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Abstract: The current SARS-CoV-2 pandemic highlights our fragility when we are exposed to emer-
gent viruses either directly or through zoonotic diseases. Fortunately, our knowledge of the biology
of those viruses is improving. In particular, we have more and more structural information on virions,
i.e., the infective form of a virus that includes its genomic material and surrounding protective
capsid, and on their gene products. It is important to have methods that enable the analyses of
structural information on such large macromolecular systems. We review some of those methods in
this paper. We focus on understanding the geometry of virions and viral structural proteins, their
dynamics, and their energetics, with the ambition that this understanding can help design antiviral
agents. We discuss those methods in light of the specificities of those structures, mainly that they
are huge. We focus on three of our own methods based on the alpha shape theory for computing
geometry, normal mode analyses to study dynamics, and modified Poisson–Boltzmann theories to
study the organization of ions and co-solvent and solvent molecules around biomacromolecules. The
corresponding software has computing times that are compatible with the use of regular desktop
computers. We show examples of their applications on some outer shells and structural proteins of
the West Nile Virus.

Keywords: virus structure; alpha shapes; normal modes; electrostatics

1. Introduction

The recent COVID-19 pandemic has highlighted how fragile human health is as we
continue to be exposed to emerging pathogens for which we do not always have available
treatments. In addition, as many experts are warning us, such exposures are likely to
increase as a result of climate change and global warming (see for example the recent
reviews on the impact of climate change on eye diseases [1], on allergy epidemics [2],
and on zoonotic diseases [3,4]). Pandemics are costly economically [5,6]; more worrisome,
they have a high level of mortality. As of today, for example, COVID-19 is estimated to
be responsible for more than 14.5 million excess deaths [7]. As severe as this seems to be,
other recent pandemics have been deadlier: in the first half of the 20th century, the Spanish
influenza pandemic was responsible for at least 50 million deaths [8].

Infectious diseases are caused by pathogens, the most common of them being viruses,
bacteria, fungi, and parasites. While all may lead to serious diseases and pandemics,
viruses are the most common (for instance, 5% to 20% of Americans are exposed to the
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influenza virus every year). The consequences of viral infection are varied, from minor
(common cold) to major (flu—influenza, COVID-19—SARS-CoV-2, immune deficiencies—
HIV, among others). The recent COVID-19 pandemic brought wide awareness to the need
for prevention, treatments, and cures to help protect populations. All efforts in those
directions require knowledge of the epidemiology associated with the virus of concern and
of its biology. Again, the COVID-19 epidemic is a good example of efforts and successes
of the scientific community to analyze and combat the virus responsible for this disease,
SARS-CoV-2. Studies on its pathogenesis [9,10], its evolution with consequences on its
biology [11–13], and on our innate immunity against it [14], complemented with studies on
its structural biology [15–20], have led to major vaccine developments that have ultimately
curbed the pandemic [21] (a good indicator of the urgency to find cures for COVID-19
and the corresponding response of the community is found in the fact that it is estimated
that 10,000 articles were published every month on a topic associated with COVID-19 in
2020 [22,23], to the point that it is changing the landscape of scientific publishing [24]).
In this review, we are concerned with the data associated with the structural biology of
viruses, as well as the models and methodologies that enable us to analyze those data and
ultimately with the tools that help identifying antiviral drugs.

A virus particle, known also as a virion, consists of a nucleic acid (DNA or RNA) that
is surrounded with a protective coat referred to as a capsid. The first structural studies
of such viral particles were possibly conducted by Bernal and Fankuchen in 1938, using
crystallographic data to show that the Tomato Bushy Stunt Virus (TBSV) crystallizes in
a body-centered cell structure [25]. Their analyses were based on powder photographs
instead of single crystals. It was only in the 1970s that crystallographic experimental
techniques and associated computing methods enabled atomic-level resolution of whole
viral particles. One of the first of such structures was of TBSV at 5.5 Å resolution [26]. This
structure was deposited in the then-recently assembled Protein Data Bank (PDB) [27,28].
Since then, the number of virion structures in the PDB as well as the number of proteins
expressed by viral genomes has increased drastically (see for example [29] for a review
of icosahedral virus structures in the PDB [30]). To help virologists with exploring those
structures, Reddy and colleagues developed a virus particle explorer, VIPER [31–35]. There
are five main geometries for virions: helical (such as tobacco mosaic virus and inovirus),
icosahedral (see [30] for a full review), prolate (often found in bacteriophage), enveloped (in
which the capsid is enveloped by a modified form of a cell membrane, found in influenza
viruses, HIV, and coronaviruses, for example), and complex (i.e., different from the other
types). Similarly, the proteins of the envelope of those viruses adopt many different
folds [36–38].

The PDB and VIPERDB [34], the database associated with VIPER, have proven to be
essential resources for understanding virions and viral protein structures. The experimen-
tal resolutions of such structures remain, however, a significantly time-consuming and
expensive task. There is hope, however, that computational techniques can complement
experimentation significantly and accurately, as demonstrated with the recent successes
of AlphaFold [39] and its successor AlphaFold2 [40]. Those programs, based on artificial
intelligence, were designed by the company DeepMind to predict the conformation of a
protein from its sequence only. They are based on deep learning techniques to predict those
structures at near experimental scale resolution. They are inspiring biologists to rethink
the way they study the function and evolution of proteins [41–43]. There are, however,
limitations to AlphaFold/AlphaFold2 [43]. AlphaFold is designed to generate the most
probable conformation of a protein structure. As such, it cannot provide information on the
ensemble of conformations that may exist for intrinsically disordered proteins. In addition,
the solution it provides is static and as such, does not capture essential dynamics of proteins,
such as allostery. Finally, it ignores the fact that many proteins function as complexes with
other proteins, nucleic acids, or ligands. As such ligands include drug-like molecules, its
impact on drug design remains limited [44,45]. While we can be optimistic with respect
to the opportunities of artificial intelligence to establish itself as the solution to analyzing
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protein dynamics and to designing efficient drugs against protein targets, current efforts
still rely on biophysics.

Understanding the complex geometry of virions, their assembly, and dynamics has al-
ways been a topic of great interest mathematical biology and biophysics, defining subfields
in both disciplines, mathematical virology and physical virology (see for example [46–48]).
Virus structures are seem as mathematical puzzles [49–52] whose solutions may lead to a
novel understanding of protein assembly and ultimately to novel packaging options for
drug delivery [53,54]. Understanding how genome size, electrostatics of interactions with
the nucleic acids forming this genome [55–57], stiffness [58], and dynamics [59] affect how
viral structures form within the host cells is essential for the development of drugs that
would disrupt virus assembly [19]. With the advent of new hardware and better algorithms,
it is now possible to study the dynamics of viral particles using all atom molecular dynam-
ics simulations, a first step in understanding how they adapt to different environments
as well as to immunological factors, such as the binding of an antibody [58,60–64]. All
those studies rely on either coarse grained models and/or the availability of significant
computing power. Understanding viral geometries, dynamics, and energetics at the atomic
level with a computing power manageable to a virologist are essential steps for them to
understand viral biology, and more importantly, to understand how to inhibit viruses,
i.e., to develop antiviral drugs.

In this paper, we review theories and methodologies we have developed that enable the
analyses at these three levels for viral structures. We discuss those methodologies in light
of the specificities of those structures, mainly that they are huge and may include millions
of atoms. We focus on methods that can analyze such structures within computing times
that are compatible with the use of regular desktop computers. We use the structure of the
envelope of flaviviruses to illustrate those methods. Flaviviruses belongs to the flaviviridae
family. Those viruses, such as yellow fever virus (YFV), Dengue virus (DENV), West Nile
virus (WNV), and ZIKA virus, continue to pose a major threat to human health [65]. Most
of the flaviviruses are enveloped single-stranded RNA viruses with icosahedral symmetry.
Their envelopes are large (usually 180 copies of two proteins, the E protein and the M
protein), making them good tests of the efficiencies of the methodologies described in
the review.

None of the methods presented in the paper are novel: they all come from previous
studies from the authors. As such, this paper is deemed to be a review. Its novelty, however,
lies in the fact that it describes a comprehensive sets of tools for studying the geometry and
dynamics of very large molecular systems, such as viral particles. In addition, it shows
novel applications of those methods for studying the dynamics of flaviviruses, mostly West
Nile viruses. The review includes three sections, corresponding to studying the geome-
try (Section 2), the dynamics (Section 3), and the energetics (Section 4) of virus structures.
Each section comprises a motivation with a review of current work, a presentation of the
methodology we propose, and examples of application of this methodology.

2. The Geometry of Viral Structures
2.1. Motivation and Background

Biochemists have always worked under the assumption that shape defines function.
As a consequence, as early as the early 1900s, they have used models to analyze the impact
of structure on chemical reactivity. They have subsequently invested in determining the
structures of important biomolecules experimentally at atomic resolution. The result of
such research describes the biomolecule from the positions of each one of its atoms. The
shape of the molecule can then be derived using a space-filling model, where the atoms are
represented by balls whose centers are the experimentally derived positions of the atoms
and whose radii are proportional to their van der Waals radii [66,67]. Properties of the
molecule are then expressed in terms of properties of the union of those balls, leading to
geometric modeling of a protein structure:
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(i) Characterizing molecular environments: the interaction between a molecule and its
environment is quantified through the (exposed) surface area and/or volume of the
union of balls [68–71].

(ii) Evaluate the hydrophobicity of a molecule. The most common use of molecular shape is the
quantification of the hydrophobic effect. Eisenberg and McLachlan, for example [68],
introduced the concept of a solvation free energy for large biomolecules, computed
as a weighted sum of the accessible areas of all their atoms i. This solvation-free
energy is a mean force potential that quantifies the energy that is required to solvate
a molecule. Its nonpolar contribution is evaluated from geometric measures of the
molecule, including surface area [68], volume [72], or even the curvature of the surface
area in the so-called morphometric model [73].

(iii) Identifying pockets and cavities in molecules: detecting and measuring internal cavities of
biomolecules is often performed as a first step for drug design as those cavities map
to putative binding sites.

Lee and Richards pioneered the computation of the surface area of a biomolecule by
sampling the surface with a set of parallel planes (two-dimensional sections) [74]. Since then,
many methods for measuring biomolecules have been proposed, based on Monte Carlo
integrations [75–79], on analytical approximations [80–85], or even on comprehensive
analytical methods [86–89]. Similarly, many methods have been proposed to detect pockets
and cavities in proteins, based on representation of the molecule of interest on a 3D
grid [79,90–93], or scanning the surface with a probe [94–97].

The alpha shape theory is a comprehensive method for measuring unions of balls
using the Voronoi decomposition of the union [89,98–106]. It is fast, robust, and amenable
to the study of large biomolecular systems [103,106,107]. In the following, we briefly
introduce the theory and show applications for measuring the envelope of the WNV.

2.2. Methodology

Consider a set of N three-dimensional balls, Bi, that may overlap. The principle of
inclusion–exclusion enables the computation of any geometric measure of the union of the
Bi. Such a measure is then expressed as a sum of alternating signs of the measures of the
intersections of the Bi. This approach, however, is of limited interest unless two issues are
solved. First, the number of terms in the sum needs to be significantly reduced, as the total
number of possible intersections of Bi s 2N − 1, leading to exponential running time. This
reduction needs to be exact, i.e., the resulting reduced sum needs to give the same result
as the full summation. Second, analytical formulas are needed to compute the measures
of these intersections of balls. The next two subsections provide solutions to these two
issues. Note that more comprehensive presentations of those solutions can be found in
References [100,103,106].

2.2.1. Voronoi Decompositions and Dual Complexes

One ball Bi in the finite set of balls defining the space filling diagram of a molecule is
characterized by its center zi and radius ri. We call Si the sphere that is at the boundary of
Bi. We define the power distance between a point x and a ball Bi as πi(x) = |x− zi|2 − r2

i .
The Voronoi cell associated with the ball Bi consists of all points x that are at least as close to
Bi as to any other ball: Vi = {x ∈ R3 | πi(x) ≤ πj(x)}. The collection of all Voronoi cells
Vi form the Voronoi diagram of the balls. The intersection of the Voronoi diagram with the
union of balls decomposes this union into convex regions, as shown in Figure 1A.

The Delaunay triangulation is the dual of the Voronoi diagram [89]. A 2D version of the
Delaunay triangulation is illustrated in Figure 1B.
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C) Dual complex D) Pockets

A) Voronoi diagram B) Delaunay triangulation

mouth

E

D

C

A (void)

B (pocket)

Figure 1. Voronoi decomposition, Delaunay triangulation, dual complex, and pockets of a union of
disks. (A) Given a finite set of disks, the Voronoi diagram corresponds to a decomposition of the whole
plane into regions, one for each disk, such that any point that belongs to the region corresponding
to disk Di is closer to that disk than to any other disk (see text for details). In the graphics, we have
restricted the Voronoi diagram to the region covered by the disks. (B) The Delaunay triangulation
is the dual of the Voronoi diagram that is constructed by defining edges between disk centers of
neighboring Voronoi regions. (C) The dual complex is a subset of the Delaunay triangulation, limited
to the edges and triangles (red), whose corresponding Voronoi regions fully intersect within the union
of disks. (D) All triangles in the Delaunay complex that do not belong to the dual complex are referred
to as empty. Acute empty triangles (identified with large blue dots at their orthocenter) contain their
orthocenters: they correspond to sinks. The obtuse empty triangles either flow to these acute triangles
or to the outside, referred to as “infinity” (those triangles are colored in green). Triangles C, D, and E,
for example, flow to infinity: they do not define pockets. The remaining triangles can be partitioned
into two groups: region A is completely surrounded by the union of disks and therefore defines a
void, while region B is connected to the outside by one mouth, and is referred to as a pocket.

We limit the construction of Delaunay triangulation to within the union of balls. In
other words, we draw a dual edge between the two vertices, zi and zj, only if Bi ∩ Vi and
Bj ∩ Vj share a common face, and similarly for triangles and tetrahedra. The result is a
subcomplex of the Delaunay triangulation, which is referred to as the dual complex of the
set of balls (see Figure 1C). The dual complex of the union of balls allows us to apply the
inclusion–exclusion formula based on intersections of up to four balls only.

2.2.2. Area and Volume Formulas

Let K be the dual complex. A simplex, s, in K can be seen as a collection of balls: one
ball Bi if it is a vertex si, two balls Bi and Bj if it is the edge sij between their centers, three
balls Bi, Bj, and Bk if it is the triangle sijk built from their centers, and finally four balls Bi,
Bj, Bk, Bl if it is the associated tetrahedron between their centers sijkl . As proven in [89],
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the inclusion–exclusion formula that corresponds to the dual complex gives the correct
volume and surface area of a union of balls. Then:

Ai = Ai − ∑
j|sij∈K

Ai;j + ∑
(j,k)|sijk∈K

Ai;jk − ∑
(j,k,l)|sijkl∈K

Ai;jkl , (1)

Vi = Vi − ∑
j|sij∈K

Vi;j + ∑
(j,k)|sijk∈K

Vi;jk − ∑
(j,k,l)|sijkl∈K

Vi;jkl . (2)

where Vi is the volume of the ball Bi, Vi;j is the contribution of Bi to the volume of the
intersection of the balls Bi and Bj, etc. Similar definitions are used for the surface areas A.

Proofs of Equations (1) and (2) and additional formula for the values of the different V
and A are provided in [89,98,99,103].

2.2.3. Voids and Pockets

References [100,103,108] provide full descriptions of how to detect and measure pock-
ets in a union of balls using the alpha shape theory. Here, we just present the basic concepts.
A pocket is connected to the notion of a continuous flow field defined on the Delaunay
triangulation of the balls. Let T be the set of tetrahedra in the Delaunay triangulation
and T∞ = T

⋃
τ∞, where τ∞ is a dummy element representing the complement of the

triangulation inR3. We define a flow relation “≺” on T, such that τ ≺ σ means:

(i) τ and σ share a common triangle ∆;
(ii) The interior of τ and the orthogonal center zτ of τ lie on different sides of the plane

defined by ∆.

where the orthogonal center zτ is the center of the smallest ball that is orthogonal to all four
balls, whose centers are the vertices of τ.

If τ ≺ σ, τ is a predecessor of σ and σ is a successor of τ. σ ∈ T is a sink if it has no
successors; in other words, a tetrahedron is a sink if and only if it contains its orthogonal
center. Sinks are important since they are responsible for the formation of voids: if H is a
void of the union of balls, then at least one tetrahedron in H is a sink.

By definition, pockets consist of the Delaunay tetrahedra that do not belong to the dual
complex K and are not predecessors of τ∞. The only type of pockets without connection to
the outside are the voids. All other pockets connect to the outside at one or more places,
called a mouth. Figure 1D illustrates these concepts.

The surface area and volume of a pocket are easily computed using simplified
inclusion–exclusion formulas.

2.3. Examples

We illustrate the geometric analysis described above on the structure of the Kunjin
variant of the West Nile Virus (WNV-K). WNV is a member of the flaviviridae family. It
shares a common structural fold with other viruses from the same family, such as Dengue
and Zika. All the flaviviruses have their genomic material packaged by a capsid assembled
from viral C proteins, forming the nucleocapsid. This nucleocapsid is surrounded by
an envelope. This envelope consists of a lipid bilayer membrane, itself covered by an
outer shell of proteins, the M protein that is anchored in the lipid membrane, and the E
protein. The outer shell has icosahedral symmetry. It is formed of 60 asymmetrical units,
with each unit containing three copies of the E (i.e., envelope) protein and three copies of
the M (i.e., membrane) protein. The high resolution structure of several WNV viruses are
available in the Protein Data Bank. Note that most structural information available only
includes the outer shell, as it is difficult to observe the lipid bilayer membrane and the
nucleocapsid, although recently, a cryo-EM model of the capsid of immature Zika virus
was described [109]. Here, we focus on the structure of the Kunjin virus, a subtype of
WNV endemic to Oceania. The all-atom, high resolution structure (3.1 Å) derived from
Cryo Electron Microscopy (cryo-EM) of the outer shell of the virus is available in the
PDB with the identifier 7KVA [110]. A cartoon representation of this structure is given
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in Figure 2A. Each asymmetrical unit contains 3 E proteins and 3 M proteins, with a total
of 1728 residues (3× 501 E protein residues and 3× 75 M protein residues) that include
12,835 atoms. The full envelope includes 60 copies of this unit, for a total of 103,680 residues
and 770,100 atoms.

A) WNV-K envelope B) Dual complex C) Main void

Figure 2. The geometry of the WNV-Kunjin virus. (A) Cartoon representation of the mature form
of the outer shell of the Kunjin virus (a subtype of WNV) (PDB file 7KVA). The outer shell includes
180 copies of both the E protein and the M protein. The three E proteins from each asymmetric
unit are colored green, orange, and blue, respectively. (B) The dual complex corresponding to the
envelope of the Kunjin virus is shown in red, over the structure of the virus. The simplices of this
complex define all the terms of the inclusion–exclusion formula needed to compute the volume and
surface area of the virus (C) Cross section of the empty envelope of the Kunjin virus, showing in
green the main pocket identified by UnionBall. All three panels were generated using Pymol [111].

2.3.1. Full Viral Envelope

We analyze the geometry of the WNV-K virus outer shell from the PDB file 7KVA using
our program UnionBall [103]. It takes a total of 10 s on an AMD Threadripper multicore
CPUs running at 2.2 GHz, with 32 cores (64 threads) to fully characterize its outer shell,
i.e., to compute the Delaunay triangulation, extract the dual complex, and find the pockets
for the union UWNV of 770,100 balls that represents this outer shell. Note that the Delaunay
computation is the dominant part of the overall computing cost, taking 5.3 s. As computing
the Delaunay is mostly sequential, the whole calculation does not benefit from the multiple
cores. Each ball in UWNV is assigned a radius set to the vdW radius of the corresponding
atom, to which we add 3 Å (approximately twice the radius of a water molecule). The De-
launay triangulation of the union of balls contains 5,217,324 tetrahedra, while the dual
complex contains 4,718,495 tetrahedra, 9,635,746 triangles, and 5,683,487 edges. This dual
complex is represented in red in Figure 2B. It includes one large void (shown in green in
Figure 2B, with volume 27,079,000 Å3 and surface area 1,487,713 Å2. This void encapsulates
the capsid and the genomic nucleic acid of the virus. The corresponding sphericity index
(computed as the ratio of the surface area of a sphere with the same volume as the void
to the surface area of the void) is 0.3, i.e., relatively low. This comes from the fact that the
surface is not smooth, as it adapts to the local geometry of the residues that face the inside
of the outer shell.

2.3.2. The E Protein–M Protein Complex

The E protein monomer of flaviviridae viruses comprises three domains, I, II, III, and a
transmembrane segment, itself composed of a stem and a transmembrane element, TM.
Domain I serves as a scaffold to the global organization of the E protein structure, domain
II includes the dimerization interface and two glycosylation sites, and the peptide of
fusion with the cellular membrane, while domain III is compact and immunoglobulin-
like [112,113]. E proteins form dimers on the outer shell of mature flaviviridae viruses.
The protein M is located underneath the E protein. We repeated the analysis described
above on a single copy of the E protein–M protein complex from two viruses, the WNV
Kunjin viruses already analyzed above (PDB code 7KVA), and of the chimeric Binjari virus–
Dengue virus type 2 (bDENV2). The genome of this chimera includes the nonstructural
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genes from the Binjari virus and the structural genes of the WNV Kunjin virus [110].
Figure 3A shows the dual complex of the union of balls representing the E protein–M
protein complex for WNV; the dual complex for the bDENV2 complex is very similar (not
shown). In Figure 3B,C, we show the main pocket identified by UnionBall within WNV
and bDENV2, respectively. In both cases, the pocket is found around the H1, H2, H3
helices from the stem region and the T2 helix from the TM region. Hardy et al. identified a
lipid-binding site at the same position in bDENV2 and showed that this pocket is conserved
among vertebrate-infecting flaviviruses [110]. Note that the lipid ligand 1Q0 that they used
in their experiments, present in the structure of bDENV2 (7KV8), fits within the pocket
detected by UnionBall. Hardy et al. also identified residues Arg411, Trp420, His437, Gly441,
Tyr444, Phe448, and Leu489 at the surface of, and essential for, the lipid binding pocket. In
Figure 3C, we show that those residues are indeed at the surface of the pocket identified
by UnionBall.

ΙΙΙ ΙΙΙ

Stem
TM

protM

H1

T2

1Q0

D) bDENV-2 E protein: pocket E) bDENV-2  pocket

C) WNV-K E protein: pocket

Arg411

Trp420

His437
Gly441

Tyr444
Phe448

Leu489

ΙΙΙ ΙΙΙ

Stem
TM

protM
H1

T2

ΙΙ ΙΙ ΙΙΙ Stem TMΙ Ι Ι

bDENV-2

WNV-K 1 53 131 200 276 297 457400 501

1 51 131 194 276 296 451395 495

A) E protein

B) E protein WNV-K

Figure 3. The geometries of the E protein–M protein complex of WNV-K virus (PDB code 7KVA)
and of a chimeric bDENV-2 virus (PDB code 7KV8). (A) The E proteins of the two viruses have
similar architectures (see text for details). They include five domains, i.e., I (red), II (yellow), III (blue),
the stem (orange), and the trans membrane domain, TM (purple). (B) Cartoon representation of the
E protein of WNV-K, using the same color scheme as in panel A. (C) The main pocket identified by
UnionBall in the E protein—M protein complex of WNV-K is shown in green. (D) The same pocket,
but for the chimeric bDENV-2 virus. Note that the two pockets for WNV-K and bDENV-2 are at a
similar location; those locations map with the lipid–ligand pocket identified by Hardy et al. [110].
The lipid ligand 1Q0 observed in the structure for bDENV-2 E protein fits within this pocket. (E) The
positions of the contact residues between the E protein of bDENV-2 and the lipid ligand pocket [110]
in relation with the pocket identified by UnionBall. Panels (B–D) were generated using Pymol [111].
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2.4. Application of UnionBall to Modeling: A Toy Problem on the Capsid Protein of Flaviviruses

As mentioned above, detecting and measuring internal cavities of biomolecules is
often performed as a first step for drug design. Here, we demonstrate how UnionBall can
be used to perform such as task on a protein structure available in the PDB dataset and
how this information can be used for a protein whose structure is not yet known.

The genome of a flavivirus encodes for a large polyprotein. This protein is cleaved by
host and viral proteases to generate three structural proteins, the C or core protein, the prM
or membrane protein, and the E or envelope protein, as well as several nonstructural (NS)
proteins. The geometries of the E protein and prM protein were described above. Here, we
are concerned with the C protein that is used by the virus to form a spherical or isometric
nucleocapsid or core to encapsulate its genome. High-resolution structures of the C protein
are available for WNV [114], Zika [115], and DENV serotype 2 [116] obtained by X-ray
crystallography. The C protein usually forms dimers that are then organized in tetramers
which form long filamentous ribbons in the crystal. The quaternary organization of the
C protein plays a central role in the whole virus maturation process [117], and as such,
has been a target for drug design against flaviviruses. For example, ST148 is an inhibitor
of Dengue virus that targets the capsid protein [118]. It was shown to induce a “kissing”
interaction between two protein C dimers, resulting in virions that are then defective when
the new virus infects new cells (i.e., the nucleocapsid does not separate to release the viral
genome) [116]. Understanding how ST148 binds to the C protein is, therefore, important
for understanding its inhibition properties.

We analyzed the geometry of the C protein tetramer of DENV-2 using UnionBall.
The PDB structure 6VG5 [116] corresponds to this protein bound to the inhibitor ST148.
All ligands, ions, and crystallographic water molecules were removed prior to running
UnionBall. UnionBall only includes one parameter, i.e., the radius of the water probe. We set
it to 2.0 Å, to detect deep pockets within the tetramer. In Figure 4, we show the main pocket
detecting by UnionBall superimposed on the PDB structure of the C protein tetramer in the
presence of the inhibitor. As observed, the inhibitor fits exactly within the pocket that sits at
the interface between two protein C dimers, forming a tight lock between those dimers.

Figure 4. The largest pocket (red) superimposed onto the structure for DENV-2 C protein tetramer
(PDB code 6VG5), with the four monomers show in cartoon mode in light blue, blue, wheat, and or-
ange. The inhibitor ST148 is shown using a ball model in cyan. The pocket is computed with
UnionBall, with a water probe of 2.0 Å. The figure was generated using Pymol [111].

We then assessed if the same inhibitor would exhibit the same fit for a C protein
tetramer of WNV. A structure exits for such a tetramer, under the PDB code 1SFK [114];
however, it is missing a large portion of the N-terminal region of two of its monomers,
a region that is unfortunately part of the interface between two dimers where the in-
hibitor binds. To circumvent this problem, we used ColabFold, the open interface to
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AlphaFold2 [119], to generate five models of the full structure of a C protein dimer. We
compared all five models to the conformation of the incomplete C protein dimer in 1SFK:
all those models show remarkable resemblance to the experimental structure, with RMS
deviations in the range 0.7 Å to 0.9 Å over 717 atoms (RMS calculations were performed
using the “align” function of Pymol [111]). In Figure 5A, the superposition of model 3
with the experimental structure 1SFK is shown. We then align the five different model
dimers from AlphaFold with both dimers of the experimental structure of DENV-2 C
protein tetramer [116], using the function align from Pymol. Again, the resulting models
resemble remarkably the experimental structures with RMS varying from 1.1 to 1.2 Å;
this is illustrated for model 3 in Figure 5. We then analyzed the geometry of those model
tetramers using UnionBall, each time setting the radius of the probe to 2 Å. We observed
two different behaviors over the five models, which are illustrated in Figure 5. Models 1
and 3 exhibit a central pocket at the interface between the two protein C dimers which
matches the position of the ST148 inhibitor, see Figure 5C. This pocket, however, is larger
than the volume of the inhibitor, and larger than the pocket observed for the DENV-2
tetramer (see Figure 4). In contrast, models 2, 4, and 5 do not exhibit a similar pocket; they
include instead two large pockets that would outflank the putative position of the inhibitor,
as observed in Figure 5D.

A) AF Model 3 vs 1SFK B) AF Model 3 vs 6VG5

C) AF Model 3: pocket D) AF Model 4: pocket

Figure 5. Modeling the interaction of the inhibitor ST148 [118] with a tetramer of C protein from WNV.
(A) Superposition of the experimental structure of a C protein from WNV (PDB code 1SFK, [114]),
in magenta, with the third model generated by AlphaFold2 using ColabFold [119], in wheat color.
The third model is the closest to the experimental structure, with an RMS of 0.71 Å. (B) Superposition
of the AlphaFold2 tetramer model 3 of the C protein from WNV (see text for detail), in wheat, with the
experimental structure of the equivalent tetramer of DENV-2 [116], in magenta. The overall RMS is
1.2 Å. (C) The largest pocket (red) superimposed onto model 3 for the WNV tetramer of C protein.
The putative position of the inhibitor ST148 is shown using a ball model in cyan. (D) The two largest
pockets (red) superimposed onto model 4 for the WNV tetramer of C protein. The inhibitor ST148 is
shown in cyan. The figure was generated using Pymol [111].
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The modeling proposed above would indicate that if ST148 binds to the C protein of
WNV, this binding would not be as strong as its binding to the C protein of DENV-2. It
is known that ST148 shows efficacy only to serotype 2 of DENV [116]; to our knowledge,
its effect on WNV is not known. Our results, however, should be considered with cau-
tion. We have used structural models generated by AlphaFold to analyze the geometric
interactions between the C protein of WNV with ST148; while these models seem remark-
ably accurate, we already observe two different behaviors that are probably associated
with different positions of sidechains at the interface between two dimers. AlphaFold2
is known to yield mixed results for drug design [45]. Ultimately, our results should be
validated experimentally.

3. Dynamics of Viral Structures
3.1. Motivation

In the previous section, we considered the fixed geometry of biological structures.
Geometry is, however, one facet of the problem of characterizing such molecules. Indeed,
biological function arises from action, i.e., the dynamics of molecule. The standard approach
to simulating such dynamics is to solve numerically the Newton equations associated with
all its atoms. Newton equations are second-order partial differential Equations (PDE).
They are usually solved incrementally as a function of time. The corresponding step size
in time is extremely small (in the order of a femtosecond) if we want accurate solutions.
This leads to the need to compute the energy of the molecular system under study a large
number of times. One evaluation of the energy is of order O(N log N), with N being the
total number of atoms in the system. For large values of N, say in the millions, such a
calculation, and more importantly its repeats, become computationally prohibitive. Many
efforts are underway to either design specific hardware to solve those PDEs or to improve
the algorithms to compute the energy values [120–126]. These efforts allow for molecular
dynamics simulation of systems with up to 100 million atoms [60,127–130]. It should be
noted, however, that those successes still rely on the availability of specific hardware such
as ANTON [120] or of a large supercomputer.

An alternate and promising approach to standard molecular dynamics is to infer dy-
namics directly from static structures corresponding to locally stable states [131], together
with reliable coarse-graining approaches to bridge the time-scale gap [132,133]. Cartesian
Normal Modes, for example, represent a class of movements around a local energy min-
imum that are both straightforward to calculate and have been found to be biologically
relevant [134–136]. Normal mode techniques have been used extensively to study the
dynamics of virus structures (for reviews, see for example Refs. [137–139]). In the following,
we present one such technique. A more detailed presentation is available in the original
papers [140,141].

3.2. Methodology

Computing coarse-grained normal modes for a molecular system is deceptively simple.
We start with a conformation X0 for the molecular system and a coarse-grained potential V
that is minimum at X0. We take a second-order approximation of that potential:

V(X) ≈ V(X0) +∇V(X0)
T(X− X0) +

1
2
(X− X0)

T H(X0)(X− X0),

where∇V(X0) and H(X0) are the gradient of the potential and the Hessian of the potential,
both at X0, respectively. Since V is minimum at X0,∇V(X0) = 0, and as V(X0) is a constant,
it will not influence the dynamics of the system. We then define a normal mode potential
VNM at a position X in the neighborhood of X0 as follows:

VNM(X) = V(X)−V(X0)

=
1
2
(X− X0)

T H(X0)(X− X0).
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The equations of motion defined by the potential VNM are derived from Newton’s equation:

d2X
dt2 = −∇VNM(X)

= −H(X0)(X− X0). (3)

The “normal modes” of the system are oscillatory motions of the system (also called
concerted motions). The trajectory of the system under a normal mode k then has the
following form:

Xk = Akαk cos(ωkt + δk), (4)

where Ak is a vector that defines which atoms are involved in this specific normal mode,
αk is the amplitude, ωk is the frequency of the mode (i.e., how fast is oscillates), and δk
is a phase shift. The normal mode is a solution of the Newton equations. Replacing
Equation (4) in Equation (3), we find that the normal modes are characterized with the
following eigenvalue problem:

HU = UΩ. (5)

The frequencies of the modes ωk are given by the elements of the diagonal matrix Ω, namely
ω2

k = Ω(k, k). The vectors Ak are the eigenvectors and correspond to the columns of the
matrix U, and the amplitudes and phases, αk and δk, are determined by initial conditions.
We note that the first six eigenvalues in Ω are equal to 0, as they correspond to global
translations and rotations of the biomolecule. Note that for simplicity, we assumed that
each atom is assigned a mass of 1. The procedure described above can easily be expanded
to the more general case of different values for the atomic masses.

3.2.1. Coarse Grained Potentials for Normal Mode Analysis of Biomolecules

A typical semi-empirical potential function used in classical molecular simulation has
the following form [142–146]:

U = ∑
b

kb

(
rb − r0

b

)2
+ ∑

b
ka

(
θa − θ0

a

)2

+ ∑
t

kt

(
1 + cos n(φt − φ0

t )
)

+ ∑
i<j

(
Aij

r12
ij
−

Bij

r6
ij
+

qiqj

Drij

)
.

where the terms in the first three sums represent bonded interactions: covalent bonds,
valence angles, and torsions around bonds. The two terms in the last sum represent non-
bonded interactions: a Lennard-Jones potential for the van der Waals force and the Coulomb
potential for electrostatics. This sum usually excludes pairs of atoms separated by one,
or two covalent bonds. The force constants, k, the minima, r0, θ0, and φ0, the Lennard Jones
parameters, A and B, and the atomic charges q define the force field. They are derived from
data on small organic molecules, from both experiments and ab initio quantum calculations.

Such potentials were used for normal mode analyses from their inception [134–136].
There are, however, drawbacks. The method presented above assume that the initial
conformation X0 is a minimum of the potential. Finding such a minimum for the potential
described above is difficult for a large system. If this minimum is not exact, the Hessian at
the minimum may have negative eigenvalues that are not physical. The Elastic Network
Model (ENM) was originally introduced by [147] to circumvent this problem. It is a model
that captures the geometry of the molecule of interest in the form of a network of inter-



Viruses 2023, 15, 1366 13 of 34

atomic connections, linked together with elastic springs. Its potential is a quadratic energy
on the inter-atomic distances, defined as follows:

VT(X) =
1
2 ∑

(i,j)
kij(rij − r0

ij)
2 (6)

when the biomolecule is in conformation X. The kij are the force constants of the “spring”
formed by the pairs of atoms i and j, rij and r0

ij are the distances between atoms i and j in
the conformation X and X0, respectively. In the initial formulation proposed by Tirion [147],
the sum includes all pairs of atoms (i, j) that satisfies r0

ij < Rc, where Rc is a cutoff distance.
Note that VT(X0) = 0 and ∇VT(X0) = 0 by construction.

The potential given by Equation (6) is a simple pairwise geometric potential. As such,
it does not account for the stereochemistry of the molecule explicitly. In particular, it may
not preserve bond lengths, bond angles, and preferences in dihedral angles. A possibly
better potential would include those bonded interactions explicitly. Such a potential was
originally proposed by Nobuhiro Gō [148] and later adapted to the framework of coarse-
grained normal modes [149,150]. It only considers the Cα of all residues in the molecule of
interest. If we define as bi the length of the pseudo-bond between the Cαs of the consecutive
residues i and i + 1, θi the virtual bond angle formed by the Cαs of the consecutive residues
i, i + 1, and i + 2, and φi the virtual dihedral angle formed by the Cαs of the consecutive
residues i, i + 1, i + 2, and i + 3, the Go potential at a conformation X is defined as:

VG(X) = Vbond(X) + Vangle(X) + Vdih(X) + Vnb(X)

=
1
2

N−1

∑
i=1

Kr(bi − b0
i )

2 +
1
2

N−2

∑
i=1

Kθ(θi − θ0
i )

2

+
N−3

∑
i=1

[
Kφ1(1− cos(φi − φ0

i )) + Kφ3(1− cos 3(φi − φ0
i ))
]

+ ∑
(i<j−3)

ε

5

(
r0

ij

rij

)12

− 6

(
r0

ij

rij

)10
, (7)

where the superscript 0 refers to the values of the variables for the conformation X0.
The first three terms refer to (pseudo-) bonded interactions, while the last term corresponds
to nonbonded interactions. Note that the molecular system considered includes multiple
chains (such as a virus outer shell), special care is needed to only include bonds, angles,
and dihedral angles that exist within a chain.

As written in Equation (7), the nonbonded term in the Go potential is written as a
sum over all pairs of Cα atoms that are more than three indices away along the sequence.
In practice, however, only a subset of those pairs are considered. This subset can be built
using a cutoff Rc, as described for the Tirion potential. An alternative is to include all pairs
that form an edge in the Delaunay triangulation of the Cα atoms of the molecular system.
Using the Delaunay triangulation has two advantages: it reduces the number of pairs
i, j considered and it alleviates the need to set a value for Rc. It was shown that filtering
the pair of atoms based on the Delaunay defines normal modes that reproduce protein
dynamics at least as well as a filtering based on a cutoff distance [151].

3.2.2. Diagonalizing the Hessian Matrix

The core of a normal mode analysis is the computation of the eigenvalues and eigen-
vectors of the Hessian of the potential, as described in Equation (5). While solving this task
is standard in linear algebra and many packages have optimized routines for eigenanalysis,
such as LAPACK [152], there are two main issues to consider when trying to use them for a
very large molecular system. First, there are storage issues. The full Hessian matrix requires
storage of the order O(N2), where N is the number of atoms included in the calculation.
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Such a level of storage can be prohibitive when N is of the order of tens of thousands.
Second, standard algorithms for computing eigenpairs of a matrix are of order O(N3) in
computing complexity, again prohibitive for large systems. There are, however, solutions
to both problems that we briefly describe here.

(i) The storage issue. As described above, the pairs of atoms that are included in the
potential are filtered based on either a cutoff value or based on a geometric construction
such as the Delaunay triangulation. As a consequence, the Hessian matrix is sparse,
with the number of nonzero values only a fraction of the expected O(N2), and more
of the order O(N) (see for example [151]). In addition, the forms of both the Tirion
potential and the Go potential are such that their Hessian can be expressed as sums of
tensor products, further reducing their storage needs [153].

(ii) Computing eigenvalues and eigenvectors. In her original paper on coarse-grained normal
mode analyses of proteins, Tirion showed that the lowest frequency normal modes
based on a geometric potential capture most of the dynamics of the molecular system of
interest [147]. She did not indicate, however, how many low frequency normal modes
need to be considered, as this is most likely problem specific (see for example [154]).
Still, only a fraction of the total eigenvalues and eigenvectors of the Hessian matrix
need to be computed [131]. There are powerful iterative algorithms for computing a
subset of the eigenpairs of a matrix. In Ref. [141], we compared four such methods,
namely an implicitly restarted Arnoldi method as implemented in ARPACK [155],
a simple modification of this method based on polynomial filtering [156,157], a varia-
tional method based on the minimization of an energy function [138,158], and a block
Chebyshev–Davidson method [159,160]. We have shown that the latter provides the
most efficient implementation when computing eigenpairs of extremely large Hessian
matrices corresponding to large viral structures [141].

3.2.3. Correlated Motions within a Molecular System

The Boltzmann distribution for the approximate potential of quadratic potential used
for coarse-grained normal mode analyses corresponds to a multivariate Gaussian distri-
bution whose covariance matrix is proportional the inverse of the Hessian H. As the six
lowest normal modes have frequencies equal to 0 (they correspond to the three degrees
of freedom associated with translations and the three degrees of freedom associated with
rotations), the inverse of H is not defined. It is possible to compute a pseudo-inverse that
corresponds to the covariance matrix of internal deformation:

C =
M

∑
k=7

1
ω2

k
Ak AT

k

where ωk and Ak are the k− th eigenvalues and eigenvectors, respectively. The summation
starts at k = 7, i.e., at the first nonzero mode, and stops at a prescribed M, i.e., the highest
frequency mode considered. The correlation of the motions of two atoms i and j is then
defined as [161]:

Pij =
tr(Cij)√

tr(Cii)tr(Cjj)

The values Pij range from −1 to +1. They are stored in a matrix which we refer to as the
Cross Correlation Matrix (CCM).

3.3. Examples

We have implemented the algorithm described above in the program NormalModes [141,153].
We used it to analyze the dynamics of the outer shell of WNV-K, whose geometry is studied
above. We use the Go potential to represent the energy of the molecular system. As
the Go potential is computed from the Cα atoms, we isolated those from the PDB file
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7KVA. We excluded the M protein and only considered the E protein. The Go potential
was parametrized as follows: Kr = 100ε, Kθ = 20ε, Kφ1 = ε, Kφ3 = 0.5ε, with ε = 0.36.
In addition, the nonbonded term Vnb is computed over all edges of the Delaunay complex
associated with the Cα atoms of the outer shell. We refer to the union of those edges as the
Elastic Network (EN) of the virus outer shell.

We considered the E protein in four different environments: isolated, MONO, corre-
sponding to chain A in the asymmetric unit of 7KVA, as a dimer, DIMER, corresponding
to chain A in the asymmetric unit of 7KVA, within a raft, RAFT, and within the whole
outer shell structure, FULL. The E protein forms dimers on the outer shell of the mature
form of the virus. These dimers organize in the form of rafts, namely three dimers lying
parallel to each other (see below). The corresponding complexes, MONO, DIMER, RAFT,
and FULL contain 501, 1002, 3006, and 90,180 residues, respectively. We computed the
hundred lowest normal modes for each of these complexes, using the procedure detailed
above. The normal modes were computed using the empty protein shells, in accordance
with previous studies of viral particles using normal mode analyses [162–167]).

3.3.1. Characterizing the Low-Frequency Normal Modes of WNV-K

In Figure 6A, we compare the frequencies of the first fifty normal modes of the MONO,
DI, RAFT, and FULL complexes of WNV-K. The first six frequencies are found equal to zero,
for all complexes considered. This is expected, as those frequencies correspond to the rigid
motions (three translations and three rotations) that do not affect the Go potential. Indeed,
all terms in the potential can be expressed with interatomic distances only, and therefore,
are conserved under translations and rotations of the molecular system. The larger the
protein complex, the more the spectrum of frequencies of its normal modes move to
lower frequencies. This is indicative of the presence of more collective motions in protein
oligomers. Figure 6B, which plots the lowest frequencies for the full outer shell of WNV-K,
reveals the presence of degeneracy, namely repeating frequencies. These repeats are a
consequence of symmetries in the outer shell, as it is icosahedral.
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Figure 6. Comparing the low frequencies of the normal modes of the E protein of WNV-K in different
environments. (A) The frequencies of the first fifty normal modes of the MONO (black circles),
DIMER (red circles), RAFT (blue circles), and FULL (magenta circles) complexes of WNV-K (see text
for details on the complexes). Note that those frequencies are in arbitrary units, as the parameters
of the Go potential are also in arbitrary units. The amplitudes of those frequencies decrease as the
size of the complex increases. (B) The frequencies of the first 50 normal modes for the full outer shell,
FULL; note the degeneracies of the normal modes, which are a consequence of the symmetries in an
icosahedral geometry.

3.3.2. Concerted Motions of E Proteins in Different Environments

The cross correlation matrices (CCM, see methodology above) for the E protein vary
significantly between the MONO, DIMER, RAFT, and FULL complexes, as observed in
Figure 7. The CCM for the E protein alone reveals significant positive correlations within
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each of the three domains, i.e., I, II, and III. Inter-domain residue pairs from domains II and
III show both positive and negative correlations in their atomic fluctuations, while residues
in domain I are only weakly correlated with residues of domain II and III. When the dy-
namics of the E protein are studied in the context of the asymmetric unit, the same positive
correlations are observed within each of the three domains. The interactions between
the domains change significantly, however, as we consider the E protein in multimeric
structures. In the RAFT complex, residues in domain II are strongly anticorrelated with
residues from domain III, while residues in domain I are strongly positively correlated
with residues in domain III. The DIMER complex shows behavior that are between those of
the MONO and RAFT complex. The full outer shell shows globally positive correlations
for all pairs of residues within the E protein; those correlations are the result of concerted
dynamics within the outer shell. In the MONO and DIMER complexes, the stem and trans-
membrane domains show weak negative correlations with domain II. These correlations
become positive in the RAFT and FULL complexes.
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Figure 7. Correlated motions in the E protein from the WNV-K outer shell. Cross Correlation Matrices
(CCM) obtained from the 94 first nonzero modes for the E protein alone (MONO, (A)), the E protein
in a dimer (DIMER, (B)), the E protein in a raft (RAFT, (C)), and the E protein in the whole outer
shell of WNV-K (FULL, (D)). Those plot show correlations between the motions of Cα atoms in each
complex considered. Both axes represent the amino acid residue indices. Each pixel in the image
corresponds to an element of the CCM matrix. It shows the correlation between the motions of Cα

atoms from two residues in the protein in a range from −1 (anticorrelated, blue) to 1 (correlated, red),
with 0 denoting the absence of correlation. The color code for the X and Y axes of the CCM plots in
(A–D) follows the standard designation of the E protein domains, I (red), II (yellow), III (blue), stem
(orange), and transmembrane domain (purple) (see caption of Figure 3 for details).
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3.3.3. Concerted Motions of Rafts of E Proteins in Different Environments

Figure 7 reveals the effects of packing in the viral outer shell on the dynamics of one E
protein. We performed a similar analysis on a larger structure of the outer shell, namely a
raft. A raft is formed from six E proteins organized as three dimers arranged in a parallel
manner (see Figure 8C). The whole outer shell contains 30 such rafts. In Figure 8A,B, we
analyze the extent to which packing influences the dynamics of such rafts for WNV-K.
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Figure 8. Correlated motions in an E protein raft. Cross Correlation Matrices (CCM) obtained from
the 94 first nonzero modes for an E protein raft alone (RAFT), and a raft in the whole outer shell
(FULL) for WNV-K (panels A,B). X axes and Y axes are residue indices. The positions of the six E
proteins of the raft are indicated, with labels and color codes defined on the structure in (panel C).
(C) Cartoon model for the raft. Note that a raft includes two asymmetric units, labeled Unit A and
Unit B. The third E protein of each unit, E3A and E3B, form a dimer. Panel E was generated using
Pymol [111].

The CCM matrix of the raft by itself (i.e., defined by the complex RAFT) clearly
identifies the six E proteins along the diagonal, as observed on Figure 8A. Each of those
E proteins exhibits dynamics correlation patterns equivalent to those observed in the E
protein when it is in the RAFT complex. The interactions between the E proteins are
consistent with the structure of the raft. The E proteins E3A and E3B, which form a dimer
between two asymmetric units, show strong positively correlated dynamics. In contrast,
proteins E1A and E2A in Unit A, and proteins E1B and E2B in Unit B have a pattern of
interactions that include both positively correlated and negatively correlated motions,
depending on their domains: for example, domains III have negative correlations between
the two proteins, while domains II are positively correlated between the two proteins.
The pair of proteins (E1A, E2A) shows weak correlated dynamics with the pair of proteins
(E1B, E2B), with a chessboard pattern (i.e., positive correlations between E1A and E1B,
and negative correlations between E1A and E2B).
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The CCM for a raft included in the whole outer shell (Figure 8B) reveals different
patterns than those described for the raft alone, highlighting again the impact of packing
in the whole virus environment. There is a high level of positive correlation of motions
within each of the units A and B. The proteins E3A and E3B that form a dimer at the center
of the raft are interacting with themselves in the raft alone, while they show strong levels
of positive correlations with all the E proteins of the same asymmetric unit in the raft when
considered within the whole outer shell. Such a behavior would favor concentration of
concerted internal motions within a few E protein dimers at the center of the rafts in the
whole outer shell instead of a more uniform dissemination of concerted motions.

Similar behaviors have been observed for the outer shells of Dengue virus and ZIKA
virus [140,153].

3.3.4. Computing Time for NormalModes

The procedure described above and implemented in the program NormalModes was
developed to enable the analysis of the dynamics of large molecular systems, including
viruses on standard desktop computers. To ascertain that this is indeed the case for
NormalModes, we measured the computing required to evaluate up to 2000 normal modes
for the whole outer shell of WNV-K. As described above, this outer shell is large, including
more than 90,000 residues. Using the Go potential, this means that we need to perform
a normal mode calculation over 90,000 atoms. In theory, the corresponding Hessian for
the Go potential is a matrix of size 270,000 × 270,000, whose storage would require more
than 580 GB of memory, a number that is not compatible with a desktop computer. We
have shown, however, that there are ways to circumvent this issue. We show the actual
cumulative CPU wall time needed to compute the first 1000 normal modes associated
with this matrix as a function of the number of modes computed in Figure 9. The total
computing time is found to be approximately piece-wise linear, with a change of slope at
around 300 modes corresponding to a slow down after those 300 modes. Computing those
first 300 modes is relatively fast (around 1000 s, i.e., 17 min), considering that the CPU we
used, a quad-core Intel Core I7 processor running at 4.0 GHz, is not state-of-the-art. Such a
computing time is often deemed acceptable; the results presented above also highlight that
300 modes may be enough to analyze the dynamics of WNV-K. In comparison, computing
1000 modes requires 13,600 s on the same processor, i.e., approximately 3 h 45 min, while
computing 4000 modes requires 130,000 s, i.e., 36 h.
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Figure 9. Total CPU time (wall time) for NormalModes as a function of the number of converged
eigenvalues of the Hessian for all E proteins of the outer shell of WNV-K. Only Cα atoms are
considered as we consider the Go potential. There are 90,180 Cα atoms within the whole outer shell
(with only E proteins considered). The Delaunay complex associated with those atoms that form the
list of nonbonded interactions includes 503,287 edges. The computation is performed on a quad-core
Intel Core I7 processor running at 4.0 GHz with 64 GB of RAM.
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4. Energetics of Viral Structures
4.1. Motivation

Vaccine and antiviral drugs are considered to be the most effective options for the
prevention and treatment of virus-induced diseases. Vaccines, for example, have proven
to be effective to curb the impact of the SARS-CoV-2 pandemics, reducing both mortality
and morbidity associated with its associated disease, COVID-19, by limiting the number of
infections (see for example Ref. [168]). However, a vaccine is only effective if it matches the
prevalent viral strain. For example, it is a challenge each year to assess the composition of
the current influenza vaccine early enough to allow time for the manufacture and distribu-
tion of the most up-to-date vaccine. In parallel, drugs that are designed to inhibit specific
targets of viruses often suffer from the same problem. They are, however, the solutions for
treating the associated diseases when infection has occurred.

Drugs are natural or nonnatural ligands that are developed to inhibit the function
of molecules, usually proteins, that are essential for the virus life cycle. The inhibition
is the result of a tight binding of the ligand on the target protein. The identification and
characterization of such binding sites are, therefore, essential steps in structure-based drug
design (for reviews, see [169–171]). Many of the corresponding methods are fast and easy
to implement, but rely on severe simplifications. Geometric methods, for example, assume
a static structure for the target protein. They identify pockets within the protein and do
not consider the nature of the residues bordering those pockets, and even the geometry
of the putative ligand. This is true for our own method, UnionBall, presented above,
and for other similar techniques [169,172]. In contrast, energy-based methods combine
geometry to position a putative ligand near the protein of interest with energy calculation
to estimate the likeliness of their interactions. Q-SiteFinder [172], for example, coats the
protein surface with a layer of methyl probes and calculate van der Waals interaction
energies between the protein and those probes. Probes with favorable interaction energies
are retained and clusters of these probes are deemed to define putative binding sites. Other
methods follow the concept of fragment-based drug discovery (FBDD) in which first small
chemical fragments are identified as possible binder to the target, and then combined
to produce a ligand with a high affinity [173,174]. These methods include GRID [175],
MCSS [176], and FTMAP [177,178]. These techniques, however, often yield a large number
of false-positive energy minima.

Sampling of the conformation of the ligand, the protein, and the environment within
the putative binding site, including the presence of ordered water molecules and salt,
is necessary for a computational technique to successfully identify drug-binding sites.
Molecular dynamics (MD) simulations provides a framework for such sampling [179–182].
When the actual ligand is not known, it is possible to incorporate co-solvents in the
simulations to mimic this ligand and consequently improve the identification of binding
sites [109,183–188]. As mentioned in the previous section, molecular dynamics, however,
are time-consuming.

We have recently proposed an alternate approach to the grid-based drug mapping
procedure and to the cosolvent-enhanced MD simulations described above. This approach,
with the acronym HDPBL (see below) is based on multi-probe exploration. It generates
the densities of dipoles representing a polar solvent, of anions, cations, as well as the
densities of hydrophobic cosolvent molecules, thereby enabling the identification of polar,
positively charged, negatively charged, and hydrophobic binding sites on the target protein
simultaneously. In the following, we briefly present HDPBL. A more rigorous presentation
is available in the original paper [189].

4.2. Methodology
4.2.1. A Lattice Gas Model for the Environment of the Solute of Interest

We use a lattice gas formalism to represent the environment around the target molecule
(see Figure 10). This lattice allows us to model steric repulsion among the particles in this
environment. The water molecules are distributed on this lattice. They are represented as
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orientable dipoles of constant module p0. Similarly, the ions (positive and negative) are
represented as spheres carrying a charge +zec or−zec, where ec is the elementary electronic
charge. We also include inert hydrophobic molecules. All those molecules are represented
as hard spheres with equal radii a/2, where a is the lattice spacing. The solute itself is
described by a charge density ρ f (r) corresponding to its fixed charges, and a hydrophobic
density ρh(r) corresponding to its hydrophobic sites (usually the CH2 and CH3 groups).
Its surface is modeled with an indicator function γ(r) that is zero for points r inside the
envelope of the solute and one otherwise. This envelope can be taken as the molecular
surface or the accessible surface of the solute; we usually use the molecular surface.

a

a

Figure 10. Schematic illustration of the lattice gas model. Each lattice cell may be empty, occupied by
one ion (red for positive ions, blue for negative ions), a water molecule (cyan), or an inert hydrophobic
particle (white). We assume here that all those species have the same size, with diameter a, the lattice
spacing. The solute is at the center of the lattice. It is identified by its surface area (colored here in
light orange (wheat)).

4.2.2. A Free Energy Model for the Solute and Lattice Gas

Let ϕ(r) be the electrostatic potential at position r. Each site r in the lattice surrounding
the solute contains at most one particle. Let us look at the partition function by considering
each type of particle.

(i) Water molecule: the energy of one water dipole of constant magnitude p0 at position r
is obtained as the Boltzmann-weighted average of the interaction −~p0 · ∇ϕ(r) over all
orientations of ~p0, where ϕ(r) is the local electric potential:

Zw(r) = λw < eβp0|∇ϕ(r)|cos(θ) >θ,φ = λw
sinh(p0β|∇ϕ(r)|)

p0β|∇ϕ(r)| ,

where β = 1
kBT and λw is the fugacity of the water (see below).

(ii) Ions: the energy of one ion with charge zec is simply zec ϕ(r). We assume that there are
as many positive ions and negative ions in the environment, with charges +zec and
−zec, respectively. Then:

Zion(r) = 2λion cosh(βzee ϕ(r)),

where λion is the fugacity of the ions.
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(iii) Hydrophobic particles: The hydrophobic interactions between the hydrophobic particles
are defined by a Yukawa potential:

wY(r) = −
w0

4π

e−κYr

r
,

where r = ||r||, κY = 1/lY defines the range of the hydrophobic interaction, and
w0 > 0 its strength. The negative sign denotes the attractive nature of the interac-
tion. Setting ψ(r) to be the hydrophobic field associated with this potential gives
the following:

Zh(r) = λhe−βψ(r),

where λh is the fugacity of the hydrophobic particles.
(iv) Possible empty sites: The system may be considered as incompressible, in which case

all lattice sites are occupied by one particle, or compressible, in which case a lattice
site may be empty. We model this behavior by introducing a pseudo-fugacity λv for
vacancies such that λv = 0 if the system in incompressible, and λv = 1 otherwise.
Note that this is set once at the beginning of the analysis.

The grand canonical partition function Z(r) for the lattice site at position r is then
given by (enumerating the two possible occupancies: empty, or with one dipole):

Z(r) = λv + Zw(r) + Zion(r) + Zh(r)

= λv + 2λion cosh(βzec ϕ(r)) + λw
sinh(p0β|∇ϕ(r)|)

p0β|∇ϕ(r)| + λhe−βψ(r) (8)

The free energy functional for the whole grid includes the electrostatic energy, the func-
tional form for the energy of the Yukawa field, the energy of the fixed charges and hy-
drophobic groups of the solute, and the logarithm of the partition function Z defined in
Equation (8):

F = − ε0

2

∫
dr(∇ϕ(r))2 +

1
2w0

∫
dr
(
(∇ψ(r))2 + κ2ψ2(r)

)
+

∫
drϕ(r)ρ f (r) +

∫
drψ(r)ρp(r)

− 1
βa3

∫
drγ(r) ln

(
λv + 2λion cosh(βzec ϕ(r)) + λw

sinh(p0β|∇ϕ(r)|)
p0β|∇ϕ(r)| + λhe−βψ(r)

)
(9)

4.2.3. Solving for the Electrostatic and Hydrophobic Fields

We use the Saddle-Point Approximation from statistical physics. This method, which
is also called the Mean-Field Theory, consists of minimizing the free energy defined in
Equation (9) with respect to the two fields ϕ and ψ:

−ε0∇2 ϕ(r) = ρ f (r)−
2λion

a3 zecγ(r)
sinh(βzec ϕ(r))

Z(r) +

p0

a3 λwγ(r)∇ ·
(
∇ϕ(r)
|∇ϕ(r)|

g(p0β|∇ϕ(r)|)
Z(r)

)
1

w0

(
−∇2 + κ2

Y

)
ψ(r) = −ρp(r)−

λh
a3 γ(r)

e−βψ(r)

Z(r) , (10)

where Z(r) is defined in Equation (8) and

g(x) =
cosh x

x
− sinh x

x2 .

Note that ϕ(r)→ 0 and ψ(r)→ ψ0 as r→ +∞, i.e., in the bulk, far from the solute.
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The meanfield equations given above fully describe the system under study. The first
equation is a Dipolar Poisson–Boltzmann Langevin (DPBL) Equation [190–192], while the
second equation is a Poisson–Boltzmann-like equation involving the hydrophobic particles
in the solvent and the hydrophobic charges on the solute. As a consequence, we refer to this
system of equations as the Hydrophobic Dipolar Poisson–Boltzmann Langevin equations,
or HDPBL equations for short [189].

All coefficients in those equations are computed either from physical constants or from
input information describing the system, with the exception of the fugacities and ψ0, which
we derive now.

4.2.4. The Particle Fugacities

Let cion, cw, and ch be the bulk concentrations of ions, water, and hydrophobic particles,
respectively. Let the volume fraction Φ for each type of particle be defined as:

Φion = 2ciona3,

Φw = cwa3,

Φh = cha3.

Note that we can consider a volume fraction for vacancies:

Φv = 1− (Φion + Φw + Φh).

If the system is incompressible, Φv = 0, and the concentrations of salt, water, and hy-
drophobic probes are necessarily dependent. Otherwise, Φv is positive, and vacancies
are possible in the environment of the solute. In this case, cs, cw, and ch are independent,
although they still need to satisfy Φs + Φw + Φh = 2ciona3 + cwa3 + cha3 ≤ 1.

The fugacities of the different particles differ if the system is considered incompressible
or compressible:

(i) Compressible system: Vacancies are allowed and λv = 1. The fugacities are given
by [189]:

2λion =
Φs

Φv
,

λw =
Φw

Φv
,

λhe−βψ0 =
Φh
Φv

.

(ii) Incompressible system: There are no vacancies among the lattice sites and Φion + Φw +
Φh = 1. The fugacities are then not independent. If we choose λw = 1, the fugacities
are defined as follows [189]:

λw = 1,

2λion =
Φion
Φw

,

λhe−βψ0 =
Φh
Φw

.

Finally, the bulk value ψ0 is given by:

ψ0 = −w0

κ2
Φh
a3 .
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4.2.5. The Densities or Water Dipoles, Ions, and Hydrophobic Probes

Once the fields ϕMF(r) and ψMF(r) have been derived as mean field solutions of the
HDPBL system of equations, the densities of the various molecules defining the environ-
ment of the solute are given by the following.

(i) Anions and cations:

ρ±(r) =
1
a3

Φione∓βzec ϕMF(r)

2ZMF
1 (r)

.

(ii) Water dipoles:

ρw(r) =
1
a3

Φw

ZMF
1 (r)

sinh
(

βp0
∣∣∇ϕMF(r)

∣∣)
βp0|∇ϕMF(r)|

.

(iii) Hydrophobic particles:

ρh(r) =
1
a3

Φh

ZMF
1 (r)

e−β(ψMF(r)−ψ0).

where ZMF
1 (r) = Φv + Φion cosh

(
βzec ϕMF(r)

)
+ Φw

sinh(βp0|∇ϕMF(r)|)
βp0|∇ϕMF(r)| + Φhe−β(ψMF(r)−ψ0).

4.2.6. AquaVit

We have developed the software package AquaVit to solve the system of differential
equations defining the HDPBL system. It is mostly inspired by AquaSol, a previous package
developed for solving Poisson–Boltzmann-like equations [192], and uses many routines
from the package MG developed by Michael Holst [193].

System Setup

The coordinates of the atoms of the solute as well as their partial charges are read from
a single file with the PQR format. PQR files can be readily generated using the service
PDB2PQR [194]. For all examples described below, we used the AMBER parameter dataset
to assign charges. The PQR file is then modified to add hydrophobic “charges” to selected
atoms. All atoms identified as aliphatic carbon, extended carbon, with 1, 2, or 3 hydrogens,
ring carbons, and sulfur atom with one hydrogen were assigned a nonzero hydrophobic
charge of +1.

The HDPBL system of equations include 12 parameters: the numbers of vertices in the
mesh in each dimension, the lattice size a, the temperature T, the concentrations of water cw,
ions, cs, and hydrophobic probes, ch, the valence z of the anions and cations from the salt,
the strength of the water dipole, p0, and the parameters of the Yukawa potential, lY(= βwY)
and lh(= 1/κY). The mesh is usually set with 193 vertices in each direction. Those vertices
are equally spaced, and the distance between two vertices is computed automatically based
on the size of the solute and the fact that the borders of the mesh are set to be at least 14 Å
away from the solute. Assuming incompressibility, in the presence of pure water, we expect
Φw = 1, i.e., that cwa3 = 1, where cw is the concentration of bulk water, namely 55 M. This
leads to a = 3.11. In all the simulations described below, we have considered monovalent
(i.e., z = 1) ions at 0.2 M and hydrophobic particles at 1 M. As we assume incompressibility,
the concentration of water is fixed and using the prescribed concentrations of ions and
hydrophobic probes, and the lattice size a = 3.11, we obtain the apparent concentration
of water cw = 53.6 M. The parameter lh defines the range of the Yukawa potential; it is
set to the lattice size, i.e., lh = 3.1 Å. lY is a characteristic length that directly relates to its
strength. We set it to lY = 4 Å. The temperature is set to 300 K. Finally, the experimental
dipole moment of water is set to 2.8D. Justifications for all those values can be found in
Ref. [189].
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The typical running time for characterizing the environment of a protein using AquaVit
with the parameters defined above is 50 min for a grid of size 1933 on a quad-core Intel
Core I7 processor running at 4.0 GHz. Ref. [189] provides a more comprehensive analysis
of computing time for AquaVit on faster processors.

4.3. Examples

The primary goal of HDPBL is to characterize the environment around a solute of
interest. In particular, it is used to detect pockets within this solute and characterize
their nature, i.e., if they are more likely to accommodate a hydrophobic or a charged
ligand. As such, it differs from programs that are designed to characterize the geometry
of the solvent, such as UnionBall described above. We illustrate this difference on two
systems, the WNV methyltransferase that accommodates a hydrophobic ligand and the
WNV NS2B/NS3 protease bound to a positively charged inhibitor.

4.3.1. Identifying a Hydrophobic Pocket in a Methyltransferase

WNV genomic RNA is single stranded, with positive polarity. It includes a type I cap
at its 5’ end that is important for the RNA stability and translation [195]. The formation
of this cap is associated with four enzymatic modifications (see for example [196]). Those
modifications include the addition of a GMP at the diphosphate end, a methylation of the
corresponding guanine at position N7, and a methylation of the first nucleotide of the RNA
at the ribose 2’-OH position. The enzymes responsible for these modifications are encoded
by the WNV genome itself. In particular, it was shown that its nonstructural protein NS5
possesses both N7 and 2’-O methyltransferase (MTase) activities (see for example [197]).
The structure of this protein was determined by X-ray crystallography at 2.0 Å resolution,
in the presence of sinefungin (SIN), a hydrophobic inhibitor (PDB code 3LKZ [197]).

We analyzed the geometry and energetics of WNV Mtase using UnionBall and AquaVit,
respectively. The PDB structure 3LKZ corresponds to this protein bound to a hydrophobic
ligand, SIN. All ligands, ions, and crystallographic water molecules were removed prior
to running UnionBall and AquaVit. UnionBall only includes one parameter, the radius of
the water probe. We set it to 3.0 Å, to detect deep pockets within the protein. As explained
above, AquaVit involves 12 parameters. Those were set as described. In Figure 11, we show
the resulting pockets detected by UnionBall and hydrophobic particle occupancy map
detected by AquaVit, superimposed on the PDB structure of WNV Mtase, with and without
the ligand. The active site of WNK MTase is comprised of a large hydrophobic pocket,
which serves as the S-adenosyl-L-methionine (AdoMet) -binding site, where AdoMet serves
as a methyl donor. This pocket is conserved among flaviviruses [197]. It is successfully
detected both by UnionBall and AquaVit, as illustrated in Figure 11.

4.3.2. Identifying a Charged Pocket in a Protease

The replication of WNV requires a processing of its proteins by its own NS3 protease
(NS3pro). NS3pro by itself, however, is virtually inactive. Its activation requires another
of its protein, NS2B, as a cofactor. A high-quality structure of NS2B-NS3pro complex
at a resolution of 1.68 Å in presence of the substrate-based inhibitor benzoyl-norleucine
(P4)-lysine (P3)-arginine (P2)-arginine (P1)-aldehyde10 (Bz-Nle-Lys-Arg-Arg-H, BZE in
short) was obtained by X-ray crystallography, available in the PDB as 2FP7 [198]. The BZE
ligand is highly positively charged.

We analyzed the geometry and energetics of the NS2B-NS3-pro from WNV using
UnionBall and AquaVit, respectively. The PDB structure 2FP7 corresponds to the complex
bound to a positively charged ligand, BEZ. All ligands, ions, and crystallographic water
molecules were removed prior to running UnionBall and AquaVit. For UnionBall, the ra-
dius of the water probe was set to 1.4 Å, so that even relatively shallow pockets could
be detected. The 12 parameters of AquaVit were set as described above. In Figure 12A
and B, we show, respectively, the five largest pockets detecting by UnionBall and anion
and hydrophobic particle occupancy maps detected by AquaVit, superimposed on the
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PDB structure of WNV NS2B-NS3pro complex without the ligand. Note that the pockets
identified by UnionBall can be hydrophobic or negatively charged. When the ligand BEZ is
superimposed to the protein complex structure and UnionBall pockets, we see that none
of those pockets include the ligand (Figure 12C). The ligand sits close to the boundary
between the protein and the solvent; as such, it fits in a very shallow region on the surface
of the protein that cannot be detected as a pocket by UnionBall (recall Figure 1; this shallow
region would correspond to one of the triangles C, D, or E that are ignored by UnionBall).
In contrast, the ligand BEZ superposes well with a pocket in the cation occupancy map
captured by AquaVit (Figure 12D).

UnionBall AquaVit

A) B)

C) D)

substrate substrate

A)

C) D)

B)

D)

Figure 11. Pockets (purple) and hydrophobic occupancy maps (black mesh) superimposed onto
the structure for WNV Mtase (PDB code 3LKZ). The pockets are computed with UnionBall, with a
water probe of 3.0 Å. The hydrophobic maps are derived from the densities of hydrophobic particles
computed by AquaVit, and represented at +20 σ. Both calculations are performed using the apo
structure of the protein, i.e., in the absence of all ligands and water molecules. In panels (A,B), we
show the pocket and hydrophobic maps superposed to the apo PDB structure, respectively, while
in panels (C,D), we add to the figures in (A,B) the hydrophobic ligand (SIN) in cyan. Note that all
images in the figure were generated using Pymol [111].
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UnionBall AquaVit
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II

III

IV

V

A

B

C

D2

E
A) B)

C) D)

substrate substrate

D1

Figure 12. (A) The five largest pockets (purple) and (B) hydrophobic (black mesh) and anion (red
mesh) occupancy maps superimposed onto the structure for WNV NS2B-NS3pro complex (PDB code
2FP7). The pockets are computed with UnionBall, with a water probe of 1.4 Å. The hydrophobic and
anion maps are derived from the densities of hydrophobic particles and negative ions computed
by AquaVit, and represented at +20 σ. Both calculations are performed using the apo structure of
the protein, i.e., in the absence of all ligands and water molecules. Note that pockets I, II, and III
identified by UnionBall match with hydrophobic pockets A, B, and C identified by AquaVit. Pocket V
corresponds to the negatively charged pocket E from AquaVit, while pocket IV is a combination of a
hydrophobic pocket D1 and anionic pocket D2 found by AquaVit. Panel (C) shows the inhibitor BEZ
(see text) in cyan. The position of the inhibitor does not match with any of the five pockets found by
UnionBall. Panel (D) shows the cation (dark blue) occupancy map superimposed onto the structure
for the NS2B-NS3pro complex, with the inhibitor BEZ shown in cyan. The images in the figure were
generated using Pymol [111].

5. Conclusions

Viruses are pathogens that raise serious threats for human health: the recent SARS-
CoV-2 pandemic can unfortunately attest to this statement. Fortunately, our knowledge of
those pathogens is improving. In particular, we have more and more structural information
on virions (the complete, infective form of a virus that includes its genomic material and
surrounding envelope) and on their gene products. This information is available in the
PDB database (see, for example, Ref. [30] for a review on icosahedral virus structures in
the PDB). It is important to adapt the tools and software platforms to enable the analyses
of such structural information on very large macromolecular assemblies. In this paper,
we have reviewed some of those methods. We focused on understanding the geometry
of virions and viral structural proteins, on their dynamics, and their energetics, with the
ambition that this understanding can help design antiviral agents [199]. We have discussed
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those methods in light of the specificities of those structures, mainly that they are very
large. We focused on three of our own methods that can analyze the geometry, dynamics,
and energetics of such structures within computing times that are compatible with the use
of regular desktop computers. We provided (brief) explanations of the theories behind
them and described the corresponding software platforms, i.e., UnionBall, NormalModes,
and AquaVit. Those programs are available in open source format at the address https:
//www.cs.ucdavis.edu/~koehl/Projects/. We showed examples of their applications on
the outer shell and some structural proteins of the West Nile Virus (WNV).

The main assumption behind all the analyses described in this review is that structural
information is available on the virus that is the target for drug development. Indeed,
experimental structural information on virions is becoming widely available, as mentioned
above. However, it remains that such information may sometimes be still insufficient. The
recent successes of AlphaFold [39] and its successor AlphaFold2 [40], two softwares that
are designed to predict the structure of a protein from its sequence only, raises hope that
experimental structure determination will not be a bottleneck from antiviral drug devel-
opments. The successes of using AlphaFold2 for drug discovery, however, are currently
limited [44], but provide hope for better computational drug design [45].

In this review, we treated geometry, dynamics, and energetics independently: this is
clearly a limitation that needs to be addressed. For example, AquaVit, our program for ana-
lyzing the environment of a protein is fast, and as such, compares favorably with the ligand
mapping in molecular dynamics simulations that have been designed for detecting and
characterizing binding sites in proteins. AquaVit relies, however, on the static conformation
of the protein of interest, while the molecular dynamics simulations account for its dynam-
ics. As such, they can detect cryptic binding sites in proteins [109,184,187,188], namely sites
that are not accessible unless a structural change occurs. Such conformational changes are
inaccessible for AquaVit. Finding ways to combine geometry, dynamics, and energetics is
our future task.
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