networks comes in-
creasing prevalence of illegal activities using social networks [1]. It is critical that 
methods of anomaly detection in social networks are developed to coincide with de-
velopments in usage of social networks.  

An online social network can be modelled as graph [2] in which the nodes repre-
sent people and the edges represent the links between nodes using a range of relation-
ships such as friendship, affiliation, family and many others. In this paper we propose 
the use of various graph properties for differentiating people’s online behaviour by 
their usage patterns. If the usage pattern of a user follows common patterns, we de-
scribe the usage as normal, otherwise the usage is an outlier or anomalous. Looking 
at the relationships of users can reveal meaningful patterns: users can hide their iden-
tity by supplying false information but they cannot hide certain types of metadata, 
such as the links that they have established with other users.  



We use local graph properties to extract common rules. Local metrics refer to a 
single node (ego), its 1-level neighbourhood (an egonet) and 2-level neighbourhood (a 
super-egonet). These undeniable relationships can help in spotting behaviours that are 
abnormal.  

In particular, we propose the use of betweenness centrality and average between-
ness centrality of a user’s egonet, and the community cohesiveness of the user’s super-
egonet as potential measures for identifying anomalies based on the structure of users’ 
links. Additionally, we give a framework for evaluating the effectiveness of various 
combinations of properties for identifying anomalous nodes in unlabelled datasets.    

We evaluate the proposed methods with existing data collected from three online 
social networks (Facebook, Orkut, and Flickr). Results show that the majority of users 
follow the “friends of friends are often friends” pattern and a very few users follow 
either the “cliques or near-cliques” pattern (all the neighbours connected) or the “stars 
or near-star” pattern (mostly disconnected). Previous works [1, 3-5] have established 
that these two types of patterns can be connected to abnormalities in the graph, par-
ticularly in online social networks. Several graph theoretic metrics, in particular aver-
age betweenness centrality give better accuracy in detecting anomalies than existing 
approaches. 

1.1 Related Work 

Limited work has been done on applying anomaly detection techniques to online so-
cial networks until recently [4, 6]. Recent work can be divided into two categories: 
behaviour-based techniques that consider the dynamic usage behaviour of users; and 
structure-based techniques [1, 3-5, 7] that consider the static structure of the graph. 
Behaviour-based techniques concentrate on mining users’ usage patterns. Although 
they can help to spot anomalies, they are very technology-dependent. Akoglu et al [4] 
designed a structure-based approach entitled the OddBall algorithm for analyzing 
social network graphs. OddBall is based on the power law relation between number of 
nodes and number of edges and a density-based outlier detection technique to calcu-
late a final anomaly score. However, using only a power law relation is prone to miss 
some outliers especially for egonets with a high number of nodes and edges. In this 
paper, we propose an algorithm and a framework for detecting anomalies in an unla-
belled social network’s dataset based on betweenness centrality.  

In traditional data mining, a common method of detecting outlier is identification 
of clusters. Similarly, within the modelled graph, a community can be defined as a 
group of nodes which share common properties. Detecting communities can give us 
useful information to find if there are any similarities or common interests between 
the friends of suspected users. Graph-based community detection techniques have 
been investigated in the literature [8, 9]. Existing algorithms try to find parts of the 
network that are better connected internally. We propose an alternative method based 
on the number of external links between two users’ egonets. 

 



2 The Proposed Framework 

We propose a framework that introduces semi-supervised graph-based anomaly detec-
tion with the use of a scoring method to report anomalies. It aims to find the common 
behaviour that is followed by the majority of nodes. It computes graph metrics of a 
user’s egonet and then examines relationships between these properties. The common 
patterns are then used in distinguishing users that may be anomalous. Our proposed 
analysis method consists of the following steps, which will be explained in detail in 
the rest of this section:  
Step 1: Compute graph metrics 

Metrics computed include: N: number of nodes in a user’s egonet; E: number of 
edges in a user’s egonet; ABC: the average betweenness centrality of all nodes in a 
user’s egonet; and Com: the community cohesiveness of the user’s super-egonet. 

Step 2: Compute fitting curve 
For the relationships between N vs. E, ABC vs. E, and N vs. Com, the fitting curve 
will be computed. The fit may be linear or power law [10]. 

Step 3: Compute outlier score 
For each relationship, an anomaly score function, which is based on distance from 
the fitting line, is determined.  

Step 4: Label for evaluation 
A labelled subset of nodes is obtained. 

Step 5: Find threshold  
Using the scoring function from step 3, a threshold that minimizes the number of 
false negatives and false positives rate is determined for the labelled subset of data. 

2.1 Step 1: Compute Graph Metrics                   

A graph 𝒢 = (𝒱,ℰ) consists of a set 𝒱  of vertices (nodes or users) and a set ℰ  of 
edges (links between two users).  Given the graph 𝒢, an ego 𝒾  is a user (or node) and 
ℯ𝑔𝑜𝓃ℯ𝓉𝒾 = {𝒾, 𝒾1, 𝒾2, 𝒾3, … , 𝒾n} consists of the user’s neighbours 𝒾1, … , 𝒾n. A user’s 
super-egonet includes the user’s egonet and the egonets of all its neighbours: the su-
per-egonet of ego 𝒾  is 𝑠𝑢𝑝𝑒𝑟– 𝑒𝑔𝑜𝑛𝑒𝑡𝒾 = �𝑒𝑔𝑜𝑛𝑒𝑡𝒾, 𝑒𝑔𝑜𝑛𝑒𝑡𝒾1 , … , 𝑒𝑔𝑜𝑛𝑒𝑡𝒾𝑛�.  

2.1.1 Average Betweenness Centrality  

The betweenness centrality (ℬ𝒞) of a node in a graph is the number of shortest paths 
between all pairs of nodes within that graph that go through that node. 

Definition 1 (Betweenness centrality). The betweenness centrality of a vertex 
𝒾 ∈ 𝒱(𝒢) is 

ℬ𝒞𝒾 = � 𝜓𝒾𝑠𝑑/ 𝑛𝑠𝑑
𝑠≠𝒾≠𝑑

       𝒾, 𝑠,𝑑 ∈ 𝒱                                                                           ( 1 ) 

where  𝜓𝒾𝑠𝑑  is the number of shortest paths between s and d passing through node 𝒾 
and 𝑛𝑠𝑑 to be the total number of shortest paths from s to d. Brandes’ algorithm for 
computing betweenness centrality runs in time 𝒪(𝓃𝓂)  and space 𝒪(𝓃 + 𝓂) , 



where 𝓃 is the number of nodes and 𝓂 is the number of edges [11]. Each new edge 
defining a new shortest path will reduce ℬ𝒞 of the central node 

We propose the use of the average betweenness centrality (𝒜ℬ𝒞) of a node within the 
node’s egonet.  Recall that ℬ𝒞 for each node is computed as the number of shortest 
paths between all pairs of nodes within the egonet that go through that node. Adding 
edges between nodes in the egonet reduces the betweenness centrality of the ego. 
Intuitively, an egonet has higher average betweenness centrality when more nodes are 
involved in shortest paths. 

Definition 2 (Average Betweenness Centrality). The average betweenness centrality of 
ℯ𝑔𝑜𝓃ℯ𝓉𝒾  is : 

𝜎𝒾𝒶𝒷𝒸 =
ƒ(𝒾) + ∑ ƒ�𝒾𝒿�𝑛

𝒿=1

𝑛
,   𝑤ℎ𝑒𝑟𝑒    𝑛 =  |𝒱𝑒𝑔𝑜𝓃ℯ𝓉𝑖| , 𝒾 ∈ 𝒱(𝒢)                       (2) 

We define ƒ(𝒾𝒿): 𝒱ego𝓃ℯ𝓉𝒾 →  ℝ≥0  as the function that maps each node 𝒾𝒿  within 
ℯ𝑔𝑜𝓃ℯ𝓉𝒾 to its betweenness centrality within its own egonet. 

 
2.1.2 Community Detection 

People naturally tend to form communities based on their similarity and common 
interests. This behaviour stands true in online social networks [9]. The information 
which can be extracted from communities’ structure is useful to analyze the behaviour 
of a user and can lead towards identifying anomalous behaviour. For community de-
tection we examine users’ super-egonets, which can give us sufficient information to 
find if there are any similarity and common interests between their friends by examin-
ing their connections. The pattern of communities between friends of friends also can 
set rules that help us to spot anomalous users.  

Definition 3 (External Degree). The external degree of 𝑒𝑔𝑜𝑛𝑒𝑡𝒾𝓂to 𝑒𝑔𝑜𝑛𝑒𝑡𝒾𝑛is de-
fined as: 
𝒹𝒾(𝒾𝓂 , 𝒾𝓃) = �𝒱𝑒𝑔𝑜𝓃ℯ𝓉𝑖𝓂  ∩  𝒱𝑒𝑔𝑜𝓃ℯ𝓉𝑖𝑛 � +  
            � 𝒾𝒿 ∈  ℰ ∶ 𝒾 ∈  𝒱𝑒𝑔𝑜𝓃ℯ𝓉𝑖𝓂  , 𝒿 ∈  𝒱𝑒𝑔𝑜𝓃ℯ𝓉𝑖𝑛  �       , 𝒾𝓂 , 𝒾𝑛 ∈ 𝒢                 (3) 

where 𝒱𝑒𝑔𝑜𝓃ℯ𝓉𝒾𝓂  is the set of nodes of  𝑒𝑔𝑜𝓃ℯ𝓉𝒾𝓂  and 𝒱𝑒𝑔𝑜𝓃ℯ𝓉𝒾𝑛   is the set of nodes 
of 𝑒𝑔𝑜𝓃ℯ𝓉𝒾𝑛 . The normalized external degree is de�ined as follows:  

𝒹𝒾(𝒾𝓂 , 𝒾𝓃)norm =  
𝒹𝒾(𝒾𝓂 , 𝒾𝓃)

min(|𝒾𝓂| , |𝒾𝑛|)
                                                                     (4) 

Definition 4 (Community). The egonets of users 𝒾𝓂 and  𝒾𝑛  form a community if at 
least the half of the nodes of the smaller egonet connect to the other egonet. 

𝒞𝒾  (𝒾𝓂 , 𝒾𝓃) = � 1, if 𝒹𝒾(𝒾𝓂 , 𝒾𝓃)norm ≥  min(|𝒾𝓂| , |𝒾𝑛|) / 2  
  0, otherwise

�              (5) 



2.2 Step 2: Compute Fitting Curve  

Local graph metrics related to a single node, its egonet and its super-egonet are used 
to identify common patterns. We model the relationships between the local metrics 
using distribution models such as linear and power law. Coefficient of determination 
(𝑅2) of each model is computed as a goodness of fit measure for the fitting curves.  
𝑅2 = 1 − 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 / 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 , 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  ∑ �𝒴𝒾 − 𝒴𝒾

𝓅�2𝑘
𝒾=1 ,  where 𝒴𝒾

𝓅is predicted 
value of 𝒴𝒾 and 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = ∑ �𝒴𝒾 −  𝐸(𝒴𝒾)�2𝑘

𝒾=1 , where 𝐸(∙) gives expected value.  
Table 1 includes fitting line equations and 𝑅2  for each relationship and dataset; 

plots are omitted due to page limitations. 
N vs. E (power law) [4] 

Compute a fitting line 𝐸𝒾 ∝ 𝑁𝒾𝑎 , where 1 ≤ 𝑎 ≤ 2, 𝐸𝒾 is the number of edges, 𝑁𝒾 
is the number of nodes, and 𝑎 is the power law exponent for user 𝒾’s egonet.  

E vs. ABC (power law) 
Compute a fitting line 𝒴 = C𝒳θ, where 𝒴 is E, and 𝒳 is ABC, and θ is the power 
law exponent for user 𝒾’s egonet.  

N vs. Com (power law) 
Compute a fitting line 𝒴 = C𝒳θ, where 𝒴 is Com, 𝒳 is N, and θ is the power law 
exponent for user 𝒾’s super-egonet.  

N vs. E (linear) 
Compute a fitting line  𝐸𝒾 ∝ 𝛽𝑁𝒾, where  𝐸𝒾 is number of edges, 𝑁𝒾 is number of 
nodes, and 𝛽 is the gradient of the fitting line for user 𝒾’s egonet.   

E vs. ABC (linear) 
Compute a fitting line  𝐸𝒾 ∝ 𝜆σ𝒾𝒶𝒷𝒸, where 𝐸𝒾 is the number of edges, σ𝒾𝒶𝒷𝒸  is  𝒜ℬ𝒞 
and 𝜆 is the gradient of the fitting line for user 𝒾’s egonet. Our experiments show 
there is a relationship between anomaly and the proportion of  𝐸𝒾 to σ𝒾𝒶𝒷𝒸 .  

2.3 Step 3: Compute Outlier Score 

For each power law fitting line from step 2, we used the following anomaly score to 
determine the distance from the fitting line for  𝑒𝑔𝑜𝒾 ; the calculating follows the 
OddBall method [4]: 

𝑎𝑆𝑐𝑜𝑟𝑒(𝒾) =  
𝓂𝒶𝓍�𝒴𝒾 ,𝐶𝒳𝒾

𝜃�

𝓂𝒾𝓃�𝒴𝒾 ,𝐶𝒳𝒾
𝜃�
∗ log��𝒴𝒾 −  𝐶𝒳𝒾

𝜃� + 1 �                                             (6)   

where 𝒴𝒾 is the y-value,  𝒳𝒾 is x-value of 𝑒𝑔𝑜𝑛𝑒𝑡 𝒾, and 𝜃 is a power law exponent. 
For the power law equation 𝒴 = C𝒳𝜃  this measures “distance to fitting line” by pe-
nalizing the number of times that 𝒴𝒾 deviates from the line. 

For each linear fitting line from step 2, we computed 𝑎𝑆𝑐𝑜𝑟𝑒(𝒾) in a similar way, but 
with 𝒴 = C𝒳 +  𝜃 in place of 𝒴 = C𝒳𝜃 . 

2.4 Step 4: Label for Evaluation 

Since the existing datasets were not labelled, we used visual inspection to label 
anomalies.  In particular, we visually examined the egonets of each node and decided 



whether the node was anomalous our not based on evidence from previous works [1, 
3-5]: the majority of users follow the “friends of friends are often friends” pattern and 
very few users follow either the “cliques or near-cliques” pattern (all the neighbours 
connected) or the “stars or near-star” pattern (mostly disconnected). 

2.5 Step 5: Find Threshold 

In this step, we compute determine for each metric a threshold value on the outlier 
score 𝑎𝑆𝑐𝑜𝑟𝑒 that minimizes the F-Score, which is the number of false positives and 
false negatives in the labelled dataset from step 4.  The F-Score is calculated as 
F-Score =2∗Precision∗Recall / (Precision +Recall); its highest value (1) indicates 
perfect classification of labelled data, whereas its lowest value (0) indicates com-
pletely wrong classification of labelled data. 

3 Experimental Results 
Our proposed method is evaluated with three real-life datasets Orkut, Flickr, and 
Facebook. These datasets were collected by crawling techniques in 2008 [12]. The 
Orkut dataset has 3M nodes and 23M edges; the Flickr dataset has 1.8M nodes and 
22M edges; and the Facebook dataset has 64K nodes and 1.5M edges.  

We applied the proposed framework to 20,000 randomly sampled egonets from 
each dataset. After computing the graph metrics (step 1), fitting curves were com-
puted using regression to determine relationships between metrics (step 2).  Outlier 
scores were then computed for each node (step 3). A labelled subset of 100 nodes 
(step 4) was then used in threshold finding (step 5) to identify a threshold outlier score 
that minimizes false negatives and false positives. The resulting F-score was calcu-
lated to allow comparison of metrics. 

Table 1 compares our observed results for the various graph properties for each of 
our datasets. We compare five metrics: N vs. E (Linear), E vs. ABC (Linear), E vs. 
ABC (Power law), N vs. Com (Power law), and N vs. E (Power law); the last being 
the “OddBall” method of Akoglu et al. [4].  

Dataset Method Fitting curve  𝑅2 Recall 
% 

Precision 
% 

F-score 
% 

Facebook 

E vs. N (Linear) 𝑉 = 0.0638 ∗ 𝐸 +  29.223         0.80 50.51 100.00 67.11 
E vs. ABC (Linear) 𝐸 = 0.0281 ∗ 𝐴𝐵𝐶 + 10.553 0.73 92.45 98.00 95.15 
E vs. ABC (Power law) 𝐸 =  0.3839 ∗  𝐴𝐵𝐶0.7019 0.86 100.00 100.00 100.00 
N vs. Com (Power law) 𝐶𝑜𝑚 =  0.0369 ∗ 𝑁2.3508         0.77 52.08 100.00 68.49 
N vs. E (Power law) [4] 𝐸 =  0.5454 ∗  𝑁1.571                0.95 49.49 98.00 65.77 

Flickr 

E vs. N (Linear) 𝑉 = 0.009 ∗ 𝐸 +  187.39           0.65 70.00 98.00 81.67 
E vs. ABC (Linear) 𝐸 = 144.77 ∗ 𝐴𝐵𝐶 − 8272.1 0.62 70.42 100.00 82.64 
E vs. ABC (Power law) 𝐸 =  0.6151 ∗  𝐴𝐵𝐶0.6401         0.91 77.78 98.00 86.73 
N vs. Com (Power law) 𝐶𝑜𝑚 =  0.1248 ∗  𝑁2.0304        0.88 57.78 52.00 54.74 
N vs. E (Power law) [4] 𝐸 =  0.3098 ∗  𝑁1.6644              0.96 48.39 90.00 62.94 

Orkut 

E vs. N (Linear) 𝑉 = 0.0513 ∗ 𝐸 +  54.272       0.64 77.78 75.68 76.71 
E vs. ABC (Linear) 𝐸 = 25.025 ∗ 𝐴𝐵𝐶 + 177.83 0.61 94.87 100.00 97.37 
E vs. ABC (Power law) 𝐸 =  0.544 ∗  𝐴𝐵𝐶0.6483           0.82 96.97 86.49 91.43 
N vs. Com (Power law) 𝐶𝑜𝑚 =  0.1045 ∗  𝑁2.0689        0.89 75.68 75.68 75.68 
N vs. E (Power law) [4] 𝐸 =  0.5362 ∗  𝑁1.5676             0.90 100.00 83.78 91.18 

Table 1. Comparison of effectiveness graph theoretic properties for anomaly detection in real-life datasets 



As we can see from Table 1, our results find that the E vs. ABC (Power law) and E 
vs. ABC (Linear) methods have the best overall performance across the three datasets.  
These methods both have higher F-score that N vs. E (Power law), which is the Odd-
Ball method of Akoglu et al. [4]. 

4 Conclusion 
The direct connectivity of online social networks can facilitate illegal activity. In this 
paper, we have expanded previous research of static analysis of user relationships for 
detecting anomalous behaviour in online social networks. We have introduced metrics 
based on a variety of graph properties and presented a framework for detecting nodes 
with anomalous relationships with other nodes. We applied our approach to datasets 
from existing online social networks with a manually labelled set of nodes based on 
existing observations. We identified several metrics—involving the relationship be-
tween number of edges and average betweenness centrality of a user’s immediate 
neighbourhood—that perform better than previous. Interesting future work in this area 
includes the consideration of other datasets and labelling, specifically datasets with 
pre-established labelling of anomalies, such as email spam or criminal records. 
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