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Abstract—Formal methods are being applied to the develop-
ment of software of various applications at Philips Healthcare. In
particular, the Analytical Software Design (ASD) method is being
used as a formal technology for developing defect-free control
software of highly sophisticated X-ray equipments. In this paper
we analyze the effects of applying ASD to the development of
various control software units developed for the X-ray machines.
We compare the quality of these units with other units developed
in traditional development methods. The results indicate that
applying ASD as a formal technology for developing control
software could result in fewer defects.

I. INTRODUCTION

In industrial systems control software is becoming increas-
ingly complex with more concurrency playing a crucial role. In
conventional software development of such type of systems,
errors are considered inevitable. Techniques for early defect
prevention are widely encouraged as software practitioners
are pushed to get software into execution quickly on tight
schedules.

Establishing the correctness of these systems is widely
known to pose serious challenges for traditional testing tech-
niques, used by conventional design development methods.
Selective test cases are invented with prior awareness of code
internals, often done by the code developers themselves or
specialized test personnel, mainly to cover key functions, error
cases, etc. On completion of testing, software is known to pass
certain tests, but can still fail for cases not tested.

It is claimed that formal methods allow the development
of complex software under a firm mathematical foundation
resulting in high quality, more correct software compared to
conventional design methods. For example, model checking
techniques have been widely applied to the verification of
discrete behavior of various industrial critical systems [13],
[15]. Virulent concurrency errors have been discovered that
would not have been unveiled through traditional testing. In
some circumstances these uncovered errors caused serious
damage or loss of property [10].

For the purpose of obtaining high quality software, Philips
Healthcare is extensively investigating and applying formal
methods in the development of its software components. More
precisely, Philips Healthcare incorporates the Analytical Soft-

ware Design1 (ASD) method to the development of various
software components of X-ray machines. An early report on
applying ASD to industrial control software can be found in
[2].

The ASD method centers its fundamentals on developing
mathematically verified software. It employs state machine
models to formally specify and verify behavior of components.
From these models, source code can also be generated auto-
matically. When ASD models have been formally verified, the
code generated from such models is considered to be correct,
meaning a.o. that sets of components match their prescribed
interfaces. ASD employs a design method that mitigates the
state space explosion problem by compositionally designing
and verifying components in isolation.

Analyzing the quality effects of applying formal technolo-
gies to large-scale systems is a barely addressed issue. The best
we could find is [3], [18], where it is claimed that near-zero
defects can be obtained compared to traditionally developed
software.

The purpose of our study is to report about how the
ASD method was tightly integrated as a main process in
the development of various control units of complex X-ray
machines, and we further demonstrate the issues encountered
during its application, providing third-party evaluation. Then,
we carefully analyze the effects of formal methods on the
quality of developed software by comparing the defect rates
of a number of software units that incorporate formal methods
with others developed using conventional methods. For each
unit we carefully analyze every defect submitted along the
development of the unit.

As we will see the results may appear incredible since the
widespread view in industry is that applying formal mathemat-
ical methods on sizable software products is impractical. The
results indicate that better quality software can be obtained
from formal technologies compared to software developed by
traditional development methods. This paper is arranged as
follows. Section II sketches the basic concepts of ASD. In
Section III we show how ASD is being applied in the develop-
ment of various software units. We compare the effectiveness
of applying ASD in Section IV.

1Supplied by Verum Software Technologies B.V., the Netherlands,
www.verum.com.
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II. PRINCIPLES OF ANALYTICAL SOFTWARE DESIGN

ASD is a component-based, model-driven technology that
combines the application of formal mathematical methods
such as Sequence-Based Specification (SBS) [12], Commu-
nicating Sequential Processes (CSP) [16] and the model
checker Failure Divergence Refinement (FDR) [5] with soft-
ware development methods such as Stepwise Refinement, and
Component-Based Software Development [4].

A fundamental principle of ASD is to consider a software
design as interacting components, communicating with one an-
other or their environment via channels. As a common practice
in ASD, system functionality is decomposed into components
in levels (e.g., hierarchical structure) to systematically develop
and verify these components in isolation. For example, Figure
1.a depicts a hierarchal structure of system components that
include a controller (Ctr), a sensor and a lock.

ICtr is
refined
by the
combined
model.Ctr

ICtr

The combined
model must be
deadlock and
livelock free.

The ICtr Interface model
captures the external
behavior to upper clients.

Design
model

Interface
model

a. b.

Hardware
device

Software
controller

Fig. 1. a. The hierarchal distribution of components. b. The structure of ASD
models

Developing any ASD software component typically re-
quires two models: an interface model and a design model.
The interface model specifies the external behavior of the
component, whereas the design model describes the concrete
behavior. Both interface and design models are state machines
described in a tabular format, see Figure 2, which depicts the
specification of the Sensor interface model presented in Figure
1.b. The model is described using the ASD industrial tool,
called the ASD ModelBuilder.

To ensure correctness and consistency, the ASD Model-
Builder automatically translates the ASD models to formal
mathematical models such as CSP [11] for the formal veri-
fication, and systematically generates a corresponding source
code implementation such as C++ or C# (following the state
machine pattern in [7]). The details of such translations are
omitted here as they are not relevant for this article.

The objective of incorporating model checking in ASD is
that, unlike testing, model checking is comprehensive, and
can cover all possible execution scenarios. Unlike conven-
tional verification, it is automatic, as the model checking
tool requires no human intervention. Such verifications can be
completed in a day’s effort. The formal behavioral verification
(and also code generation) of the ASD models are done
automatically with the click of a button.

Testing is not carried out for code generated from ASD
models. Traditional testing such as function and statement
coverage is performed for the handwritten part of the unit. A

complete unit that comprises ASD components and manually
written components is further tested as a black box before the
code is delivered to the system.

Below we summarize the steps required for developing
an ASD component, given a structure of components. We
consider the Ctr component from Figure 1 as an example.

1) External behavior specification. First, the interface
model of a component under development is specified,
such that it describes the external behavior exposed to its
clients. All interactions with used components located at
a lower level are not included in the specification. For
example ICtr is the interface model of the forthcoming
Ctr component, where interactions with the lock and the
sensor components are not present.

2) External specification of boundary components. Simi-
larly, the interface models of components located at the
lower level are created. They describe also the external
behavior exposed to the component being developed.
For instance, the ILock and ISensor interface models
describe the external behavior exposed to the Ctr com-
ponent. All other internal interactions at lower levels not
visible to Ctr are ignored.

3) Concrete, functional specification. After that, a design
model of the component is created. The concrete be-
havior of the component is described including the
interaction with used components. For example the Ctr
design model includes method invocations from and to
the lower level Lock and Sensor components. Invoked
methods might supply data in their parameters. This data
is not checked in the behavioral verification.

4) Formal behavioral verification using model checking.
In this step CSP processes can be generated from the
interface and design models constructed previously. A
combined model that includes the parallel composition
of the design model plus the interface models of the
used components is generated automatically. The model
is checked for deadlock, livelock, and illegal invocations
using FDR; these are checked automatically and sepa-
rately using the ModelBuilder. Additional properties can
be specified in CSP and verified against the combined
model if required.

5) Formal refinement of external and internal specifica-
tions. The combined model must be a correct refinement
of the interface model of the component being developed
because the interface model is used by the client compo-
nents. The formal refinement check is established using
the failure or failure-divergence refinement supported by
FDR, where the interface process is the specification and
the combined model is the implementation. When the
formal refinement check is accomplished, the interface
model represents all lower level components.

6) Code generation. In this step source code is generated
and integrated with the rest of the system in the target
programming language.

7) Recursive development of components. For each com-
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Fig. 2. The tabular specification in the ASD ModelBuilder

ponent at a higher or lower level the steps 1 to 7
can be repeated until the system is completed. This
provides the possibility to develop components in a top-
down, middle-out, or bottom-up fashion, in parallel with
developing some manually coded modules.

III. THE APPLICATION OF ASD IN SOFTWARE

DEVELOPMENT

Philips Healthcare incorporated the ASD technology in the
development of control software at the end of 2006. Initially,
the technology was used to formally specify and verify pro-
tocols of interactions among internal interfaces of subsystems
of an X-ray machine. One of the primary subsystems incorpo-
rating ASD is the Back-end Xray (BeX) subsystem [20], [17],
[19], [1].

Below we report about two consecutive projects of BeX
starting from January 2008 till the end of 2010. The projects
include a total of 36 software designers, architects, and engi-
neers, of which nine attended ASD training courses. The nine
ASD users are highly skilled in developing software using
conventional methods, but have limited background in formal
mathematical methods.

Since the ASD method was new to the development teams,
the ASD method imposed a learning curve, and therefore
extra efforts and investments were required before reaping
its benefits. At the early stages of applying ASD, four part-
time ASD consultants were present, devoted approximately
half of their time helping development teams to quickly learn
the technology and its practices.

In this section we sketch how ASD has been incorporated
in the development process of several software units of BeX,
highlighting the flow of events followed during the project.

Incorporating ASD to the development of BeX

The software units of BeX were developed in a series of
consecutive increments, each of which included the imple-
mentation of a subset of user functions. Since ASD comprises
formal technologies, incorporating the method requires certain
adaptations to the traditional development process. Figure 3

Incremental
planning

Functional
specification

Specification review

Behavioral
verification

Code
generation

Testing
End of

increment

Code
integration

Software
design

Requirements

Fig. 3. The ASD processes in a development increment

depicts the flow of ASD events in a development increment.
Note that these steps are preceded by brainstorming sessions
where team members explore several design alternatives with-
out being precise.

Requirements. This step included the definition of the re-
quirements for function, reliability, performance, characteri-
zation of usage conditions, target programming language for
code generation, and the operating system.

Incremental planning. In this step, functions to be imple-
mented through each increment were selected with established
work breakdown estimations and a tight schedule. For each
function to be implemented the time, efforts, deadlines, risks,
etc., were clearly identified.

Software design. In this step, the distribution of compo-
nents was accomplished with well-defined responsibilities and
interfaces. Designs of software components commenced as
working drafts until team reviews had been accomplished, and
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design improvements resulting from each team review session
were incorporated.

The effort of obtaining a suitable ASD architectural design
for some units was higher than normal since ASD does not
support all design or architectural patterns, with which the
novice and experienced developers were acquainted. For exam-
ple, the technology is hardly suitable for modeling the object-
oriented design patterns presented in [7], so that designers
quickly ran into problems when trying to model their object-
oriented designs in ASD.

Therefore, more effort was required to substitute the
object-oriented designs (and the design culture) by structured
component-based, action-oriented designs that include compo-
nents with highly abstracted encapsulated state machines and
well-defined interfaces. Modeling such type of designs in ASD
is straightforward, but indeed obtaining such designs required
the designers to become experienced.

The main obstacle most designers had encountered at earlier
stages of the design process was not only providing structured
designs of components but also maintaining a proper degree
of abstraction and distributing the complexity among the com-
ponents in levels. Designers frequently rushed into the state
space explosion problem for some components that contained
too detailed behavior. Hence, the detailed behavior was pulled
out from such complex components to other newly or existing
components to further circumvent the state space explosion
problem. Such kind of alignment activities were performed
often during the design process of the ASD components.

We noticed that not all designers could compose designs
that suit the ASD method. Only few designers were able to
quickly learn the ASD technology and come up with designs
suitable for the ASD method, although they generally had
limited knowledge in formal mathematical methods, and some
of them were even not highly skilled programmers. Typically,
the experienced and highly valued programmers were not
always good ASD designers.

Functional specification. In this step, each ASD component
under development was specified in isolation following the
ASD recipe. The external and concrete behavior of each com-
ponent was described using the ASD ModelBuilder. Whenever
a design did not suit the ASD specification or verification, the
structure of the software was adapted.

Behavioral verification. For each unit, the behavioral ver-
ification using model checking was done in a component-
wise manner. Race conditions, deadlocks, livelocks, and illegal
interactions violating the interaction protocols were discov-
ered, causing adapting the behavioral model or redesigning
the affected components.

It is notable that the state space explosion kicked in during
verification of various components. We learned that alternative
designs can help to avoid this problem and make verification
doable [9], [8]. In some cases, the explosion of states of a
complex component was circumvented by decomposing the
component further into a number of smaller components.

Specification review, code generation, and code integration.
The specification of all ASD models had to be reviewed by

team members, row-by-row, for traceability and correctness
against the requirements. Once verification was completed, the
design models were automatically translated into the target
language, in this case, C#. Changes to generated code were not
permitted. The generated code was integrated with the rest of
the product code by implementing glue code of proper adapters
and wrappers. Integration of the code of ASD components
was always smooth with no error ever reported. Integration
errors occurred when integrating ASD code with the manually
developed code. Other errors were due to the data part of the
generated code which was not formally verified.

Testing. Since code generated from ASD models was al-
ready verified using model checking, the code was not a target
of function coverage or statement coverage tests, which applies
to all manually written code of each software unit. Unit testing
was started after the generated code was integrated with the
manually written code. The units were further examined using
statistical testing, supplied by the ASD method, for certifying
compliance of software components.

Unit DM IM Rule
cases

States Time
(sec)

Hours

Orchestration 8 26 2,857 15,954,291 1,847 1288
FEClient 1 15 5779 1,996,830 230 696
XrayIp 1 6 1,051 2,874 0 268

TABLE I
ASD DATA IN BEX UNITS

End of increment. This step was mainly devoted to solving
problems and fixing defects raised during the development
of the units. Few defects related to the ASD code were
committed. After a careful analysis of the cause of these
defects we found that the main source was the data part of
the code. Correctness verification of data is not supported by
ASD at the moment of writing this article. Defects related
to the control part of the generated code were barely found.
After all defects had been fixed, the subsequent increment was
started, implementing new user functions.

Three units of BeX used ASD for the development of their
control parts. In table I the statistical data related to the units
are depicted. For each unit the total number of specified design
models (DM) and interface models (IM) is depicted. The total
number of rule cases specified for each unit is also shown.

A rule case is a row in a table of an interface or design
model, specified and reviewed by team members. The table
also depicts the total number of states generated by the
model checker to check potential deadlocks (other statistics
related to illegal or refinement checks are omitted). In case a
unit comprises more than one design model, we sum up all
generated states of each individual design model. This applies
also to the verification time taken by the model checker FDR.

The last column gives an insight into the effort spent for
specifying and reviewing the ASD models. In fact filling in
the tables is a straightforward activity, but special attention
was given to prevent human errors easily caused by cloning
rule cases.
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Lines of code Defects
ASD
used

Unit Manual
LOC

ASD
LOC

Total
LOC

ASD% Manual
defects

ASD de-
fects

Total de-
fects

Defects/
KLOC

No Acquisition 6,140 0 6,140 00.00% 33 0 33 5.375
No BEC 7,007 0 7,007 00.00% 44 0 44 6.279
No EPX 7138 0 7138 00.00% 7 0 7 0.981
No FEAdapter 13,190 0 13,190 00.00% 18 0 18 1.365
Yes FEClient 15,462 12,153 27,615 44.01% 9 2 11 0.398
Yes Orchestration 3,970 8,892 12,862 69.13% 3 4 7 0.544
No QA 23,303 0 23,303 00.00% 90 0 90 3.862
No Status Area 8,969 0 8,969 00.00% 52 0 52 5.798
No TSM 6,681 0 6,681 00.00% 7 0 7 1.048
No UIGuidance 20,458 0 20,458 00.00% 23 0 23 1.124
No Viewing 19,684 0 19,684 00.00% 294 0 294 14.936
Yes XRayIP 14,270 2,188 16,458 13.29% 27 0 27 1.641

TABLE II
STATISTICAL DATA DURING THE IN-HOUSE CONSTRUCTION OF BEX UNITS

Notable is the Orchestration unit, which was initially de-
signed in a way causing a state explosion in many of its
components. Since developers could not proceed to code
generation without formal correctness using model checking,
components were redesigned such that model checking was
a straightforward activity. As can be seen from the table the
sum of the generated states of all Orchestration components is
only 15 million states, which can be calculated in half an hour.
Generally, when the verification time of a single component
exceeds one hour, further decomposition or redesign activities
were immediately considered to reduce the complexity.

IV. QUALITY RESULTS

We analyzed every defect submitted along the development
process of the units. All defects are stored in a bug tracking
database, which is part of a code management system. Defects
related to each unit were carefully revised, one by one, by
analyzing the type and cause of each defect, and how it
particularly affected the quality of the code. Defects related to
documentation (e.g., specification or requirement documents)
are excluded from the calculations.

Table II summarizes the accomplished work and reports
about the quality results of BeX software units. For each
unit the number of effective (logical) lines of code (LOC)
written manually, and those generated automatically from ASD
models are reported. The total number of submitted defects of
each unit is depicted in the table. These numbers represent
the errors captured during in-house design, implementation,
integration, and testing phases (i.e., not post-release errors).
The last column contains defect rates, e.g., the rate for
the Orchestration unit is 0.5 errors per KLOC, and for the
FEClient unit is 0.4 errors per KLOC.

As can be seen from the table, the units that include
ASD components reveal minor reported defects, averaging
to 0.86 defects per KLOC. This level of quality compares
favorably to the standard of 1-25 defects per KLOC for
conventionally developed software in industrial settings [14].
Defects left behind by ASD correctness verification tend to
be straightforward faults easily found and fixed, not deep
interface or design errors.

Typical errors found in the units developed with ASD were
misspellings of variables in the parameters of methods, e.g.,
having a parameter named ‘SelectionType’ instead of ‘selec-
tionType’ caused the generation of two independent variables.
Some sequencing errors were also present. For instance, one
case had been reported in a unit where external components
were activated before the internal components. Due to the high
level description of ASD these errors were easily found and
fixed, compared to some hardly reproducible errors found in
the manually coded modules.

The conventionally developed units did not undergo formal
correctness verification. However, the units were strictly ex-
amined at different levels of code and design reviews, unit
test, integration test, and system test. Traditionally developed
units of BeX are already of good quality.

Other factors besides software errors can play a key role for
defects to emerge. For example, some defects of the Viewing
unit appeared due to migrating to new services supplied by
external suppliers. Over 40% of the depicted defects of this
unit are cosmetic errors (e.g., “Annotation text: font size not
changed”), which don’t cause potential failures during the
execution of the system.

The members of teams attribute the ultimate quality of the
developed units to the rigor and disciplines enforced by the
ASD technology. Although the ASD developed code com-
prises fewer defects, the required development time was higher
compared to developing the same code in the conventional
way. But the key advantage of applying the ASD method to
the progress of the projects is that less time was required to
resolve problems found in testing at later stages [6].

On completion of the in-house development of the units,
the software is sent to the test teams. The teams require unit
owners to supply complete test and verification documents,
that provide evidences of 100% requirement and function
coverage, and at least 80% statement coverage for their code,
before any subsystem test activity is started. In general, test
teams understand that any code exhibiting over 20 “allowable
errors” for the entire subsystem in early testing will be rejected
and go back into design and review. But, this did rarely
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occur. To insure the quality of delivered code, the code
was thoroughly examined by test teams using various test
techniques, of which details are outside the scope of this paper.

V. CONCLUSION

We have demonstrated that formal methods supplied by the
ASD technology can influence the quality of industrial control
software. We explained how the ASD method was tightly
integrated to the development process of various software
units. We analyzed the effectiveness of the method on sizable
industrial software, by comparing a number of units developed
using conventional methods with units incorporating formal
technologies. The target of this study was the software of a
subsystem of a complex X-ray machine, developed at Philips
Healthcare.

The rigor of the ASD method eliminates design errors
earlier and results in reduced development time. Few errors
were discovered after applying the technology throughout
the construction process of the units, but these errors were
generally simple to find and fixed.

The extra time needed to design and implement the soft-
ware in a formal way was more than the time required for
developing the same software using conventional development
methods, but the gain is that there were less problems to be
resolved in late stages of the projects.
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