
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Analyzing the Evolution of Web Services
using Fine-Grained Changes

Daniele Romano and Martin Pinzger

Report TUD-SERG-2012-011

SERG

TUD-SERG-2012-011

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proceedings of the International Conference on Web Services, 2012,
IEEE CS Press.

c© copyright 2012, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Analyzing the Evolution of Web Services using Fine-Grained Changes

Daniele Romano
Software Engineering Research Group

Delft University of Technology
Delft, The Netherlands

Email: daniele.romano@tudelft.nl

Martin Pinzger
Software Engineering Research Group

Delft University of Technology
Delft, The Netherlands

Email: m.pinzger@tudelft.nl

Abstract—In the service-oriented paradigm web service in-
terfaces are considered contracts between web service sub-
scribers and providers. However, these interfaces are continu-
ously evolving over time to satisfy changes in the requirements
and to fix bugs. Changes in a web service interface typically
affect the systems of its subscribers. Therefore, it is essential
for subscribers to recognize which types of changes occur in a
web service interface in order to analyze the impact on his/her
systems.

In this paper we propose a tool called WSDLDiff to extract
fine-grained changes from subsequent versions of a web service
interface defined in WSDL. In contrast to existing approaches,
WSDLDiff takes into account the syntax of WSDL and extracts
the WSDL elements affected by changes and the types of
changes. With WSDLDiff we performed a study aimed at
analyzing the evolution of web services using the fine-grained
changes extracted from the subsequent versions of four real
world WSDL interfaces.

The results of our study show that the analysis of the fine-
grained changes helps web service subscribers to highlight the
most frequent types of changes affecting a WSDL interface.
This information can be relevant for web service subscribers
who want to assess the risk associated to the usage of web
services and to subscribe to the most stable ones.

Keywords-SOA; web services; software evolution; fine-
grained changes;

I. INTRODUCTION

Over the last decades, the evolution of software systems
has been studied in order to analyze and enhance the
software development and maintenance processes. Among
other applications, the information mined from the evolution
of software systems has been applied to investigate the
causes of changes in software components [13] [7] [10].
Software engineering researchers have developed several
tools to extract information about changes from software
artifacts [5] [16] [19] and to analyze their evolution.

In service-oriented systems understanding and coping
with changes is even more critical and challenging because
of the distributed and dynamic nature of services [9]. In
fact, service providers do not necessarily know the service
subscribers and how changes on a service can impact the
existing service clients. For this reason service interfaces
are considered contracts between providers and subscribers
and they should be as stable as possible [3]. On the other

hand, services are continuously evolving to satisfy changes
in the requirements and to fix bugs. Recognizing the types
of changes is fundamental for understanding how a service
interface evolves over time. This can help service subscribers
to quantify the risk associated to the usage of a particular
service and to compare the evolution of different services
with similar features. Moreover, detailed information about
changes allow software engineering researchers to analyze
the causes of changes in a service interface.

In order to analyze the evolution of WSDL1 interfaces,
Fokaefs et al. [6] propose a tool called VTracker. This
tool is based on the Zhang-Shashas tree-edit distance [20]
comparing WSDL interfaces as XML2 documents. However,
VTracker does not take into account the syntax of WSDL
interfaces. As consequence, their approach outputs only the
percentage of added, changed and removed XML elements.
We argue that this information is inadequate to analyze the
evolution of WSDL interfaces without manually checking
the types of changes and the WSDL elements affected by
changes. Moreover, their approach of transforming a WSDL
interface into a simplified representation can lead to the
detection of multiple changes while there has been only one
change.

In this paper we propose a tool called WSDLDiff that
compares subsequent versions of WSDL interfaces to auto-
matically extract the changes. In contrast to VTracker, WS-
DLDiff takes into account the syntax of WSDL and XSD,3

used to define data types in a WSDL interface. In particular,
WSDLDiff extracts the types of the elements affected by
changes (e.g., Operation, Message, XSDType) and the types
of changes (e.g., removal, addition, move, attribute value
update). We refer to these changes as fine-grained changes.
The fine-grained changes extraction process of WSDLDiff
is based on the UMLDiff algorithm [19] and has been
implemented on top of the Eclipse Modeling Framework
(EMF).4

With WSDLDiff we performed a study aimed at analyzing
the evolution of web services using the fine-grained changes

1http://www.w3.org/TR/wsdl
2http://www.w3.org/XML/
3http://www.w3.org/XML/Schema
4http://www.eclipse.org/modeling/emf/

SERG Romano and Pinzger – Analyzing the Evolution of Web Services using Fine-Grained Changes

TUD-SERG-2012-011 1

extracted from subsequent versions of four real world WSDL
interfaces. We address the following two research questions:

• RQ1: What is the percentage of added, changed and
removed elements of a WSDL interface?

• RQ2: Which types of changes are made to the elements
of a WSDL interface?

The study shows that different WSDL interfaces are affected
by different types of changes highlighting how they are
maintained with different strategies. While in one case
mainly Operations were added continuously, in the other
three cases the data type specifications were the most
affected by changes. Moreover, we found that in all four
WSDL interfaces under analysis there is a type of change
that is predominant. From this information web service
subscribers can be aware of the frequent types of changes
when subscribing to a web service and they can compare
the evolution of web services that provide similar features
in order to subscribe to the most stable web service.

The remainder of this paper is organized as follows.
In Section II we report the related work and we discuss
the main differences with our work. Section III describes
the WSDLDiff tool and the process to extract fine-grained
changes implemented into it. The study and results are
presented in Section IV. We draw our conclusions and
outline directions for future work in Section V.

II. RELATED WORK

The most recent work on web services evolution has been
developed by Fokaefs et al. [6] in 2011. They analyzed
the evolution of web services using a tool called VTracker.
This tool is based on the Zhang-Shasha’s tree edit distance
algorithm [20], which calculates the minimum edit distance
between two trees. In this study the WSDL interfaces are
compared as XML files. Specifically the authors created an
intermediate XML representation to reduce the verbosity
of the WSDL specification. In this simplified XML rep-
resentation, among other transformations, the authors trace
the references between messages parameters (Parts) and
data types (XSDTypes) and they replace the references with
the data types themselves. The output of their analysis
consists of the percentage of added, changed and removed
elements among the XML models of two WSDL interfaces.
There are two main differences between our work and the
approach proposed by Fokaefs et al. First, we compute
the changes between WSDL models taking into account
the syntax of WSDL and XSD and, hence, extracting the
type of the elements affected by changes (e.g., Operation,
Message, XSDType) and the types of changes (e.g., removal,
addition, move, attribute value update). For example, WS-
DLDiff extracts differences in the order of the elements
only if it is relevant, such as changes in the order of Parts
defined in a Message. Our approach is aware of irrelevant
order changes, such as changes in the order of XSDTypes
defined in the WSDL types definition. This allows us to

analyze the evolution of a WSDL interface only looking at
the changes without manually inspecting the XML coarse-
grained changes. Second, WSDLDiff does not replace the
references to data types with the data types themselves. This
transformation can lead to the detection of a change in a data
type multiple times while there has been only one change.

In 2009 Wang et al. [17] proposed an impact analysis
model based on service dependency. The authors analyze
the service dependencies graph model, service dependencies
and the relation matrix. Based on this information they
infer the impact of the service evolution. However, they
do not propose any technique to analyze the evolution of
web services. In 2005 Aversano et al. [1] proposed an
approach to understand how relationships between sets of
services change across service evolution. Their approach is
based on formal concept analysis. They used the concept
lattice to highlight hierarchy relationships and to identify
commonalities and differences between services. While the
work proposed by Aversano et al. consists in extracting
relationships among services, our work focuses on the evo-
lution of single web services using fine-grained changes. As
future work the two approaches can be integrated to correlate
different types of changes with the different relationships.

In literature several approaches have been proposed to
measure the similarity of web services (e.g., [8] [12]).
However, these approaches compute the similarity amongst
WSDL interfaces to assist the search and classification of
web services and not to analyze their evolution.

Concerning the model differencing techniques, the ap-
proach proposed by Xing et al. [19] [18] is most relevant
for our work. In fact, their algorithm to infer differences
among UML5 diagrams has been implemented by the EMF
Compare6 that we used to implement our tool WSDLDiff.
The authors proposed the UMLDiff algorithm for detecting
structural changes between the designs of subsequent ver-
sions of object oriented systems, represented through UML
diagrams. This algorithm has been later adapted in the EMF
Compare to compare models conforming to any arbitrary
metamodel and not only UML models [2].

Several approaches have been proposed to classify
changes in service interfaces. For instance Feng et al. [4]
and Treiber et al. [15] have proposed approaches to classify
the changes of web services taking into account their impact
to different stakeholders. These classifications can be easily
integrated in our tool to classify the different fine-grained
changes extracted along the evolution of a web service.

As can be deduced from the overview of related work
there currently does not exist any tool for extracting fine-
grained changes amongst web services. In this paper, we
present such a tool based on the UMLDiff algorithm [19].

5http://www.uml.org/
6http://www.eclipse.org/emf/compare/

Romano and Pinzger – Analyzing the Evolution of Web Services using Fine-Grained Changes SERG

2 TUD-SERG-2012-011

III. WSDLDIFF

In this section, we illustrate the WSDLDiff tool used to
extract the fine-grained changes between two versions of
a WSDL interface. Since the tool is based on the Eclipse
Modeling Framework, we first present an overview of this
framework and then we describe the fine-grained changes
extraction process implemented by WSDLDiff. A first pro-
totype of WSDLDiff is available on our web site.7

A. Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is a modeling
framework that lets developers build tools and other appli-
cations based on a structured data model. This framework
provides tools to produce a set of Java classes from a model
specification and a set of adapter classes that enable viewing
and editing of the models. The models are described by meta
models called Ecore.

As part of the EMF project, there is the EMF Compare
plug-in. It provides comparison and merge facilities for any
kind of EMF Models through a framework easy to be used
and extended to compare instances of EMF Models. The
Eclipse community provides already an Ecore meta model
for WSDL interfaces, including a meta model for XSD, and
tools to parse them into EMF Models. We use these features
to parse and extract changes between WSDL interfaces as
described in the following.

B. Fine-Grained Changes Extraction Process

Figure 1 shows the process implemented by WSDLDiff
to extract fine-grained changes between two versions of a
WSDL interface. The process consists of four stages:

• Stage A: in the first stage we parse the WSDL
interfaces using the APIs provided by the
org.eclipse.wst.wsdl and org.eclipse.xsd projects. The
output of this stage consists of the two EMF Models
(WSDL Model1 and WSDL Model2) corresponding
to the two WSDL interfaces taken as input (WSDL
Version1 and WSDL Version2).

• Stage B: in this stage we transform the EMF Models
corresponding to the XSD (contained by the WSDL
models) in order to improve the accuracy of the fine-
grained changes extraction process as it will be shown
in the Subsection III-D. The output of this stage consist
of the transformed models (WSDL Model1’ and WSDL
Model2’).

• Stage C: in the third stage we use the Matching Engine
provided by the EMF Compare framework to detect the
nodes that match in the two models.

• Stage D: the Match Model produced by the Matching
Engine is then used to detect the differences among
the two WSDL models under analysis. This task is

7http://swerl.tudelft.nl/twiki/pub/DanieleRomano/WebHome/
WSDLDiff.zip

Matching)Engine)
org.eclipse.compare.match/

Match/Model/

Diff/Model/

Differencing)Engine)
org.eclipse.compare.diff/

XSD)Transformer) XSD)Transformer)

WSDL/Model1’/ WSDL/Model2’/

WSDL/Model1/ WSDL/Model2/

WSDL/Version1/ WSDL/Version2/

WSDL)Parser)
org.eclipse.wst.wsdl/

org.eclipse.xsd/

WSDL)Parser)
org.eclipse.wst.wsdl/

org.eclipse.xsd/
A

B)

C)

D

Figure 1: The process implemented by WSDLDiff to extract
fine-grained changes between two versions of a WSDL
interface.

accomplished by the Differencing Engine provided also
by EMF Compare. The output of this stage is a tree of
structural changes that reports the differences between
the two WSDL models. The differences are reported in
terms of additions, removals, moves and modifications
of each element specified in the WSDL and in the XSD.

In the next subsection we first illustrate the strategies
behind EMF Compare describing the matching (Stage C)
and differencing (Stage D) stages and then we describe the
XSD transformation (Stage B).

C. Eclipse EMF Compare

The comparison facility provided by EMF Compare is
based on the work developed by Xing et al. [19]. This
work has been adapted to compare generic EMF Models
instead of UML models as initially developed by Xing. The
comparison consists of two phases: (1) the matching phase
(Stage C in our approach) and (2) the differencing phase
(Stage D in our approach). The matching phase is performed
computing a set of similarity metrics. These metrics are
computed for two nodes while traversing the two models
under analysis with a top-down approach. In the generic
Matching Engine, provided in org.eclipse.compare.match
and used in our approach, the set of metrics consists of four
similarity metrics:

• type similarity: to compute the match of the types of
two nodes;

• name similarity: to compute the similarity between the
values of the attribute name of two nodes;

SERG Romano and Pinzger – Analyzing the Evolution of Web Services using Fine-Grained Changes

TUD-SERG-2012-011 3

<xs:element*name=”book">*
**<xs:complexType>*
****<xs:sequence>*
******<xs:element*name=”author”*type="xs:string"/>*
******<xs:element*name=”>tle"*type="xs:string"/>*
****</xs:sequence>*
**</xs:complexType>*
</xs:element>*

(a) Definition of an XSD element

XSDElement*

book$

XSDPar.cle*

XSDComplexType*

XSDModelGroup*

XSDPar.cle*XSDPar.cle*

XSDElement*

%tle$
XSDElement*

author$

(b) Original EMF Model

XSDElement*

book$

XSDPar.cle*

XSDComplexType*

XSDModelGroup*

XSDPar.cle*XSDPar.cle*

XSDElement*

%tle$
XSDElement*

author$

(c) Transformed EMF Model

Figure 2: An example that shows the XSD transformation
performed by the XSD Transformer in the Stage B of the
fine-grained changes extraction process.

• value similarity: to compute the similarity between the
values of other attributes declared in the nodes;

• relations similarity: to compute the similarity of two
nodes based on the relationships they have with other
nodes (e.g., children and parents in the model).

Once the matching phase has been completed, it produces
a matching model consisting of all the entities that are
matched in the two models. The matching model is then
used in the differencing phase to extract all the differences
between the two models. Specifically, the matching model
is browsed by a Differencing Engine that computes the tree
edit operations. These operations represent the minimum set
of operations to transform a model into an other model. They
are classified in added, changed, removed and moved opera-
tions. For more details about the matching and differencing
phases implemented by EMF Compare we refer the reader
to [2].

D. XSD Transformation

In an initial manual validation of EMF Compare on
WSDL models we found that in a particular case the set
of differences produced did not correspond to the mini-
mum set of tree edit operations. The problem was due
to the EMF Model used to represent the XSDs. For this

reason we decided to add the XSD Transformer. To better
understand the problem behind the original EMF Model
and the solution adopted, consider the example shown in
Figure 2. Figure 2a shows an XSDElement book that con-
sists of an XSDModelGroup (the element sequence) that
contains two XSDElements (the elements author and title).
Figure 2b shows the original EMF Model parsed by the
WSDL Parser (Stage A in Figure 1). The EMF Model
contains the nodes XSDParticle. These nodes are necessary
to represent the attributes minOccurs, maxOccurs and ref for
each XSDElement declared in an XSDModelGroup and for
the XSDModelGroup itself.

The XSDParticles in the original model are parents of the
elements to which they are associated. This structure can
lead to mistakes when the order of XSDElements within an
XSDModelGroup changes. In this case, when the Matching
Engine traverses the models, it can detect a match between
XSDParticles that are associated to different XSDElements
(e.g., a match between the XSDParticle of the element
author and the XSDParticle of the element title). This match
is likely because the values of the attributes minOccurs,
maxOccurs and ref are set to their default values. When
this match occurs the Matching Engine keeps traversing
the model and it detects a mismatch when it traverses
the children of the previously matched XSDParticles (e.g.,
a mismatch between the elements author and title). As
consequence, even if there are no differences among the
models the Differencing Engine can produce the added XS-
Delement title, the added XSDelement author, the removed
XSDelement title and the removed XSDelement author as
changes.

To overcome this problem, we decided to transform
the EMF Model inverting the parent-child relationship in
presence of XSDParticles as shown in Figure 2c. In the
transformed models, the Matching Engine traverses the
XSDParticles only when a match is detected between the
XSDElements to which they are associated.

Besides this problem, in one case, WSDLDiff reported
the removed Part and added Part changes instead of the
changed Part change when a Part was renamed. However
for this study the two set of changes are equivalent. For this
reason we have not considered it as a problem. Clearly, as
part of our future work we plan to validate the fine-grained
changes extraction process with a benchmark.

IV. STUDY

The goal of this study is to analyze the evolution of
web services through the analysis of fine-grained changes
extracted from subsequent versions of a WSDL interface.
The perspective is that of web services subscribers interested
in extracting the types of changes that appear along the
evolution of a web service. They can analyze the most
frequent changes in a WSDL interface estimating the risk
related to the usage of a specific element. The context of this

Romano and Pinzger – Analyzing the Evolution of Web Services using Fine-Grained Changes SERG

4 TUD-SERG-2012-011

study consists of all the publicly available WSDL versions
of four real world web services, namely:

• Amazon EC2: Amazon Elastic Compute Cloud is a
web service that provides resizable compute capacity in
the cloud. In this study we have analyzed 22 versions.

• FedEx Rate Service: the Rate Service provides the
shipping rate quote for a specific service combination
depending on the origin and destination information
supplied in the request. We analyzed 10 different ver-
sions.

• FedEx Ship Service: the Ship Service provides func-
tionalities for managing package shipments and their
options. 7 versions out of 10 have been analyzed in
this study.

• FedEx Package Movement Information Service: the
Package Movement Information Service provides op-
erations to check service availability, route and postal
codes between origin and destination. We analyzed 3
versions out of 4. For the sake of simplicity we refer
to this service as FedEx Pkg.

We chose these web services because they were previously
used by Fokaefs et al. [6]. The other web services analyzed
by Fokaefs et al. [6] (PayPal SOAP API8 and Bing Search9)
have not been considered because the previous versions of
the WSDL interfaces are not publicly available. For the same
reasons not every version of the web services has been
considered in our analysis. In Table I we report the size
of the WSDL interfaces in terms of number of Operations,
number of Parts, number of XSDElements and number of
XSDTypes declared in each version. The size of the WSDL
interfaces has been measured using the API provided by
the org.eclipse.wst.wsdl and org.eclipse.xsd Eclipse Plug-in
projects.

The results reported in Table I show that the web services
under analysis evolve differently. The number of Operations
declared in the AmazonEC2 service is continuously growing
and only in four versions does not change (version 5, 7,
22 and 23). The number of Operations declared in the
other web services is more stable. Specifically, the FedEx
Pkg service declares always 2 Operations. The FedEx Rate
service declares 1 Operation in 9 versions out of 10 and 2
Operations in 1 version (version 3). Concerning the FedEx
Ship service we can notice an increase in the number of
Operations from version 1 to version 5. Then, the number
of Operations decreases to 7 and it remains stable until the
current version (version 10).

To better understand the evolution of web services we
used the WSDLDiff tool to extract the fine-grained changes
from subsequent versions of the WSDL interfaces under
analysis. In the next subsections we first show the types

8https://www.paypalobjects.com/enUS/ebook/PPAPIReference/
architecture.html

9http://www.bing.com/developers

Table I: Number of Operations, Parts, XSDElements and
XSDTypes declared in each version of the WSDL interfaces
under analysis

WSDL Ver. Operations Parts XSDElements XSDTypes
AmazonEC2 2 14 28 28 60
AmazonEC2 3 17 34 34 75
AmazonEC2 4 19 38 38 81
AmazonEC2 5 19 38 38 81
AmazonEC2 6 20 40 40 87
AmazonEC2 7 20 40 40 85
AmazonEC2 8 26 52 52 111
AmazonEC2 9 34 68 68 137
AmazonEC2 10 37 74 74 151
AmazonEC2 11 38 76 76 157
AmazonEC2 12 41 82 82 171
AmazonEC2 13 43 86 86 179
AmazonEC2 14 65 130 130 259
AmazonEC2 15 68 136 136 272
AmazonEC2 16 74 148 148 296
AmazonEC2 17 81 162 162 326
AmazonEC2 18 87 174 174 350
AmazonEC2 19 91 182 182 366
AmazonEC2 20 95 190 190 390
AmazonEC2 21 118 236 236 464
AmazonEC2 22 118 236 236 465
AmazonEC2 23 118 236 236 467
FedEx Rate 1 1 2 2 72
FedEx Rate 2 1 2 2 80
FedEx Rate 3 2 4 4 88
FedEx Rate 4 1 2 2 124
FedEx Rate 5 1 2 2 129
FedEx Rate 6 1 2 2 178
FedEx Rate 7 1 2 2 202
FedEx Rate 8 1 2 2 223
FedEx Rate 9 1 2 2 228
FedEx Rate 10 1 2 2 235
FedEx Ship 2 1 2 2 124
FedEx Ship 5 9 16 16 178
FedEx Ship 6 9 16 16 177
FedEx Ship 7 7 12 12 199
FedEx Ship 8 7 12 12 221
FedEx Ship 9 7 12 12 246
FedEx Ship 10 7 12 12 254
FedEx Pkg 2 2 4 4 20
FedEx Pkg 3 2 4 4 20
FedEx Pkg 4 2 4 4 20

of changes extracted in this study and then we present the
results of the study answering our research questions.

A. Fine-Grained Changes

The output of WSDLDiff consists of the set of edit op-
erations. These operations are associated with the elements
declared in the WSDL and XSD specifications. Among all
the elements the following WSDL elements have been de-
tected as affected by changes: BindingOperation, Operation,
Message and Part. The XSD elements detected as affected
by changes are: XSDType, XSDElement, XSDAttributeGroup
and XSDAnnotation. These elements were affected by the
following fine-grained changes:

• XSD Element changes: consist of added XSDEle-
ments (XSDElementA), removed XSDElements (XS-

SERG Romano and Pinzger – Analyzing the Evolution of Web Services using Fine-Grained Changes

TUD-SERG-2012-011 5

DElementR) and moved XSDElements (XSDElementM)
within a declaration of an XSDType or an XSDElement.

• Attribute changes: changes due to the update of an
attribute value. Specifically we detected changes to the
values of the attributes name (NameUpdate), minOc-
curs (MinOccursUpdate), maxOccurs (MaxOccursUp-
date) and fixed (FixedUpdate).

• Reference Changes: consists of changes to a refer-
enced value (RefUpdate).

• Enumeration Changes: changes of elements declared
within an XSDEnumeration element. We detected added
enumeration values (EnumerationA) and removed enu-
meration values (EnumerationR).

For the sake of simplicity we have presented only the
changes detected in our study. However WSDLDiff is able
to detect changes to every element declared in the WSDL
and XSD specifications.

B. Research Question 1 (RQ1)

The first research question (RQ1) is:

What is the percentage of added, changed and removed
elements of a WSDL interface?

To answer RQ1, for each type of element declared in the
WSDL and XSD specifications, we counted the number of
times they have been added, changed, or removed between
every pair of subsequent versions of the WSDL interfaces
under analysis. We present the results in three different
tables. In Table II we report the number of added, changed
and deleted WSDL elements while the added, changed and
removed XSD elements are shown in Table III. Table IV
summarizes the results showing the total number and the
percentage of added, changed and deleted WSDL and XSD
elements for each web service. The raw data with the
changes extracted for each pair of subsequent versions is
available on our web site.10 In Table II we omitted the
number of added, changed and removed BindingOperations
because they are identical to the number of added, changed
and removed Operations. Moreover, the added and removed
Parts do not include the Parts that were added and removed
due to the additions and deletions of Messages. This choice
allows us to highlight the changes in the Parts of existing
Messages.

The results show that in all the web services the total
number of deleted elements is a small percentage of the
total number of changes (see Table IV). In particular, the
percentage of deleted elements is approximately 4% for
AmazonEC2, 12% for FedEx Rate and 6% for FedEx Ship.
This result demonstrates that web service providers do not
tend to delete existing elements in order to avoid breaking
their clients.

10http://swerl.tudelft.nl/twiki/pub/DanieleRomano/WebHome/
ICWS12RQ1.pdf

Table II: Number of added Operations (OperationA),
changed Operations (OperationC), deleted Operations (Op-
erationD), added Messages (MessageA), changed Messages
(MessageC), deleted Messages (MessageD), added Parts
(PartA), changed Parts (PartC) and deleted Parts (PartD)
for each WSDL interface.

Change Type AmazonEC2 FedEx Rate FedEx Ship FedEx Pkg
OperationA 113 1 10 0
OperationC 0 1 0 0
OperationD 9 1 4 0
MessageA 218 2 16 0
MessageC 2 0 2 0
MessageD 10 2 2 0

PartA 27 0 2 0
PartC 34 0 0 0
PartD 27 0 2 0
Total 440 7 38 0

Table III: Number of added XSDTypes (XSDTypeA), changed
XSDTypes (XSDTypeC), deleted XSDTypes (XSDTypeD),
added XSDElements (XSDElementA), changed XSDEle-
ments (XSDElementC), deleted XSDElements (XSDEle-
mentD), added XSDAttributeGroup (XSDAttributeGroupA)
and changed XSDAttributeGroup (XSDAttributeGroupC) for
each WSDL interface.

Change Type AmazonEC2 FedEx Rate FedEx Ship FedEx Pkg
XSDTypeA 409 234 157 0
XSDTypeC 160 295 280 6
XSDTypeD 2 71 28 0

XSDElementA 208 2 25 0
XSDElementC 1 0 18 0
XSDElementD 0 2 0 0

XSDAttributeGroupA 6 0 0 0
XSDAttributeGroupC 5 0 0 0

Total 791 604 508 6

Concerning the number of added elements, the FedEx
Rate and Ship services show approximately the same per-
centage (39% and 38%) while the AmazonEC2 service
shows a percentage of approximately 80%. These percent-
ages need to be interpreted taking into account the added,
changed and removed WSDL and XSD elements. In fact,
while the AmazonEC2 evolves continuously adding 113 new
Operations (see Table II), the FedEx services are more stable
with 1 new Operation added in FedEx Rate and 10 new
Operations added in FedEx Ship. However, despite the few
number of new Operations added in the FedEx services the
number of added, changed and removed XSDTypes is high
like in the AmazonEC2 service. This result lets us assume
that the elements added in the FedEx services modify old
functionalities and, hence, they are more likely to break the
clients. Instead the AmazonEC2 is continuously evolving
providing new Operations. This assumption is confirmed
by the percentage of changed elements, that is lower in
AmazonEC2 (about 16%) than in FedEx Rate and Ship

Romano and Pinzger – Analyzing the Evolution of Web Services using Fine-Grained Changes SERG

6 TUD-SERG-2012-011

Table IV: Number of added, changed and removed WSDL
and XSD elements for each WSDL interface under analysis

WSDL Type #Added #Changed #Deleted
AmazonEC2 WSDL 358 34 46
AmazonEC2 XSD 623 166 5
AmazonEC2 Total 981 (⇡80%) 200 (⇡16%) 51 (⇡4%)
FedEx Rate WSDL 3 1 3
FedEx Rate XSD 236 295 73
FedEx Rate Total 239 (⇡39%) 296 (⇡49%) 76 (⇡12%)
FedEx Ship WSDL 28 4 8
FedEx Ship XSD 182 298 28

FedEx Ship Total 210 (⇡38%) 302 (⇡55%) 36 (⇡6%)
FedEx Pkg WSDL 0 0 0
FedEx Pkg XSD 0 6 0
FedEx Pkg Total 0 (0%) 6 (100%) 0 (0%)

(about 49% and 55%).
Based on these results we can answer RQ1 stating that in

all four web services the percentage of removed elements is
a small percentage compared to the total number of added,
changed and removed elements. Concerning the added el-
ements the AmazonEC2 showed the highest percentage
(⇡80%) due to the high number of new WSDL elements
added along its evolution. Instead the FedEx Rate and Ship
services showed lower percentages (respectively about 39%
and 38%). The percentage of changed elements is higher in
the FedEx Rate and Ship services (respectively about 49%
and 55%) compared to the approximately 16% of changed
elements in AmazonEC2.

Answering RQ1 we decided to omit the analysis of the
FedEx Pkg service because the low number of changes and
versions do not allow us to make any assumption.

C. Research Question 2 (RQ2)

The second research question (RQ2) is:

Which types of changes are made to the elements of a
WSDL interface?

In order to address RQ2 we focused on the changes applied
to XSDTypes. In fact, among all the elements changed (802),
742 elements (approximately 92%) are XSDTypes (see Table
II and III). For each XSDType we extracted the fine-grained
changes and we report the results in Table V. We omitted to
report the number of XSDAnnotation changes because they
are not relevant for our study. The raw data with the changes
extracted for each pair of subsequent versions is available
on our web site.11

The results show that the most frequent change along
the evolution of the AmazonEC2 is the XSDElementA. In
fact, it accounts for around 80% (198 changes out of
247) of the total changes. Concerning the FedEx Rate and
FedEx Ship services, the EnumerationA changes are the most

11http://swerl.tudelft.nl/twiki/pub/DanieleRomano/WebHome/
ICWS12RQ2.pdf

Table V: Number of added XSDElements (XSDElementA),
deleted XSDElements (XSDElementR), moved XSDElements
(XSDElementM), updated attributes (NameUpdate, MinOc-
cursUpdate, MaxOccursUpdate and FixedUpdate), updated
references (RefUpdate), added enumeration values (Enumer-
ationA) and removed enumeration values (EnumerationR) in
the XSDTypes for each WSDL interface.

Change Type AmazonEC2 FedEx Rate FedEx Ship FedEx Pkg
XSDElementA 198 113 136 1
XSDElementD 11 47 49 3
XSDElementM 1 55 51 0
NameUpdate 11 20 8 0

MinOccursUpdate 17 33 39 0
MaxOccursUpdate 0 9 6 0

FixedValue 0 11 12 2
RefUpdate 9 80 273 0

EnumerationA 0 1141 926 2
EnumerationD 0 702 528 3

Total 247 2211 2028 11

frequent, accounting for approximately 51% (1141 changes
out of 2211) and for 45% (926 changes out of 2028) of
all changes. Adding the EnumerationD changes, we obtain
approximately 83% (1843 changes out of 2211) and 71%
(1454 changes out of 2028) of changes occurring in the enu-
meration elements. The results show that in 3 web services
out of 4 there is a type of change that is predominant. This
result demonstrates that fine-grained changes can help web
services subscribers to be aware of the most frequent types
of changes affecting a WSDL interface. Like for RQ1, the
small number of changes in the FedEx Pkg does not allow
any valid conclusion.

D. Summary and implications of the results

The changes collected in this study highlight how different
WSDL interfaces evolve differently. This study with the WS-
DLDiff tool can help services subscribers to analyze which
elements are frequently added, changed and removed and
which types of changes are performed more frequently. For
example, a developer who wants to integrate a FedEx service
into his/her application can learn that the specification of
data types changes most frequently while Operations change
only rarely (RQ1). In particular, the enumeration values are
the most unstable elements (RQ2). Instead, an AmazonEC2
subscriber can be aware that new Operations are contin-
uously added (RQ1) and that data types are continuously
modified adding new elements (RQ2).

V. CONCLUSION & FUTURE WORK

In this paper we proposed a tool called WSDLDiff to
extract fine-grained changes between two WSDL interfaces.
With WSDLDiff we performed a study aimed at understand-
ing the evolution of web services looking at the changes
detected by our tool. The results of our study showed that the
fine-grained changes are a useful means to understand how a

SERG Romano and Pinzger – Analyzing the Evolution of Web Services using Fine-Grained Changes

TUD-SERG-2012-011 7

particular web service evolves over time. This information is
relevant for web services subscribers who want 1) to analyze
the most frequent changes affecting a WSDL interface and
2) to compare the evolution of different web services with
similar features. From this information they can estimate the
risk associated to the usage of a web service.

The study presented in this paper is the first study on
the evolution of web services and we believe that our tool
provides an essential starting point. As future work, first
we plan to classify the changes retrievable with WSDLDiff,
integrating and possibly extending the works proposed by
Feng et al. [4] and Treiber et al. [15]. Next, we plan to
investigate metrics that can be used as indicators of changes
in WSDL elements. For instance in our previous work [13],
we found an interesting correlation between the number of
changes in Java interfaces and the external cohesion metric
defined for services by Perepletchikov et al. [11]. With our
tool to extract fine-grained changes and our previous work
to extract dependencies among web services [14] we plan to
perform similar studies with WSDL interfaces. Finally, we
plan to investigate the co-evolution of the different web ser-
vices composing a service oriented system. With WSDLDiff
we can highlight web services that evolve together, hence,
violating the loosely coupling property. This analysis can
help us to investigate the causes of web services co-evolution
and techniques to keep their evolution independent.

ACKNOWLEDGMENT

This work has been partially funded by the NWO-
Jacquard program within the ReSOS project.

REFERENCES

[1] L. Aversano, M. Bruno, M. D. Penta, A. Falanga, and
R. Scognamiglio. Visualizing the evolution of web services
using formal concept analysis. In IWPSE, pages 57–60, 2005.

[2] C. Brun and A. Pierantonio. Model differences in the eclipse
modelling framework. UPGRADE The European Journal for
the Informatics Professional, IX(2):29–34, 2008.

[3] T. Erl. SOA Principles of Service Design (The Prentice
Hall Service-Oriented Computing Series from Thomas Erl).
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2007.

[4] Z. Feng, K. He, R. Peng, and Y. Ma. Taxonomy for evolution
of service-based system. In SERVICES, pages 331–338, 2011.

[5] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change dis-
tilling: Tree differencing for fine-grained source code change
extraction. IEEE Trans. Softw. Eng., 33:725–743, November
2007.

[6] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and
A. Lau. An empirical study on web service evolution. In
ICWS, pages 49–56, 2011.

[7] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc. An ex-
ploratory study of the impact of code smells on software
change-proneness. In Proceedings of the 2009 16th Working
Conference on Reverse Engineering, WCRE ’09, pages 75–
84, Washington, DC, USA, 2009. IEEE Computer Society.

[8] F. Liu, Y. Shi, J. Yu, T. Wang, and J. Wu. Measuring similarity
of web services based on wsdl. In ICWS, pages 155–162,
2010.

[9] M. P. Papazoglou. The challenges of service evolution. In
Proceedings of the 20th international conference on Advanced
Information Systems Engineering, CAiSE ’08, pages 1–15.
Springer-Verlag, 2008.

[10] M. D. Penta, L. Cerulo, Y.-G. Guéhéneuc, and G. Antoniol.
An empirical study of the relationships between design pat-
tern roles and class change proneness. In ICSM, pages 217–
226, 2008.

[11] M. Perepletchikov and C. Ryan. The impact of service
cohesion on the analyzability of service-oriented software.
IEEE T. on Software Engineering, 37(4):449–465, 2011.

[12] P. Plebani and B. Pernici. Urbe: Web service retrieval based
on similarity evaluation. IEEE Trans. on Knowl. and Data
Eng., 21:1629–1642, November 2009.

[13] D. Romano and M. Pinzger. Using source code metrics to
predict change-prone java interfaces. In ICSM, pages 303–
312, 2011.

[14] D. Romano, M. Pinzger, and E. Bouwers. Extracting dynamic
dependencies between web services using vector clocks. In
SOCA, pages –, 2011.

[15] M. Treiber, H. L. Truong, and S. Dustdar. On analyzing
evolutionary changes of web services. In ICSOC Workshops,
pages 284–297, 2008.

[16] N. Tsantalis, N. Negara, and E. Stroulia. Webdiff: A generic
differencing service for software artifacts. In ICSM, pages
586–589, 2011.

[17] S. Wang and M. A. M. Capretz. A dependency impact
analysis model for web services evolution. In ICWS, pages
359–365, 2009.

[18] Z. Xing and E. Stroulia. Analyzing the evolutionary history
of the logical design of object-oriented software. IEEE Trans.
Software Eng., 31(10):850–868, 2005.

[19] Z. Xing and E. Stroulia. Umldiff: an algorithm for object-
oriented design differencing. In Proceedings of the 20th
IEEE/ACM international Conference on Automated software
engineering, ASE ’05, pages 54–65, 2005.

[20] K. Zhang and D. Shasha. Simple fast algorithms for the
editing distance between trees and related problems. SIAM J.
Comput., 18:1245–1262, December 1989.

Romano and Pinzger – Analyzing the Evolution of Web Services using Fine-Grained Changes SERG

8 TUD-SERG-2012-011

TUD-SERG-2012-011
ISSN 1872-5392 SERG

