
RESEARCH Open Access

Analyzing the genes related to Alzheimer’s
disease via a network and pathway-based
approach
Yan-Shi Hu1, Juncai Xin1, Ying Hu1, Lei Zhang2* and Ju Wang1*

Abstract

Background: Our understanding of the molecular mechanisms underlying Alzheimer’s disease (AD) remains incomplete.

Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and

development of AD. In the past years, numerous genes implicated in this disease have been identified via

genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the

roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis

focusing on the biological function and interactions of these genes in the context of AD will therefore

provide valuable insights to understand the molecular features of the disease.

Method: In this study, we collected genes potentially associated with AD by screening publications on genetic association

studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and

biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk

analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome

and an AD-specific network was inferred using the Steiner minimal tree algorithm.

Results:We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis

indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism,

cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then

revealed that the significantly enriched pathways could be grouped into three interlinked modules—neuronal

and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-

related module—indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an

AD-specific protein network was inferred and novel genes potentially associated with AD were identified.

Conclusion: By means of network and pathway-based methodology, we explored the pathogenetic mechanism

underlying AD at a systems biology level. Results from our work could provide valuable clues for understanding the

molecular mechanism underlying AD. In addition, the framework proposed in this study could be used to investigate

the pathological molecular network and genes relevant to other complex diseases or phenotypes.
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Background
Alzheimer’s disease (AD) is the most prevalent neurode-

generative disorder and accounts for the majority of

people diagnosed with dementia [1]. As a complex and

chronic neurological disease, AD affects about 6% of

people aged 65 years and older [2], and is responsible for

about 480,000 deaths per year around the world [3]. In

addition to its affect on the life quality of those suffering

from the disorder and their families, AD also causes a se-

vere burden on society. In the USA alone, the health-care

costs related to AD are about $172 billion per year [4].

AD can be diagnosed by symptoms such as short-term

memory loss, mood swings, learning impairments, and

disruptions in daily activities [5]. However, as an age-

related and progressive disease, some pathological fea-

tures of AD (e.g., amyloid deposition, accumulation of

neurofibrillary tangles, as well as function and structure

changes of brain regions involved in memory) often

appear many years prior to clinical manifestations [6, 7].

These pathological changes eventually lead to the

damage and death of specific neurons, resulting in the

emergence of clinical symptoms.

The cause of AD is still poorly understood although

much effort has been dedicated to exploring the patho-

logical and molecular mechanisms of AD via various

approaches—e.g., animal models, gene expression

profiling, genome-wide association studies (GWAS),

neuroimaging techniques, or a systems biology frame-

work [2, 8–11]. It is agreed that AD develops as a result

of the combination of multiple factors, including genetic

factors, a history of head injuries, depression, or hyper-

tension. Among these factors, it is estimated that about

70% of the risk for AD is attributable to genetics [1, 12].

Established genetic causes of AD include the dominant

mutations of genes encoding amyloid precursor protein

(APP), presenilin 1 (PSEN1), and presenilin 1 (PSEN2).

However, these genes are only responsible for the patho-

genesis of AD in about 5% of patients with clinical

symptoms appearing in midlife. On the other hand,

genetic analyses have suggested that, in complex disor-

ders like AD, individual differences can be caused by

many genes and their variants. Genes with various

biological functions may act in coordination to increase

the risk of AD, with a moderate or small effect exerted

by each gene [1]. Consistent with this view, more and

more genes—e.g., apolipoprotein E (APOE), glycogen

synthase kinase 3 beta (GSK3B), dual specificity tyrosine-

phosphorylation-regulated kinase 1A (DYRK1A), and

Tau—have been found to be potentially associated with

AD [1, 13]. For these genes, although a few plausible

candidate genes have been partially replicated, some are

considered problematic. This is especially true as high-

throughput methods like GWAS are being more widely

applied to genetic studies of AD. Under such

circumstances, a comprehensive analysis of potential

causal genes of AD within a pathway and/or a network

framework may not only provide us with important

insights beyond the conventional single-gene analyses, but

also offer consolidated validation for the individual candi-

date gene.

In the current study, we implemented a comprehen-

sive curation of AD-related genes from genetic associ-

ation studies. We then conducted biological enrichment

analyses to detect the significant functional themes

within these genetic factors and analyzed the interac-

tions among the enriched biochemical pathways by

pathway crosstalk analysis. Furthermore, an AD-specific

protein network was inferred and evaluated with the

human protein–protein interaction network as the

background. This study should offer valuable hints for

understanding the molecular mechanisms of AD from a

perspective of systems biology.

Methods

Identification of AD-related genes

The genes genetically associated with AD were collected

by retrieving the human genetic association studies depos-

ited in PubMed (http://www.ncbi.nlm.nih.gov/pubmed/).

We retrieved publications associated with AD with the

searching term ‘(Alzheimer’s Disease [MeSH]) AND (Poly-

morphism [MeSH] OR Genotype [MeSH] OR Alleles

[MeSH]) NOT (Neoplasms [MeSH])’. By July 7, 2015, a

total of 5298 reports were retrieved. After reviewing all ab-

stracts of these publications, only the genetic association

studies on AD were selected. From the obtained publica-

tion pool, we then concentrated on those studies reporting

a significant association of gene(s) with AD. In order to re-

duce the number of potential false-positive genes, the stud-

ies reporting insignificant or negative associations were

excluded even though some genes in these studies might

actually be truly associated with AD. We then reviewed the

full reports of each selected publication to make sure that

the conclusion was consistent with its contents. In several

studies, some genes were found to function cooperatively

to exert significant influences on AD, with each gene hav-

ing a small or mild impact; these genes were also included

in our list. In addition, the genes from several GWAS ana-

lyses on AD, showing genetic association at a genome-wide

significance level, were also included.

Functional enrichment analysis of genes related to AD

WebGestalt [14] and ToppGene [15] were utilized to

detect the biological themes of the AD-related genes. As

a web-based bioinformation-mining platform, WebGes-

talt integrates information from multiple resources to

determine the biological themes, including identifying

the overrepresented Gene Ontology (GO) terms, amid

the candidate gene listing. In this study, only the GO
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biological process terms with false discovery rate (FDR)

value smaller than 0.05 were kept as the significantly

enriched ones. ToppGene was used to identify and

analyze the enriched biological pathways in the input

genes. Pathways with FDR < 0.05 were considered to be

significantly enriched.

Analysis of crosstalks among pathways

We further built crosstalks among pathways to investi-

gate interlinks and interactions of the enriched path-

ways. To measure the overlap between two pathways,

the overlap coefficient (OC) and the Jaccard coefficient

(JC) were calculated using the corresponding formulas:

OC ¼
A∩Bj j

min Aj j; Bj jð Þ

and

JC ¼
A∩B

A∪B

�

�

�

�

�

�

�

�

;

in which A and B are the lists of genes of the two exam-

ined pathways. Briefly, the following procedure was

adopted to construct the pathway crosstalks:

(1)Only pathways with FDR < 0.05 were kept for

crosstalk analysis. Meanwhile, pathways with five or

fewer candidate genes were discarded because

pathways with too few candidate genes might present

few or biased connections with other pathways.

(2)Counting the common candidate genes of each

pathway pair—those pathway pairs with less than

two overlapped genes were removed.

(3)Measuring the overlap in every pathway pair by the

corresponding JC and OC values.

(4)Constructing the pathway crosstalk with Cytoscape

software [16].

Compilation of the human protein–protein interaction

network

To explore the correlation and interaction among the AD-

related genes, we compiled a comprehensive protein–pro-

tein interaction (PPI) network, based on which the protein

network topological properties of the gene set related to

AD were calculated and analyzed. Briefly, the human pro-

tein–protein interaction data were obtained from the Pro-

tein Interaction Network Analysis (PINA) database (latest

release version: May 21, 2014) [17] by pooling and curating

the unique physical interaction information from six main

public protein interaction databases: BioGRID, IntAct, DIP,

MINT, MIPS/MPact, and HPRD. In the meantime, another

interactome for Homo sapiens [18] that contained 141,296

edges (physical protein interactions) among 13,460 nodes

(proteins), consisting of metabolic pathway-related interac-

tions, regulatory and protein–protein interactions, and

interaction pairs for kinase and specific substrate, was

selected as an additional source of interactome data. After

merging the two interactome data by excluding the self-

interacting and redundant pairs, the proteins in the list

were mapped onto Entrez protein-coding genes for Homo

sapiens via the Uniprot ID mapping tool (http://www.uni-

prot.org/uploadlists). Finally, we compiled a relatively

comprehensive human physical interactome, which com-

prised 16,022 genes/proteins and 228,122 interactions (see

Additional file 1).

Construction of the AD-specific protein subnetwork

A subnetwork specific to a given disease can provide us with

hints for how the disease-related molecules interact with

each other. A network parsimony principle has been dem-

onstrated in the context of biological processes [19]; that is,

the molecular networks/pathways often follow the shortest

molecular paths between known disease-associated compo-

nents (disease-related genes or proteins in our case). The

Steiner minimal tree algorithm coincides with this biological

principle, which uses a greedy heuristic strategy to iteratively

link the smaller trees to larger ones until there is only one

tree connecting all seed nodes [20]. GenRev [21] was utilized

to identify the pathological subnetwork from the human in-

teractome using the curated AD-related genes as input. To

assess the non-randomness of the constructed network,

1000 random networks with the same number of vertices

and interactions as the AD-specific network were generated

using the Erdos-Renyi model in R igraph package [22].

Results

Compilation of genes associated with AD

Genes associated with AD were compiled through searching

the published genetic association studies on AD in PubMed.

Only the publications reporting gene(s) significantly associ-

ated with the disease were pooled, and those reporting a

negative or insignificant association were excluded.

Altogether, from 823 reports, we collected 430 genes re-

ported to be associated with AD (Additional file 2: Table S1;

the gene list is referred to as Alzgset). Among them were

seven apolipoprotein genes (APOA1, APOA4, APOC1,

APOC2, APOC4, APOD, and APOE), five genes encoding

subunits of nicotinic acetylcholine receptors (CHRNA3,

CHRNA4, CHRNA7, CHRNB2, and CHRFAM7A), four

adrenoceptors (ADRA2B, ADRB1, ADRB2, and ADRB3),

two serotonin receptors (HTR2A and HTR6), three dopa-

mine degradation genes (COMT, DBH, and MAOA), and

one dopamine receptor (DRD4). A few transport-related

genes were also collected, such as ATP-binding cassette

transporters (ABCA1, ABCA2, ABCA7, ABCC2, ABCG1,

and ABCG2), a dopamine transporter (SLC6A3), a serotonin

transporter (SLC6A4), two glucose transporters (SLC2A9
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and SLC2A14), a folate transporter (SLC19A1), and ion

transporters (SLC24A4). The other genes were those in-

volved in the biological processes related to nitric oxide syn-

thesis (NOS1 and NOS3), immune response (e.g., IL1A, IL6,

IL10, and NLRC3), as well as mitochondria-specific function

(e.g., MT-ATP6, MT-CO1, MT-CYB, and MTHFR). Clearly,

the genes significantly associated with AD were diverse in

function, consistent with the complexity of this mental

disorder.

Biological function enrichment analysis of Alzgset

Functional enrichment analysis revealed a more detailed

biological function spectrum of these AD-related genes

(see Additional file 2: Table S2). Among the GO terms

overrepresented in Alzgset, those related to lipid and/or

lipoprotein-related processes, drug reactions, neural

development, or synaptic transmission were included.

GO terms associated with drug reactions (e.g., response

to ethanol, response to nicotine, and response to

cocaine) and metabolic processes (e.g., xenobiotic meta-

bolic process) were overrepresented. These results were

in line with previous findings that complicated correla-

tions existed between the pathophysiological state of AD

and drug abuse [23, 24]. Of significance, top-ranked

terms included some lipid/lipoprotein-related processes,

including phospholipid efflux, reverse cholesterol trans-

port, cholesterol homeostasis, and lipoprotein metabolic

processes. Biological process terms related to synaptic

transmission (e.g., positive regulation of transmission of

nerve impulse; synaptic transmission, cholinergic;

regulation of synaptic transmission, dopaminergic; and

regulation of neurotransmitter secretion), dopamine

metabolism (dopamine metabolic process), and other

neural functions (e.g., synaptic vesicle transport, regula-

tion of neuronal synaptic plasticity, neuron migration,

and memory) were also enriched. Meanwhile, GO terms

related to immunological function (e.g., T-helper 1 type

immune response, positive regulation of interleukin-6

production, and chronic inflammatory response) were

overrepresented. The diversity in the function of AD-

related genes demonstrated the complexity of the

disease.

Biochemical pathway enriched in Alzgset

Detecting the biological pathways overrepresented

among Alzgset may provide useful information about

the pathogenic molecular mechanism underlying AD.

For Alzgset, 68 enriched pathways were identified

(Table 1). Among them, several pathways related to

immune processes were included (e.g., cytokines and

inflammatory response, cytokine network, dendritic cells

in regulating TH1 and TH2 development, and IL-5

signaling), consistent with previous studies [25, 26].

Also, neurotransmitter signaling-related pathways were

identified, such as cholinergic synapse, dopaminergic

synapse, serotonergic synapse, and so forth. Additionally,

in the Alzgset enriched pathway list, there were some

pathways related to cell growth and/or survival, includ-

ing neurotrophin signaling, PI3K-Akt signaling, mTOR

signaling, Notch signaling, and so forth, which are vital

for cell growth/survival state of neurons in the process

of AD [27, 28]. Moreover, metabolism-related pathways,

consisting of drug metabolism (cytochrome P450), gluta-

thione metabolism, and metabolism of xenobiotics by

cytochrome P450, were also significantly enriched, indi-

cating that related metabolism processes were involved

in the etiology and development processes of AD. What

is more, the pathway of the intestinal immune network

for IgA production was enriched, which might suggest a

connection between AD and the intestinal microbiota

[29, 30]. Furthermore, pathways involved in osteoclast

differentiation and adipocytokine signaling were also

detected, complying with prior studies [31–33].

Crosstalks among significantly enriched pathways

To explore the correlations between the pathways, we

implemented a pathway crosstalk analysis for the 68

enriched pathways. Here we assumed that crosstalk

existed in a pathway pair if they had a proportion of

common genes in Alzgset [34]. There were 41 pathways

including six or more members in Alzgset, of which 37

pathways met the criterion for crosstalk analysis; that is,

each pathway shared at least two genes with one or

more other pathways. All of the pathway pairs (207

crosstalks among 37 pathways) were used for construct-

ing the pathway crosstalk network and the overlap

significance of each pathway pair was evaluated based

on the average of JC and OC.

Based on their crosstalks, these pathways could be

roughly divided into three major modules, with path-

ways in each group having more crosstalks with each

other than with those outside of this module and more

likely being related to the same or similar biological

process (Fig. 1). The first module primarily included

neuronal-related and xenobiotic or drug metabolism-

related pathways (e.g., calcium signaling, dopaminergic

synapse, cholinergic synapse, serotonergic synapse and

neurotrophin signaling, metabolism of xenobiotics by

cytochrome P450, and drug metabolism—cytochrome

P450). The major theme of the second module was cell

growth/survival and neuroendocrine-related pathways

(e.g., PI3K-Akt signaling, mTOR signaling, notch signal-

ing, prolactin signaling, etc.). The third module included

immune response-related pathways (e.g., toll-like recep-

tor signaling, Fc epsilon RI signaling pathway). At the

same time, the three modules were interlinked with each

other, indicating the existence of an AD-specific

immune-endocrine-neuronal regulatory network.
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Table 1 Pathways enriched in Alzgseta

Pathway p valueb pBH valuec Genes included in the pathwayd

Cytokines and inflammatory response 1.03 × 10–9 8.79 × 10–8 CXCL8, HLA-DRA, HLA-DRB1, IL10, IL12A, IL12B, IL1A, IL4,
IL6, TGFB1, TNF

cytokine network 9.89 × 10–9 3.84 × 10–7 CXCL8, IL10, IL12A, IL12B, IL18, IL1A, IL4, IL6, TNF

Hematopoietic cell lineage 1.92 × 10–7 5.46 × 10–6 CD14, CD33, CD36, CD44, CR1, HLA-DRA, HLA-DRB1,
HLA-DRB5, IL1A, IL1B, IL4, IL6, IL6R, MME, TNF

Dendritic cells in regulating TH1 and TH2
Development

3.11 × 10–7 8.29 × 10–6 CD33, IL10, IL12A, IL12B, IL4, TLR2, TLR4, TLR9

Ovarian steroidogenesis 5.88 × 10–6 1.09 × 10–4 ALOX5, CYP19A1, FSHR, IGF1, INS, LDLR, LHCGR, PLA2G4A,
PTGS2, STAR

IL-5 signaling pathway 9.00 × 10–6 1.60 × 10–4 HLA-DRA, HLA-DRB1, IL1B, IL4, IL6

Neurotrophin signaling pathway 1.08 × 10–5 1.77 × 10–4 BDNF, CAMK2D, GSK3B, IRS1, NGF, NGFR, NTF3, NTRK1,
NTRK2, PIK3R1, PSEN1, PSEN2, SOS2, TP53, TP73

HIF-1 signaling pathway 1.12 × 10–5 1.77 × 10–4 CAMK2D, EIF4EBP1, GAPDH, HMOX1, IGF1, IL6, IL6R, INS,
NOS3, PIK3R1, RPS6KB2, TF, TLR4, VEGFA

NOD-like receptor signaling pathway 1.66 × 10–5 2.37 × 10–4 CARD8, CCL2, CXCL8, IL18, IL1B, IL6, MEFV, NLRP1,
NLRP3, TNF

Mechanism of gene regulation by peroxisome
proliferators via PPARα

1.95 × 10–5 2.69 × 10–4 APOA1, CD36, INS, LPL, PIK3R1, PPARA, PTGS2, RXRA,
SP1, TNF

Th1/Th2 differentiation 2.54 × 10–5 3.19 × 10–4 HLA-DRA, HLA-DRB1, IL12A, IL12B, IL18, IL4

Antigen-dependent B-cell activation 2.68 × 10–5 3.26 × 10–4 FAS, HLA-DRA, HLA-DRB1, IL10, IL4

Oxidative phosphorylation 3.74 × 10–5 4.39 × 10–4 COX10, COX15, MT-ATP6, MT-ATP8, MT-CO1, MT-CO2,
MT-CO3, MT-CYB, MT-ND1, MT-ND2, MT-ND3, MT-ND4,
MT-ND4L, MT-ND5, MT-ND6

PI3K-Akt signaling pathway 3.80 × 10–5 4.39 × 10–4 COL11A1, EFNA5, EIF4EBP1, FGF1, GNB3, GSK3B, IGF1, IL4,
IL6, IL6R, INS, IRS1, NGF, NGFR, NOS3, PCK1, PIK3R1,
PPP2R2B, RELN, RPS6KB2, RXRA, SOS2, TLR2, TLR4, TP53,
VEGFA, YWHAQ

NF-κB signaling pathway 4.83 × 10–5 5.42 × 10–4 CD14, CXCL8, ICAM1, IL1B, LCK, PARP1, PLAU, PTGS2, TLR4,
TNF, TRAF2, UBE2I

Phagosome 7.77 × 10–5 8.29 × 10–4 CD14, CD36, CTSS, HLA-A, HLA-DQB1, HLA-DRA, HLA-DRB1,
HLA-DRB5, MBL2, MPO, NOS1, OLR1, RAB7A, TAP2, TLR2, TLR4

Erythrocyte differentiation pathway 9.33 × 10–5 9.49 × 10–4 CCL3, IGF1, IL1A, IL6, TGFB1

IL-10 anti-inflammatory signaling pathway 1.82 × 10–4 1.69 × 10–3 HMOX1, IL10, IL1A, IL6, TNF

Cells and molecules involved in local acute
inflammatory response

1.82 × 10–4 1.69 × 10–3 CXCL8, ICAM1, IL1A, IL6, TNF

Toll-like receptor signaling pathway 2.15 × 10–4 1.95 × 10–3 CCL3, CD14, CXCL8, IL12A, IL12B, IL1B, IL6, PIK3R1, TLR2,
TLR4, TLR9, TNF

Free radical induced apoptosis 2.22 × 10–4 1.97 × 10–3 CXCL8, GPX1, SOD1, TNF

Intestinal immune network for IgA production 2.65 × 10–4 2.26 × 10–3 HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, IL10, IL4, IL6,
TGFB1

Selective expression of chemokine receptors
during T-cell polarization

3.35 × 10–4 2.68 × 10–3 CCL3, CCR2, IL12A, IL12B, IL4, TGFB1

B lymphocyte cell surface molecules 3.39 × 10–4 2.68 × 10–3 CR1, HLA-DRA, HLA-DRB1, ICAM1

Phosphorylation of MEK1 by cdk5/p35
downregulates the MAP kinase pathway

3.39 × 10–4 2.68 × 10–3 CDK5, CDK5R1, NGF, NGFR

Complement and coagulation cascades 4.61 × 10–4 3.58 × 10–3 A2M, C4A, C4B, CFH, CR1, F13A1, MBL2, PLAU,
SERPINA1

ABC transporters 5.87 × 10–4 4.32 × 10–3 ABCA1, ABCA2, ABCA7, ABCC2, ABCG1, ABCG2, TAP2

Signal transduction through IL-1R 6.97 × 10–4 5.05 × 10–3 IL1A, IL1B, IL1RN, IL6, TGFB1, TNF

mTOR signaling pathway 8.19 × 10–4 5.83 × 10–3 EIF4EBP1, IGF1, INS, IRS1, PIK3R1, RPS6KB2, TNF,
VEGFA

Adhesion and diapedesis of granulocytes 9.49 × 10–4 6.65 × 10–3 CXCL8, ICAM1, IL1A, TNF
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Table 1 Pathways enriched in Alzgseta (Continued)

TNF signaling pathway 1.12 × 10–3 7.69 × 10–3 CCL2, FAS, ICAM1, IL1B, IL6, MAGI2, MMP3, PIK3R1,
PTGS2, TNF, TRAF2

MAPK signaling pathway 1.13 × 10–3 7.69 × 10–3 BDNF, CD14, FAS, FGF1, IL1A, IL1B, MAPK8IP1, MAPT,
MEF2C, NGF, NTF3, NTRK1, NTRK2, PLA2G4A, SOS2,
TGFB1, TNF, TP53, TRAF2

The IGF-1 receptor and longevity 1.26 × 10–3 8.28 × 10–3 IGF1, PIK3R1, SOD1, SOD2

Glutathione metabolism 1.45 × 10–3 8.95 × 10–3 GPX1, GSTM1, GSTM3, GSTO1, GSTO2, GSTP1, GSTT1

Cytokine–cytokine receptor interaction 1.48 × 10–3 8.95 × 10–3 CCL2, CCL3, CCR2, CXCL8, FAS, IL10, IL12A, IL12B, IL18,
IL1A, IL1B, IL23R, IL4, IL6, IL6R, NGFR, TGFB1, TNF, VEGFA

Serotonergic synapse 1.50 × 10–3 8.95 × 10–3 ALOX5, APP, CYP2D6, GNB3, HTR2A, HTR6, KCNJ6,
MAOA, PLA2G4A, PTGS2, SLC6A4

Antigen processing and presentation 1.63 × 10–3 9.53 × 10–3 CTSS, HLA-A, HLA-DQB1, HLA-DRA, HLA-DRB1,
HLA-DRB5, HSPA5, TAP2, TNF

Drug metabolism—cytochrome P450 1.88 × 10–3 1.05 × 10–2 CYP2D6, GSTM1, GSTM3, GSTO1, GSTO2, GSTP1,
GSTT1, MAOA

Cell cycle: G1/S check point 2.13 × 10–3 1.18 × 10–2 CDK1, CDKN2A, GSK3B, TGFB1, TP53

Fcε RI signaling pathway 2.26 × 10–3 1.23 × 10–2 FCER1G, GAB2, IL4, INPP5D, PIK3R1, PLA2G4A,
SOS2, TNF

Apoptosis 2.28 × 10–3 1.23 × 10–2 FAS, IL1A, IL1B, NGF, NTRK1, PIK3R1, TNF, TP53,
TRAF2

Role of Erk5 in neuronal survival 2.61 × 10–3 1.39 × 10–2 MEF2A, MEF2C, NTRK1, PIK3R1

Bioactive peptide-induced signaling pathway 2.90 × 10–3 1.52 × 10–2 CAMK2D, CDK5, GNA11, MAPT, MYLK, PTK2B

Control of skeletal myogenesis by HDAC and
calcium/calmodulin-dependent kinase (CaMK)

2.93 × 10–3 1.52 × 10–2 IGF1, INS, MEF2A, MEF2C, PIK3R1

Metabolism of xenobiotics by cytochrome P450 3.22 × 10–3 1.62 × 10–2 CYP2D6, GSTM1, GSTM3, GSTO1, GSTO2, GSTP1,
GSTT1, HSD11B1

Ras-independent pathway in NK cell-mediated
cytotoxicity

3.92 × 10–3 1.88 × 10–2 HLA-A, IL18, PIK3R1, PTK2B

Dopaminergic synapse 4.48 × 10–3 2.11 × 10–2 CAMK2D, CLOCK, COMT, DRD4, GNB3, GRIN2B,
GSK3B, KCNJ6, MAOA, PPP2R2B, SLC6A3

Cholinergic synapse 4.57 × 10–3 2.12 × 10–2 CAMK2D, CHAT, CHRNA3, CHRNA4, CHRNA7,
CHRNB2, GNA11, GNB3, KCNJ6, PIK3R1

The co-stimulatory signal during T-cell activation 4.72 × 10–3 2.17 × 10–2 HLA-DRA, HLA-DRB1, LCK, PIK3R1

Adhesion and diapedesis of lymphocytes 5.03 × 10–3 2.28 × 10–2 CXCL8, ICAM1, IL1A

Notch signaling pathway 5.07 × 10–3 2.28 × 10–2 APH1A, APH1B, NCSTN, PSEN1, PSEN2, PSENEN

Role of ERBB2 in signal transduction and oncology 5.61 × 10–3 2.50 × 10–2 ESR1, IL6, IL6R, PIK3R1

Aminoacyl-tRNA biosynthesis 6.37 × 10–3 2.80 × 10–2 MT-TG, MT-TH, MT-TL2, MT-TQ, MT-TR, MT-TS2, MT-TT

Trka receptor signaling pathway 6.55 × 10–3 2.80 × 10–2 NGF, NTRK1, PIK3R1

Rac 1 cell motility signaling pathway 6.62 × 10–3 2.80 × 10–2 CDK5, CDK5R1, MYLK, PIK3R1

CTCF: first multivalent nuclear factor 6.62 × 10–3 2.80 × 10–2 CDKN2A, PIK3R1, TGFB1, TP53

Regulation of PGC-1a 7.74 × 10–3 3.21 × 10–2 CAMK2D, MEF2A, MEF2C, PPARA

Calcium signaling pathway 7.85 × 10–3 3.22 × 10–2 ADRB1, ADRB2, ADRB3, CAMK2D, CHRNA7, GNA11,
HTR2A, HTR6, LHCGR, MYLK, NOS1, NOS3, PTK2B

Lck and Fyn tyrosine kinases in initiation of
TCR activation

8.30 × 10–3 3.38 × 10–2 HLA-DRA, HLA-DRB1, LCK

Adipocytokine signaling pathway 8.75 × 10–3 3.52 × 10–2 CD36, IRS1, PCK1, PPARA, RXRA, TNF, TRAF2

Ras signaling pathway 9.43 × 10–3 3.76 × 10–2 EFNA5, EXOC2, FGF1, GAB2, GNB3, GRIN2B, IGF1,
INS, NGF, NGFR, PIK3R1, PLA2G3, PLA2G4A, SOS2,
VEGFA

Prolactin signaling pathway 1.02 × 10–2 3.96 × 10–2 ESR1, ESR2, GSK3B, INS, LHCGR, PIK3R1, SOS2

Catecholamine biosynthesis, tyrosine→
dopamine→ noradrenaline→ adrenaline

1.05 × 10–2 3.99 × 10–2 DBH, PNMT
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AD-specific protein network

To further examine the potential pathological protein

network of Alzgset, we constructed a subnetwork for

AD from the human protein–protein interaction net-

work via the Steiner minimal tree algorithm. This

method tries to connect the largest number of input

nodes (genes included in Alzgset in our case) via the

least number of interlinking nodes. As shown in Fig. 2,

the protein network of AD comprised 496 nodes and

1521 edges (interactions).

As shown, 393 out of 430 Alzgset genes were included

in the AD-specific network, which accounted for 79.2%

of 496 genes in the network and 91.4% of Alzgset,

demonstrating a high coverage of Alzgset in the subnet-

work. There were 103 genes in the AD-specific molecu-

lar network outside of Alzgset (Table 2). Given that

these intermediate genes interacted closely with those

known to be related to AD, they might also be involved

in the pathological process of the disease phenotype.

Notably, a number of the genes—e.g., epidermal growth

factor receptor (EGFR), nuclear respiratory factor 1

(NRF1), somatostatin receptor 2 (SSTR2), and sortilin 1

(SORT1)—had been shown related to AD in several pre-

vious studies [35–38]. Some of these genes have not

been reported to be directly involved in the pathophysio-

logical condition of AD, but genes linking to them or

other members of the same protein family may have

been found to play a role in such processes. For instance,

ATP binding cassette subfamily G member 5 (ABCG5), a

member of a transport system superfamily, involved in

ATP binding and transporting of substrates across

cytomembranes, was a node in the AD-specific network

Table 1 Pathways enriched in Alzgseta (Continued)

Fat digestion and absorption 1.14 × 10–2 4.32 × 10–2 ABCA1, APOA1, APOA4, CD36, PLA2G3

Stress induction of HSP regulation 1.26 × 10–2 4.63 × 10–2 FAS, IL1A, TNF

Regulation of hematopoiesis by cytokines 1.26 × 10–2 4.63 × 10–2 CXCL8, IL4, IL6

CTL-mediated immune response against
target cells

1.26 × 10–2 4.63 × 10–2 FAS, HLA-A, ICAM1

Osteoclast differentiation 1.32 × 10–2 4.81 × 10–2 GAB2, IL1A, IL1B, LCK, PIK3R1, PPARG, TGFB1, TNF,
TRAF2, TREM2

aAlzheimer’s disease-related genes gene set
bCalculated by Fisher’s exact test
cAdjusted by the Benjamini and Hochberg (BH) method
dGenes among Alzgset included in the specific pathway

Fig. 1 Crosstalk network amid Alzgset-overrepresented pathways. Vertices, biological pathways; lines, crosstalks among pathways. Width of one line

(edge) shows direct proportion with the crosstalk level of a given pathway pair. Nodes tagged with numbers represent the following corresponding

pathways: 1, intestinal immune network for IgA production; 2, toll-like receptor signaling pathway; 3, cytokine–cytokine receptor interaction; 4,

hematopoietic cell lineage; 5, TNF signaling pathway; 6, apoptosis; 7, Fcε RI signaling pathway
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but was out of Alzgset. However, six members from

the same family were included in Alzgset (ABCA1,

ABCA2, ABCA7, ABCC2, ABCG1, and ABCG2), and

there was experimental evidence for their involvement

in AD; for example, the expression reduction or loss

of function of ABCA7 could alter Alzheimer amyloid

processing [39]. Solute carrier family 40 member 1

(SLC40A1), encoding a cytomembrane protein that

may be linked to iron export from duodenal epithelial

cells, was also included in the AD-specific network.

SLC40A1can interact with Golgi membrane protein 1

(GOLM1) and hepcidin antimicrobial peptide

(HAMP). The former was a gene in Alzgset and its

mutation may be related to reduced regional gray

matter volume in AD patients [40], and the expres-

sion of HAMP was significantly reduced in hippocam-

pal lysates from AD brains [41]. Thus, it is likely that

some of the 103 genes in the AD-specific network

may play roles in AD susceptibility and can be novel

targets for further exploration.

Discussion

We have made great progress in exploring the molecular

mechanisms of Alzheimer’s disease in recent years. With

the advancement and maturity of high-throughput

technology, we are able to identify the elements related

to this disease on much larger scales. Although more

and more genes/proteins potentially involved in the

disease have been reported, a thorough analysis of

the biochemical processes associated with the patho-

genesis of AD from the molecular aspect is still

missing. In such cases, a systematic analysis of AD-

related genes via a pathway-based and network-based

analytical framework will provide us with insight into

the disease beyond the single candidate gene-based

analyses [42–44]. In this study, by pooling and curat-

ing human genes related to AD from genetic studies,

and systematically delineating the interconnection of

these genes by means of pathway-based and network-

based analyses, we analyzed AD-related biochemical

processes and their interactions.

Fig. 2 AD-specific protein network built by means of the Steiner minimal tree algorithm, including 496 vertices and 1521 lines. Circular vertices,

genes of Alzgset; triangular vertices, expanding genes. Color of a typical vertex designates its corresponding degree under the background of the

human protein interactome. Darkness of color for a vertex is directly proportional to the corresponding degree value (Color figure online)
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Table 2 Genes included in the AD-specific network but not in

Alzgseta

Gene symbol Gene name

ABCG5 ATP binding cassette subfamily G member 5

ACHE Acetylcholinesterase (Yt blood group)

ADAMTSL4 ADAMTS-like 4

ADRA1D Adrenoceptor alpha 1D

ALB Albumin

ARFGAP3 ADP-ribosylation factor GTPase activating protein 3

ARG1 Arginase 1

ATP1B2 ATPase, Na+/K+ transporting, beta 2 polypeptide

BEND7 BEN domain containing 7

BMP2 Bone morphogenetic protein 2

BRI3BP BRI3 binding protein

CA8 Carbonic anhydrase VIII

CARD16 Caspase recruitment domain family, member 16

CDH2 Cadherin 2, type 1, N-cadherin (neuronal)

CGB Chorionic gonadotropin, beta polypeptide

CHGB Chromogranin B

CLEC7A C-type lectin domain family 7, member A

COLQ Collagen-like tail subunit (single strand of homotrimer)
of asymmetric acetylcholinesterase

COPS5 COP9 signalosome subunit 5

COX6B2 Cytochrome c oxidase subunit VIb polypeptide 2 (testis)

CRK V-crk avian sarcoma virus CT10 oncogene homolog

CTAG1B Cancer/testis antigen 1B

CTNNA1 Catenin (cadherin-associated protein), alpha 1, 102 kDa

CTSA Cathepsin A

DAO D-amino-acid oxidase

DDR1 Discoidin domain receptor tyrosine kinase 1

DPYSL5 Dihydropyrimidinase-like 5

DYNC1LI2 Dynein, cytoplasmic 1, light intermediate chain 2

EDN1 Endothelin 1

EFNA1 Ephrin-A1

EGFR Epidermal growth factor receptor

ELF3 E74-like factor 3 (ets domain transcription factor,
epithelial-specific)

ERAP1 Endoplasmic reticulum aminopeptidase 1

ERP44 Endoplasmic reticulum protein 44

ETNPPL Ethanolamine-phosphate phospho-lyase

FBXO2 F-box protein 2

FCGR2B Fc fragment of IgG, low affinity IIb, receptor (CD32)

FGFBP1 Fibroblast growth factor binding protein 1

FGG Fibrinogen gamma chain

FOXRED2 FAD-dependent oxidoreductase domain containing 2

GNAS GNAS complex locus

GPLD1 Glycosylphosphatidylinositol specific phospholipase D1

Table 2 Genes included in the AD-specific network but not in

Alzgseta (Continued)

GSTM2 Glutathione S-transferase mu 2 (muscle)

HCRT Hypocretin (orexin) neuropeptide precursor

HIST1H2AG Histone cluster 1, H2ag

HIST1H2AM Histone cluster 1, H2am

HLA-DQA1 Major histocompatibility complex, class II, DQ alpha 1

HSD17B14 Hydroxysteroid (17-beta) dehydrogenase 14

HSPA1L Heat shock 70 kDa protein 1-like

IFNA5 Interferon, alpha 5

IFNAR2 Interferon (alpha, beta and omega) receptor 2

IL18RAP Interleukin-18 receptor accessory protein

IL1R2 Interleukin-1 receptor, type II

IL23A Interleukin-23, alpha subunit p19

KCNJ9 Potassium channel, inwardly rectifying subfamily J,
member 9

KIAA0513 KIAA0513

L3MBTL3 L(3)mbt-like 3 (Drosophila)

MAGEA11 Melanoma antigen family A11

MICAL2 Microtubule associated monooxygenase, calponin
and LIM domain containing 2

MLLT4 Myeloid/lymphoid or mixed-lineage leukemia;
translocated to, 4

MUM1 Melanoma associated antigen (mutated) 1

MYC V-myc avian myelocytomatosis viral oncogene
homolog

NRF1 Nuclear respiratory factor 1

NRXN1 Neurexin 1

OCIAD1 OCIA domain containing 1

PIM1 Pim-1 proto-oncogene, serine/threonine kinase

PKNOX2 PBX/knotted 1 homeobox 2

PLCZ1 Phospholipase C, zeta 1

PLD1 Phospholipase D1, phosphatidylcholine-specific

POR P450 (cytochrome) oxidoreductase

PPP1CA Protein phosphatase 1, catalytic subunit, alpha
isozyme

PVR Poliovirus receptor

RAB26 RAB26, member RAS oncogene family

REST RE1-silencing transcription factor

RNF19A Ring finger protein 19A, RBR E3 ubiquitin protein
ligase

RNF2 Ring finger protein 2

RPSA Ribosomal protein SA

SCNN1A Sodium channel, non voltage gated 1 alpha subunit

SDHA Succinate dehydrogenase complex, subunit A,
flavoprotein (Fp)

SEPT12 Septin 12

SEPT6 Septin 6

SFN Stratifin
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Compared with the candidate gene(s)-based approach,

a comprehensive analysis on AD-related genes

conducted in this study has its own advantages. By

implementing an extensive compilation and curation of

human genes from genetic association studies on AD,

we could obtain valuable gene source data for further

analysis. Especially, because the risk of AD suscepti-

bility can be attributed to many genes, with multiple

genes functioning in a concerted manner and each

gene exerting a small effect [45], we took this into

consideration by also retrieving genes jointly showing

significant genetic association with AD. At the same

time, by focusing on the biological correlation of

genes, pathway and network analysis can not only

give us a more comprehensive view for the patho-

logical mechanisms of AD, but are also more robust

to the influence of false-positive genes.

As revealed by function enrichment analysis, genes in

Alzgset may play important roles in lipid/lipoprotein-re-

lated procedures, the immune system, the metabolic

process, drug response processes, and neurodevelop-

ment. For example, terms such as reverse cholesterol

transport, positive regulation of interleukin-6 produc-

tion, response to ethanol, lipoprotein metabolic process,

diol metabolic process, xenobiotic metabolic process,

and regulation of neuronal synaptic plasticity were over-

represented among Alzgset genes, implying the

important roles of these processes in the pathological

processes of AD. Furthermore, we noticed several terms

of memory, visual learning, social behavior, sleep, axon

regeneration, and axon guidance also emerged in the

enriched list, concurrent with a-priori biological findings

for AD [46–50].

Our biochemical pathway analysis showed that

immune-related pathways were enriched among Alzgset,

which further highlighted the connections between AD

and immune-related biological activities. Previous stud-

ies have shown the involvement of neuroinflammation

in AD pathology, with inflammatory cytokines exerting

central efforts [51, 52]. Simultaneously, four pathways

associated with neurotransmitters were found to be

overrepresented in Alzgset, coinciding with their

essential roles in the etiology and progression of AD.

Acetylcholine, dopamine, and serotonin are major neu-

rotransmitters, involved in advanced neuronal functions

(e.g., learning, memory, language, etc.), exerting key

effects in the pathologic processes of AD. These neuro-

transmitters could be involved in the damaging proced-

ure of synaptic plasticity like long-term potentiation and

long-term depression in AD subjects or animal models,

which in turn may impair some synapse-based higher

brain functions such as memory and cognition [53–55].

Moreover, our results detected several pathways pertain-

ing to neuroendocrine activities (i.e., ovarian steroido-

genesis and prolactin signaling), cuing endocrine

processes for the pathogenesis of AD [56, 57]. In

addition, the adipocytokine signaling pathway was

enriched in Alzgset. Adipocytokines, including leptin,

adiponectin, NAMPT, RBP-4, and other proinflamma-

tory cytokines, have attracted much attention due to

their close connection with AD [32, 57, 58]. Detection of

the adipocytokine signaling pathway in this study pro-

vides further evidence for the relationship between adi-

pocytokine and the development and progression of AD,

and may also support the idea that AD could be a meta-

bolic disease [59–61]. As suggested by the results shown,

the molecular mechanisms underlying AD are pretty

complicated, calling for further thorough studies to de-

code the underlying pathologic mechanisms.

Of significance, we detected three major pathway

groups through pathway crosstalk analysis. One group

basically involved the pathways related to the nervous

system and metabolism-related activities. Amid these

pathways, cholinergic synapse, the calcium signaling

pathway, dopaminergic synapse, serotonergic synapse,

and neurotrophin signaling have been well dissected to

Table 2 Genes included in the AD-specific network but not in

Alzgseta (Continued)

SIRPB1 Signal-regulatory protein beta 1

SLC40A1 Solute carrier family 40 member 1

SORT1 Sortilin 1

SSTR2 Somatostatin receptor 2

STK11IP Serine/threonine kinase 11 interacting protein

TMEM173 Transmembrane protein 173

TNFRSF11A Tumor necrosis factor receptor superfamily,
member 11a, NFKB activator

TNFRSF12A Tumor necrosis factor receptor superfamily,
member 12A

TOMM7 Translocase of outer mitochondrial membrane
7 homolog (yeast)

TRMT6 tRNA methyltransferase 6

TSPY2 Testis specific protein, Y-linked 2

TYROBP TYRO protein tyrosine kinase binding protein

UBC Ubiquitin C

UBE3A Ubiquitin protein ligase E3A

UBIAD1 UbiA prenyltransferase domain containing 1

VKORC1 Vitamin K epoxide reductase complex, subunit 1

VSTM2L V-set and transmembrane domain containing 2 like

WIPF3 WAS/WASL interacting protein family, member 3

YEATS4 YEATS domain containing 4

ZNF423 Zinc finger protein 423

ZNHIT1 Zinc finger, HIT-type containing 1

AD Alzheimer’s disease
aAlzheimer’s disease-related genes gene set

Hu et al. Alzheimer's Research & Therapy  (2017) 9:29 Page 10 of 15



function in the progress of AD [62–65]. In the second

module, pathways were largely dominated by immune

response or related functions, and by cell growth/sur-

vival and neuroendocrine pathways for the third group.

Furthermore, we could notice that these three pathway

modules were interconnected and acted as an immune-

endocrine-neuronal regulatory network for the AD-re-

lated pathological conditions. Of note, one pathway (i.e.,

intestinal immune network for IgA production) was

found to be a component part of the immune module.

These results might suggest that the gut–brain axis,

made up of immune, neuroendocrine, and neuronal

components, was involved in the pathogenesis of AD

[66–68], in line with results from pathway crosstalk ana-

lysis (i.e., there being three similar modules containing

Alzgset-enriched pathways). Subsequently, via in-depth

examination, we observed that the immune module has

plenty of pathway crosstalks and plenty of crosstalk

strength. In turn, the cell growth/survival and neuroen-

docrine module has lower number and less strength,

compared with the immune module; however, in terms

of the neural module, the number and strength of

crosstalks are greater and larger. In spite of the limited

number of crosstalks, there exist paramount crosstalk

levels among metabolic pathways. These observed

results might provide causal and regulatory hints for

AD. Integrating results from biochemical pathway and

pathway crosstalk analyses and the a-priori biological

knowledge base, the major pathways related to AD could

be summarized in a diagram (Fig. 3).

Further, we extracted an AD-specific protein net-

work on the basis of the human protein–protein

interaction network. It is worth noting that some

linking genes outside Alzgset but included in the hu-

man protein–protein interaction network may be

potentially related to AD. For example, nuclear re-

spiratory factor-1 (NRF1) could be affected by early

changes in genes participating in the insulin and en-

ergy metabolism pathways in an APP/PS1 transgenic

mouse model of AD [69]. TYROBP, a transmembrane

signaling protein, appeared in our AD-specific subnet-

work. By constructing gene regulatory networks in

1647 postmortem brain tissues from late-onset Alz-

heimer’s disease (LOAD) patients and normal sub-

jects, an immune and microglia-related module

dominated by genes participating in pathogen phago-

cytosis was identified, with TYROBP as a key causal

regulator upregulated in LOAD [70]. CDH2, a clas-

sical cadherin playing roles in the development of the

nervous system, was found with the pathogenic copy

number variations from 261 early-onset familial Alz-

heimer’s disease and early/mixed-onset pedigree indi-

viduals using high-density DNA microarrays [71]. By

applying cell-based studies and FBXO2 knockout

mice, it was found that FBXO2 could regulate amyl-

oid precursor protein-related activities in the brain

and might modulate AD pathogenesis, coupling with

our result to consolidate its involvement in AD [72].

Although no evidence indicated that VSTM2L, one of

the intermediate genes, was directly related to AD, it

Fig. 3 Main biochemical pathways related to AD. Numbers of genetics-based studies have revealed the fact that AD is actually a complex dis-

order. These major biochemical pathways involved in AD were connected based on their biological relations
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interacted with ataxin 1 (ATXN1) of Alzgset [73],

whose biological function is presently unknown, and

also might be a secreted antagonist of Humanin (HN)

[74] which mediated attenuation of AD-related mem-

ory impairment and Aβ-induced AD-like pathological

changes [75, 76]. As specified by the results detailed,

this protein subnetwork predicting approach could

not only engender a significant predicted subnetwork

of Alzgset for AD, but could also possess the potenti-

ality to detect promising relevant genes.

There have been several available datasets or projects fo-

cused on the curation of AD-related genes, including Alz-

Gene [77], Alzheimer’s Disease Neuroimaging Initiative

(ADNI) [78], the Alzheimer Disease & Frontotemporal

Dementia Mutation Database (AD&FTDMDB) [79], and

AlzBase [80]. While AlzGene maintains a comprehensive

catalog of genetic association studies on AD and also in-

cludes results from meta-analysis of polymorphisms with

genotype data available in several GWAS projects on AD,

AD&FTDMDB is dedicated to the known mutations of

genes associated with AD and frontotemporal dementias

from the published reports or presentations at scientific

meetings. The ADNI project aims at facilitating the inves-

tigation of genetic influences on AD onset and progres-

sion reflected in imaging changes, fluid biomarkers, and

cognitive status. It has reported several neuroimaging

GWAS with imaging quotas as quantitative phenotypes,

such as hippocampal volume and hippocampal gray mat-

ter density. On the other hand, AlzBase is an integrative

database for genes dysregulated in AD and related dis-

eases, and comprises annotations and expression informa-

tion on more than 7800 differentially expressed genes

collected from multiple microarray datasets. These data-

sets with different features provide valuable information

on genes and/or phenotypes for exploring and under-

standing AD and its mechanisms.

Similar to AlzGene, Alzgset is also a compilation of AD-

related genes identified in genetic association studies.

While AlzGene includes both genes showing positive and

negative association with AD, Alzgset focuses only on the

genes reported to be positively associated with AD by the

original authors. Because AlzGene has not been updated

since April 2011, results from many recent genetic associ-

ation studies may not be included. In association with

studies on candidate genes, some genes may each possess

a mild to moderate p value, but two or more genes could

collectively show a more significant association with AD

due to the fact they probably act in a concerted manner.

In such cases, all of these candidates were included in

Alzgset as long as the original authors could provide suffi-

cient evidence. On the other hand, the genes in AlzGene

were selected from meta-analyses for each polymorphism

and a relative uniform criterion was adopted, so the genes

mentioned may be neglected. Thus, Alzgset should offer

an informative supplement for AlzGene and serve as a

useful dataset for AD investigation.

However, there were several limitations in this study.

First, our pathway-based and network-based analyses

results relied on genes in the publications reported to

be associated with AD. In view of the fact that identifi-

cation of risk genes for AD is still an ongoing task, the

GO biological process terms, biochemical pathways,

and results derived from network analysis should also

be treated in the similar manner. Second, we adopted

the results and conclusions offered by the original au-

thors of each selected report when collecting the genes,

which inevitably impacts our results due to possible

bias and insufficiency in the available reports. Then, in

order to decrease the false-positive rate of AD-

associated genes, we eliminated reports with insignifi-

cant or negative results. Nevertheless, we cannot avoid

the fact that some genes in those studies might be actu-

ally associated with the disease phenotype. Additionally,

although the GO terms enriched in Alzgset could pro-

vide valuable hints and might serve as an important re-

source for understanding the molecular mechanisms of

AD, it should be noted that GO is biased towards fields

like cancer biology and the concepts related to neur-

ology are underrepresented [81]. Thus, some important

neurological processes related to AD may be missed in

our analysis. At the same time, despite overall levels of

protein–protein interaction databases having been

greatly improved, the present human interactome is

still incomplete and some false-positive data may also

be included [82]. Thus, the present research status of

the human interactome may also influence our results.

It can be expected that, as the protein–protein inter-

action data become more comprehensive and accurate,

the inferred AD-specific subnetwork can become more

reliable and valuable.

Conclusions

In summary, via a systems biology approach, we investi-

gated the pathways and molecular networks related to

AD based on the genes associated with the disease.

Integrating biological function, biochemical pathway,

and pathway crosstalk analyses, we identified that

biochemical processes and pathways linked with lipid

and/or lipoprotein-related processes, metabolism, the

immune system, and neural development were overrep-

resented among Alzgset and there existed three inter-

connected pathway modules: neuronal and metabolic

module, cell growth/survival and neuroendocrine clique,

and immunological cluster. What is more, an AD-speci-

fic protein network was built via the Steiner minimal

tree algorithm and some novel genes latently associated

with AD were predicted. Such analysis of genes involved

in AD will not only improve our understanding of the
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contribution of genetic factors and their interaction with

environmental factors to the pathogenesis of this disease,

but will also help us to identify potential biomarkers for

further exploration. It could be anticipated that as more

genetic factors related to AD are identified, a systematic

and comprehensive analysis such as the one adopted in

this study will be more useful to explore the molecular

mechanisms underlying AD.
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