
Analyzing the Impact of System Architecture on the
Scalability of OLTP Engines for High-Contention

Workloads
Raja Appuswamy⋆

raja.appuswamy@epfl.ch
Angelos C. Anadiotis⋆

angelos.anadiotis@epfl.ch
Danica Porobic‡

∗

danica.porobic@oracle.com

Mustafa K. Iman⋆

mustafa.iman@epfl.ch
Anastasia Ailamaki⋆ †

anastasia.ailamaki@epfl.ch

⋆École Polytechnique Fédérale de Lausanne †RAW Labs SA ‡Oracle

ABSTRACT

Main-memory OLTP engines are being increasingly deployed on
multicore servers that provide abundant thread-level parallelism.
However, recent research has shown that even the state-of-the-art
OLTP engines are unable to exploit available parallelism for high
contention workloads. While previous studies have shown the lack
of scalability of all popular concurrency control protocols, they
consider only one system architecture—a non-partitioned, shared
everything one where transactions can be scheduled to run on any
core and can access any data or metadata stored in shared memory.

In this paper, we perform a thorough analysis of the impact of
other architectural alternatives (Data-oriented transaction execu-
tion, Partitioned Serial Execution, and Delegation) on scalability
under high contention scenarios. In doing so, we present Trireme,
a main-memory OLTP engine testbed that implements four system
architectures and several popular concurrency control protocols in
a single code base. Using Trireme, we present an extensive exper-
imental study to understand i) the impact of each system architec-
ture on overall scalability, ii) the interaction between system archi-
tecture and concurrency control protocols, and iii) the pros and cons
of new architectures that have been proposed recently to explicitly
deal with high-contention workloads.

PVLDB Reference Format:

Raja Appuswamy, Angelos C. Anadiotis, Danica Porobic, Mustafa K. Iman,
Anastasia Ailamaki. Analyzing the Impact of System Architecture on the
Scalability of OLTP Engines for High-Contention Workloads. PVLDB,
11(2): 121 - 134, 2017.
DOI: 10.14778/3149193.3149194

1. INTRODUCTION
Modern OLTP engines are deployed on the state-of-the-art servers

with hundreds of processing cores and Terabytes of memory. In
order to exploit the abundant thread-level parallelism present in
modern multi-core servers, OLTP engines should execute multiple
transactions concurrently so that cores can make progress in paral-
lel instead of waiting for one another. In low-contention workloads,

∗Work done while at EPFL

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 2
Copyright 2017 VLDB Endowment 21508097/17/10... $ 10.00.
DOI: 10.14778/3149193.3149194

transactions access different records, and hence do not conflict with
each other. In such cases, modern main-memory OLTP engines can
effectively scale with increasing number of cores.

However, recent research has shown that even the state-of-the-
art main-memory OLTP engines suffer from scalability limitations
when faced with high contention [47]. Under these workloads, sev-
eral transactions simultaneously perform conflicting operations on
a few popular records. As these conflicting operations cannot be
executed concurrently while preserving serializability, OLTP en-
gines cannot execute the corresponding conflicting transactions in
parallel on different cores. Thus, it is impossible to achieve lin-
ear scalability under high-contention workloads. In the ideal case,
adding more cores to the system results in throughput scaling up to
a threshold permitted by the workload and plateauing beyond that.
However, the observed scalability of main-memory OLTP engines
is far from the ideal. In fact, adding more cores in such a scenario
results in a throughput drop proportional to the level of contention.

Recent studies have shown that synchronization overheads im-
posed by concurrency control protocols are responsible for this lack
of scalability [36, 43, 47]. However, these studies consider only
a single system architecture—a non-partitioned, shared-everything
one where any transaction can be scheduled to run on any core and
can access any data or metadata stored in shared memory. How-
ever, there are several alternative architectures that have been pro-
posed in prior research. For instance, the Data oriented transaction

execution (DORA) [31] architecture eschews thread-to-transaction
assignment used by the conventional shared-everything architec-
ture in favor thread-to-data assignment by logically partitioning the
data across threads. Transactions flow from one thread to another
as they access different data. Partitioned Serial Execution [23] is
another architecture that physically partitions the data across cores
such that each core owns a portion of data and serially executes
transactions one at a time by using whole-partition locking instead
of fine-grained record-level concurrency control. Delegation [2,
36] architecture treats a multi-core server like a distributed system.
Data and metadata are physically partitioned across threads. Each
thread uses fine-grained concurrency control for coordinating trans-
actions and threads communicate explicitly using message passing
despite the existence of shared memory.

While the prior studies have demonstrated the lack of scalabil-
ity of concurrency control protocols in the conventional shared-
everything architecture, there has been no systematic analysis com-
paring the scalability of other architectures under high-contention
workloads. Such an analysis is important due to three reasons.
First, some architectures, such as DORA, were proposed in the con-
text of disk-based OLTP engines where high disk-access latency
was the dominating source of overhead. Thus, an analysis is re-

121

Table 1: Types and properties of architectures and example systems

Architecture PM TxSM Example systems

Parallelism Thread assignment Logical synch. Physical synch.

SE Shared memory thread-to-txn CC protocols latch/atomics Silo [42],Hekaton [11]
PSE Shared nothing thread-to-txn partition lock partition lock H-store [23],Hyper [24]

Delegation Message passing thread-to-txn CC protocols message passing Caldera [2],Orthrus [36]
Data-oriented Shared memory thread-to-data CC protocols txn migration DORA,PLP [31, 32]

quired to determine the applicability of these architectures in the
context of main-memory OLTP engines.

Second, no study till date has investigated the interaction be-
tween concurrency control protocols and system architectures. In
theory, the choice of concurrency control protocol should be inde-
pendent of the choice of system architecture. However, in practice,
we show that this is not the case as the architecture can play a cru-
cial role in determining the effectiveness of a concurrency control
protocol under high contention.

Third, researchers have recently proposed new architectures that
mix existing synchronization techniques in innovative ways to tackle
various problems. For instance, Caldera [2] uses message passing
to build OLTP engines on non-cache-coherent hardware. Thread
migration is being used to build virtualization-friendly OLTP en-
gines [12]. Orthrus [36] combines message passing with functional
partitioning and transaction pre-execution to improve scalability
under high-contention workloads. However, it is unclear how these
new architectures compare to the state-of-the-art, or what is the im-
pact of each individual technique on scalability. Thus, an in-depth
analysis is required to answer these questions.

In this paper, we present the first analysis of the impact of system
architecture on scalability of OLTP engines under high-contention
workloads. In doing so, we make the following contributions:

• We present the design and implementation of Trireme, a main-
memory OLTP engine testbed that implements four system
architectures (traditional shared everything, DORA, PSE, Del-
egation), and several concurrency control protocols in a sin-
gle code base. In doing so, we identify scalability challenges
in implementing each architecture in a multi-core, main mem-
ory setting and show how to overcome those challenges.

• We conduct a comprehensive analysis to i) identify the pros
and cons of each individual architecture in isolation, and ii)
characterize the interaction between system architectures and
concurrency control protocols.

• We perform a comparison with other OLTP engine testbeds
(DBX1000 [47]) to corroborate our results, and a comparison
with the state-of-the-art solutions targeted at high contention
(MOCC [43], Orthrus [36], VLL [37]) to tease apart the con-
tribution of each design aspect to overall scalability.

2. BACKGROUND
All modern main-memory OLTP engines are multi-threaded ap-

plications that are capable of executing many transactions concur-
rently using thread-level parallelism provided by multi-cores. How-
ever, they can differ significantly in their system architecture. Typ-
ically, the system architecture of a DBMS describes the function-
ing and interaction between five major components [14], namely,
the Client Communications Manager (CCM), the Process Manager
(PM), the Relational Query Processor (QP), the Transactional Stor-
age Manager (TxSM), and other shared components and utilities.

In this work, we focus on OLTP workloads and use the term sys-
tem architecture to refer to just the PM and the TxSM. The PM
is responsible for implementing the process model which dictates

how concurrent transactions are scheduled and executed. Tradi-
tionally, database systems used the notion of Multi-programming

Levels (MPLs) to explicitly control the maximum allowable num-
ber of concurrent requests. Database engines implement MPLs by
mapping each request to a DBMS worker which keeps track of the
execution context for a given request. Workers are then mapped
to operating system threads. Finally, these threads are scheduled
to run by the operating system on processing cores [14]. In con-
trast, most modern main-memory OLTP engines use a one-to-one
correspondence between the number of DBMS workers, operating
system threads, and processing cores [11, 23, 42]. Thus, in mod-
ern main-memory OLTP engines, the process model implemented
by PM dictates two architectural aspects: i) the type of parallelism
used, ii) the mapping of transactions to threads.

The TxSM in traditional disk-based OLTP engines is typically
a collection of four modules [14], the concurrency control module
that provides Atomicity and Isolation, the log management module
that provides Durability, the buffer pool module that is responsible
for staging I/O to and from storage devices, and the access module
which is responsible for organizing data on storage. As our work
focuses on studying the interaction between process models and
concurrency control protocols in the main-memory OLTP context,
similarly to recent studies [36, 45, 47], we restrict our focus to the
concurrency control module to avoid confounding effects.

In the rest of this section, we present an overview of four pop-
ular system architectures that have been used for building OLTP
engines. We highlight how they differ in their choice of PM and
TxM. Table 1 provides a summary of various architectures together
with the examples of database systems that use each architecture.
Figure 1 shows a pictorial depiction of these architectures.

2.1 Shared Everything
PM. OLTP engines based on the non-partitioned, shared every-

thing architecture (SE) use the shared-memory model of parallelism
where they store all data in shared memory that is globally acces-
sible to threads. Most SE engines use a thread-to-transaction as-
signment with each transaction being assigned to a database thread.
Once assigned, a thread is responsible for executing the entire trans-
action and all supporting operations.

TxSM. As two threads can concurrently run transactions that
perform conflicting operations on the same record, SE engines need
synchronization at two levels: logical and physical. At the logical

level, concurrency control (CC) protocols ensure that conflicting
transactions are ordered to guarantee serializability. For instance,
pessimistic protocols order transactions by making one transaction
wait for another using locks, while optimistic protocols use aborts
and retries [4]. In order to enforce such ordering, all CC proto-
cols, irrespective of their type, associate additional metadata with
databases’ logical entities, which are typically records in main-
memory OLTP engines. For instance, pessimistic locking protocols
might maintain lists of transactions to track lock owners and wait-
ers, while optimistic protocols might maintain per-record times-
tamp values to decide whether a given transaction must be commit-
ted or aborted. As multiple threads can simultaneously update this
metadata, CC protocols also synchronize at the physical level using
latches or atomic instructions to maintain metadata consistency.

122

Shared everything Partition Serial Execution

Delegation Data-Oriented

C C C CC C C C

C C C CC C C C

Figure 1: Transaction execution in various architectures. The SE
shows data and indices stored in shared memory that is globally ac-
cessible to all threads. The PSE shows data and indices partitioned
across threads, with each thread using a partition lock. The Dele-
gation shows data partitioned similar to PSE with explicit messag-
ing between threads and fine-grained locking. Finally, the DORA
shows logical data partitioning (dotted lines), transaction migra-
tion, and fine-grained locking.

2.2 Partitioned Serial Execution
PM. Partitioned Serial Execution(PSE)-based engines physically

partition data and all associated metadata in such a way that each
database thread has exclusive access to its partition. Thus, they
adopt the shared nothing model of parallelism. Traditionally, shared
nothing has been used to refer to a parallel system that is composed
of a cluster of independent machines [14]. However, when PSE en-
gines are deployed on a single, scale-up multi-core server [23], all
data is stored in shared memory. Despite this, threads in PSE en-
gine do not share any data or metadata. PSE engines use a thread-
to-transaction assignment and each thread executes one transaction
at a time. However, transactions are assigned to threads in such a
way that most transactions are single-site in nature, meaning that
data accessed by a transaction is local to the thread on which it is
scheduled to execute.

TxSM. In the ideal case, all transactions are single-sited. In such
a case, PSE guarantees near-linear scalability as each thread ex-
ecutes transactions independently without synchronizing with any
other thread. However, if transactions are multi-sited, meaning that
data accessed by a transaction is stored in more than one partition,
it is necessary to coordinate transaction execution across several
threads to guarantee serializability. PSE engines ensure that only
one transaction can run at any given time on a given set of parti-
tions by locking all relevant partitions before accessing data. Thus,
in contrast to SE engines that use fine-grained record-level CC pro-
tocols, PSE engines use coarse-grained partition-level locking.

2.3 Delegation
PM. The Delegation architecture treats a multi-socket server as

a distributed system where each core represents a node in a clus-
ter. Data is partitioned across cores and a thread-to-transaction as-
signment is used to execute transactions. Similarly to PSE, Del-
egation distinguishes between single-site and multi-site transac-
tions. For single-site transactions, Delegation works like PSE; each
thread works on its own partition without synchronizing with other
threads. However, Delegation differs from PSE in the way multi-
site transactions are handled. When a transaction running on one
thread wants to perform an operation on a record owned by a differ-

ent thread, it explicitly sends a message requesting the target thread
for the data item even though the data resides in globally accessible
shared memory. This is similar to the way nodes in a distributed
system communicate via message passing. Thus, Delegation uses
message passing-based parallelism.

TxSM. As transactions may request data in a random order from
any remote thread, Delegation still needs a mechanism for logically
synchronizing transactions to enforce serializability. It does so by
using fine-grained, record-level CC. Thus, in addition to data and
indices, each thread also maintains the additional metadata needed
by CC protocols. This metadata is exclusively accessed by the
owner thread, and thus, requires no physical synchronization.

2.4 DataOriented Architecture
PM. The Data-Oriented Architecture (DORA) was designed in

the context of disk-based OLTP engines that used latches for phys-
ically synchronizing access to centralized data structures. As mul-
tiple threads attempt to update the shared data structure, the en-
suing contention on latches resulted in poor scalability on multi-
core servers. DORA solves this problem by replacing the thread-
to-transaction mapping with a thread-to-data mapping. With this
approach, each DBMS thread is associated with a disjoint subset
of the database. Transactions then flow from thread to thread de-
pending on the data being accessed. It is important to note that the
thread-to-data mapping used by DORA is a logical partitioning of
data as it only affinitizes data to threads instead of physically par-
titioning data. Thus, changing affinitization is easy as it requires
only updating a record-to-thread mapping table instead of physi-
cally rearranging records.

TxM. Similar to SE, DORA provides serializability by using
fine-grained, record-level CC. However, unlike SE, each thread
maintains CC metadata only for the data it manages and has ex-
clusive access to this metadata. Thus, DORA logically partitions
data and physically partitions metadata. As a result, DORA does
not require physical synchronization to protect CC metadata.

3. TRIREME OLTP ENGINE TESTBED
In this section, we describe Trireme, our prototype OLTP engine

that supports all four architectures in a single code base. Trireme
is implemented as a multi-threaded application that runs as a sin-
gle process, with each thread being bound to a different processor
core. All data is stored entirely in memory in a row-major format.
To avoid memory management delays in the critical path that arise
due to the use of malloc, we implemented a custom memory al-
locator that explicitly manages one heap area per thread and meets
all memory allocation requests using the thread-local heap. The
system also supports a simple primary-key-based hash index. We
use a one-latch-per-bucket synchronization strategy for coordinat-
ing updates to the hashtable. As our workloads only read or up-
date existing records instead of adding or removing records, index
synchronization is not a scalability bottleneck in any of the archi-
tectures in our experiments. We leave investigating scalable index
synchronization techniques for various architectures to future work.

3.1 CC protocols
In this study, we consider three classes of CC protocols, namely,

pessimistic deadlock detection, pessimistic deadlock avoidance, and
optimistic. More specifically, we consider DL DETECT, NO WAIT,
and SILO as representatives from each category. We chose these
three protocols as they have shown to be the best in their respec-
tive classes by recent studies [47]. In Section 5, we also validate
this claim by presenting results that we obtained by running our ex-
periments on several other CC protocols using DBX1000, another
prototype OLTP engine that has been used in recent research [47].

123

We only consider the SERIALIZABLE isolation level and single-
versioned storage. Thus, we limit our focus to single-version vari-
ants of DL DETECT, NO WAIT, and SILO protocols. While we do not
consider CC protocols based on multi-versioned storage as they add
additional dimensions, like garbage collection, we do consider the
two-version variant of the NO WAIT protocol (2V NO WAIT [4]) that
exploits undo logging performed by single-version storage to im-
prove concurrency between readers and writers. A recent study has
explored other dimensions in implementing MVCC protocols [45].
In the rest of this section, we provide a high-level overview of the
CC protocols supported by Trireme.
DL DETECT is a two-phase locking (2PL) protocol that maintains

a waits-for graph of transactions, uses it to determine deadlocks
(based on cycles in the graph), and aborts transactions to relieve
deadlocks. The NO WAIT 2PL protocol, in contrast, completely
avoids deadlocks by aborting transactions that attempt to acquire
any lock which is already held in a conflicting lock mode.
2V NO WAIT introduces a certify lock in addition to read and

write locks used by NO WAIT. Transactions acquire read/write locks
before performing an operation. Write locks conflict with each
other. Read locks do not conflict with write locks, and thus, mul-
tiple readers are allowed to read the last committed version of a
record concurrently while a writer updates a private version. Each
writer maintains a private copy of its updates during execution.
Creating the private copy incurs no overhead, as the copy created
by undo logging mechanism is reused. At commit time, writers
convert their write locks into certify locks that conflict with both
read and write locks. If a transaction certifies all writes, the com-
mit succeeds and updates are propagated from the private copy to
the database. However, even if a single lock cannot be certified, the
transaction is aborted and private updates are discarded.

In contrast to these protocols, SILO is an optimistic protocol
proposed originally in [42]. SILO tracks record accesses using
transaction-private read/write sets during transaction execution and
uses a three-step transaction commit protocol. The first step latches
all records that need to be updated. The second step verifies the
records in the read set. If the first two steps succeed, the third step
applies the updates to the actual database.

3.2 SE Implementation
The Trireme SE implementation supports all the aforementioned

concurrency control protocols. We add several optimizations that
have been proposed in prior research to improve the scalability
of two-phase locking protocols. Our NO WAIT implementation is
based on the optimized version proposed by VLL [37] that eschews
a centralized lock table. As NO WAIT aborts any transaction that at-
tempts to acquire a lock in a conflicting mode, no transaction ever
waits on a lock. Thus, the only metadata required to implement
NO WAIT protocol is a single counter that keeps track of whether
a shared or an exclusive lock has been acquired, and in case of
a shared lock, how many transactions currently hold it. The SE
NO WAIT implementation in Trireme associates a semaphore with
each record to keep track of this information similar to VLL. The
semaphore implementation uses atomic instructions to physically
synchronize simultaneous updates from multiple threads.

The SE 2V NO WAIT implementation is based on a latch-free vari-
ant proposed in prior research [39]. Each record is associated with a
read counter and a write flag. Readers proceed by first checking the
read counter. A value of -1 indicates that another transaction holds
a certify lock on the record, in which case, the reader is aborted.
Otherwise, the read counter is incremented using a Compare-and-
Swap (CAS) operation to indicate the acquisition of a read lock. A
writer proceeds by doing a CAS to set the write flag. A set flag in-
dicates a failure to acquire the write lock, in which case, the writer

is aborted. Otherwise, the writer proceeds to update its private copy
of the data. Certification is performed by setting the read counter
of each record in the write set to -1 and it succeeds if previous read
counter values were 0. On successful certification, the transaction
is committed by copying the updates from the private copy to the
database, decrementing the read counter for all records in the read
set, and setting the read counter to 0 for all records in the write set.

Similarly to NO WAIT, our optimized DL DETECT implementation
also does not maintain a central lock table. Instead, we distribute
the lock table metadata (owner and waiter lists) by storing it on a
per-record basis. In addition to the lock table, maintaining a central
waits-for graph has also been shown to be a scalability bottleneck
in DL DETECT [47]. To avoid centralized graph maintenance from
becoming a bottleneck, we also partition the graph across threads
by maintaining thread-local dependency lists. Thus, when a trans-
action updates the waits-for graph, the associated thread updates
only its thread-local dependency without synchronizing with other
threads. Cycle detection is performed by having a thread search for
cycles in a partial waits-for graph that is constructed from just the
relevant partitions. Finally, our DL DETECT implementation also ex-
ploits the static, one-to-one mapping between maximum number of
concurrent transactions, worker threads and cores by using array-
based data structures in place of slow, dynamic data structures for
implementing the thread-local adjacency list. This substantially
simplifies memory management and accelerates cycle detection.

3.3 PSE Implementation
The PSE implementation physically partitions data and indices

across threads. A transaction locks an entire partition before ac-
cessing data belonging to it. An efficient approach of implementing
such partition-level locks is to simply associate a latch with each
partition. When a transaction accesses data belonging to a parti-
tion, the thread that runs the transaction acquires the corresponding
partition latch before accessing the data item. Latches are acquired
in a deterministic order to avoid deadlocks.

A common way of avoiding deadlocks is to latch all relevant
partitions upfront based on the partition-id or thread-id before exe-
cuting the transaction. While this approach requires upfront knowl-
edge of all data accesses made by a transaction, it is conceptually
simple to implement and has been used as a baseline PSE imple-
mentation by prior work [23, 42]. Thus, Trireme also uses this
approach for implementing the PSE architecture. Due to the use of
partition latching, no other CC protocols are needed. Furthermore,
as a transaction executes only after acquiring all partition latches,
aborts are impossible, which makes PSE agnostic to the presence
or absence of updates. We also use the partition-latching based
implementation to highlight how easily PSE can exploit upfront
knowledge of data accesses to avoid transactional aborts.

3.4 Delegation Implementation
Similarly to PSE, the Delegation implementation also partitions

data across threads. Each thread mediates access to partition-local
records, indices, and all associated metadata. However, Delega-
tion differs from PSE in the way it handles multi-site transactions.
When a transaction running on one thread wants to perform an op-
eration on a record owned by a different thread, it delegates that
operation to the target thread by sending it a message, requesting
the target thread to perform the operation on its behalf. Message
passing is implemented as a thin layer over hardware cache coher-
ence by using shared variables to implement synchronization-free
single-writer, single-reader queues [2, 28, 36]. Thus, messages are
sent and received by simply writing or reading shared variables.

As transactions can delegate operations in any order, Delegation
enforces serializable transaction execution by using logical syn-

124

chronization with CC protocols. As in SE, Trireme implements
all three CC protocols in the Delegation architecture as well. The
NO WAIT and 2V NO WAIT implementations associate corresponding
counters and flags with each record similarly to the SE implementa-
tion. The DL DETECT implementation associates owner/waiter lists
with each record like SE. However, unlike SE, this CC metadata is
exclusively accessed and updated only by one thread due to parti-
tioning. Thus, it is completely synchronization free.

To illustrate the difference between Delegation and SE, let us
consider an example where a transaction on thread C (client) wants
to read a record R owned by thread S (server) using the NO WAIT CC
protocol. Under SE, C uses an atomic operation to update the
semaphore to indicate that it has acquired a read-lock on R. As-
suming the read-lock is acquired successfully, the transaction on C
accesses the record. When the transaction commits, thread C per-
forms another atomic operation to update the semaphore releas-
ing the lock. In Delegation, thread C sends an explicit message to
thread S. On receiving this message, S looks up the record using
the partition-local index, updates the counter corresponding to the
record indicating that a read lock has been acquired, and returns
back a pointer to the record to C. C then accesses the record directly
using its address. At commit time, C sends another message to S.
Once S receives the message, it releases the lock. As only S can
access the CC metadata, which is the counter in this case, there is
no need to synchronize access using atomics or latching.

The SILO implementation in Delegation also follows the corre-
sponding SE implementation. The only change is the use of mes-
sage passing to acquire write locks on records at validation time
instead of using atomics. Thus, with SILO as the CC protocol,
read-only transactions are unaffected by Delegation as the valida-
tion phase does not acquire any locks. To summarize, in all cases,
the Delegation implementation differs from SE only in the physical

synchronization technique used (message passing versus atomics)
and not with respect to logical synchronization (CC protocols).

3.5 DORA Implementation
Unlike the other architectures that use a thread-to-transaction

mapping, DORA uses a thread-to-data mapping, where the database
is logically partitioned across threads, and transactions migrate from
thread-to-thread depending on the data which is accessed.

In order to make transaction migration efficient, we implemented
fibers, which are user-level cooperative threads [1], in Trireme. In
the DORA implementation, each transaction runs in the context of
a fiber. Each Trireme thread can host multiple fibers but only one
fiber per thread executes at any given time. When a transaction run-
ning on one thread tries to access data belonging to another thread,
its corresponding fiber is suspended on the source thread and mi-
grated to the target thread where it resumes execution. The transac-
tion logic is itself agnostic to fiber migration and the responsibility
for suspending, migrating, and resuming fibers is performed by a
fiber scheduler that runs on each thread.

Let us consider the previous example where where a transaction
on thread C wants to read a record R owned by thread S. In DORA,
the transaction runs in a fiber on thread C. When the transaction
tries to access the remote record, the fiber scheduler on C suspends
the fiber and migrates it to the fiber scheduler on thread S. Upon
receiving the new fiber, the fiber scheduler on S schedules it for ex-
ecution. If the transaction makes no further remote accesses, it runs
to completion in thread S. However, if it needs a record from an-
other thread T, then the fiber migrates again to T. At commit time,
the fiber migrates back to each thread where it was executed and ac-
quired locks, in order to release them. So in the example, when the
transaction commits, it first releases the locks in thread T. Then, the
fiber migrates back to thread S and finally to C to release locks ac-

quired on records in those threads. As data is logically partitioned
and as each thread schedules fibers for execution one at a time, no
given record can be accessed concurrently from two threads. Thus,
similar to Delegation, DORA also eliminates the need for physi-
cal synchronization with latches or atomics. Instead, DORA uses
thread migration as the physical synchronization technique.

In DORA, we have implemented only the pessimistic locking
protocols (NO WAIT, DL DETECT, and 2V NO WAIT) for logical syn-
chronization. The protocols work similar to their Delegation coun-
terparts. We did not implement SILO with DORA due to two rea-
sons. First, unlike NO WAIT, DL DETECT, and 2V NO WAIT that up-
date CC metadata on both reads and writes, SILO does not update
any metadata on reads. Thus, for read-intensive workloads, the
thread-to-data mapping would cause unnecessary fiber migrations.
Second, we could implement SILO in DORA by using fiber mi-
gration to lock records at validation time similar to the Delegation
implementation. In such a case, DORA, Delegation, and SE would
all perform similarly under read-intensive workloads. However, as
we show later (Section 4.3), SILO does not scale well even with
Delegation under update-intensive workloads due to longer valida-
tion time. Thus, SILO would also not scale well under DORA as
we only replace message passing with fiber migration. Thus, we do
not implement SILO with DORA.

Fiber implementation. The fiber implementation is based on
the Linux ucontext library. This library provides several calls
for manipulating machine context (program counter, register set,
stack/base pointer, etc.), and is commonly used to implement user-
level thread packages. ucontext also enables efficient fiber mi-
gration by i) saving the machine context to memory, ii) sending a
pointer to the saved context, and iii) resuming the fiber by restoring
the machine context on the remote thread. Despite the fast context
switching ability provided by the ucontext library, we ran into scal-
ability issues beyond eight cores. On profiling, we identified that
the swapcontext library call, which is used for context switching
from one fiber to another, makes a sigprocmask system call to save
and restore signal masks, which limited scalability. To solve this
problem, we wrote a custom swapcontext that saves and restores
registers without making the system call. With this change, context
switching between fibers poses no scalability issues as it works en-
tirely in user space.

Difference from Shore-MT DORA. The Shore-MT DORA im-
plementation [31] decomposes a transaction into a collection of
actions that are routed to threads according to the data they ac-
cess similar to our fiber implementation. However, the Shore-MT
DORA implementation also exploits intra-transaction parallelism
by running actions concurrently on different threads. In order to
keep comparison across architectures fair, we do not exploit intra-
transaction parallelism and process data requests within each trans-
action in strict serial order in all architectures. Thus, instead of
decomposition a transaction into actions, we simply move the fiber
hosting the transaction from one thread to another depending on
data accessed. As an additional benefit, our implementation is com-
pletely synchronization free compared to the Shore-MT DORA that
has to synchronize actions using rendezvous points. Thus, our real-
ization of the DORA architecture is more general purpose in nature
and suitable to the main-memory OLTP context.

4. EVALUATION
In this section, we present the results from our experimental anal-

ysis. All the experiments were conducted on a server equipped
with four 18-core Intel E7-8890 v3 processors (32-KB L1I + 32-
KB L1D cache, 256-KB L2 cache, and 45-MB LLC) clocked at
2.5GHz, and 512-GB of DDR4 DRAM. Even though our proces-

125

a) DL_DETECT b) NO_WAIT c) best-case configuration d) multi-site transactions

0

5

10

15

0 18 36 54 72

T
h

ro
u

g
h

p
u

t
(M

T
p

s)

Number of threads

SE

Delegation

DORA

0

5

10

15

0 18 36 54 72
Number of threads

SE

Delegation

DORA

0

5

10

15

20

0 18 36 54 72
Number of threads

NO_WAIT
2V_NO_WAIT
DL_DETECT
SILO
PSE

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10

Remote records

Delegation

DORA

SE

PSE

Figure 2: Read-only scalability of various architectures: DL DETECT , NO WAIT , and best case configuration as well as sensitivity to multi-site
transactions

sor supports two hardware threads per core via HyperThreading,
we do not use it to avoid variability in results. Thus, we setup
Trireme so that there is a one-to-one mapping between database
threads and physical cores. Each thread is pinned to its core to
avoid OS scheduling overhead. We also use a socket-fill schedul-
ing strategy, where we pin threads to cores within one socket before
using another socket.

4.1 Benchmarks & Methodology
We use Yahoo! Cloud Serving Benchmark (YCSB) [7] as our

macrobenchmark. For all YCSB experiments in this paper, we use
a 20GB database containing a single table with 20 million records.
Each YCSB record has a single primary key field and ten 100-
character string fields. Each transaction reads or updates 16 records
with record accesses following a zipfian distribution controlled by
a parameter theta.

YCSB is partitioning unfriendly as records chosen by the zip-
fian distribution need not be local to any given thread’s partition.
However, PSE, Delegation, and DORA architectures are based on
data partitioning. In order to separate the overhead of multi-site
transactions from high contention, we use a microbenchmark that
allows us to control the partitionability aspect of the workload. Our
microbenchmark uses a 13GB database containing a single table
of 100 million records, where each record has one 64-bit primary
key and ten 64-bit integer attributes. Each transaction reads or up-
dates ten records from the table. In order to induce contention in
the workload, the benchmark divides the records into a hot set and
a cold set. Each transaction accesses two records from the hot set
and the remaining eight from the cold set. We use this microbench-
mark as it has also been used in several studies for evaluating the
scalability of OLTP engines under high contention [36, 43, 45, 47].

We use throughput, measured in terms of millions of transactions
committed per second (Mtps), as the performance metric. Each ex-
periment is repeated five times and in each run, we execute transac-
tions for 10 seconds before reporting the steady-state throughput.
We only report the median throughput value as the relative standard
deviation was less than 10% in all cases.

The rest of this section is organized as follows. We start our anal-
ysis in this section by first focusing on the interaction between CC
protocols and physical synchronization techniques used by various
architectures (Section 4.2). Using a read-only microbenchmark,
we identify issues that hamper scalability at the physical level as
there are no logical conflicts. In Section 4.3, we use an update-
intensive microbenchmark to stress synchronization on both lev-
els. We present results in the following order. First, we fix the
CC protocol and vary the system architecture to show the interac-
tion between a given CC protocol and various system architectures.
Then, for each CC protocol, we pick the best system architecture
and show the scalability and throughput behavior of these best-case

combinations. Finally, we switch our focus to the YCSB mac-
robenchmark in Section 4.4. We present the scalability of the best
CC–architecture combinations under both read-only and update-
only YCSB, evaluate sensitivity to contention by varying the theta
parameter, and study scalability under mixed workloads by varying
the reader–writer ratio.

4.2 Isolating physical synchronization
To isolate and study the impact of physical synchronization, we

use the microbenchmark to generate a high-contention read-only
workload by fixing the number of hot records to 16. SE does not
partition the data set. Thus, each transaction picks two records ran-
domly from the hot set of 16 records and the remaining eight ran-
domly from the rest of the data set (100M records). Delegation,
DORA, and PSE, however, partition the data set across threads.
Thus, the location of records plays a crucial role in determining
performance. Empirical analysis showed us that storing all hot
records in a few partitions creates severe load imbalance as we scale
the number of threads. Similarly, the location of cold records also
plays an important role in determining the overall throughput due
to the overhead associated with multi-site transactions that affect
all partitioning-based architectures.

As the problem of identifying the optimal partitioning scheme to
avoid load imbalance and minimize multi-site transactions [9, 33]
is orthogonal to the problem we consider here, which is interaction
between CC protocols and architecture, we configured the system
to spread out the 16 hot records across 16 cores for Delegation,
DORA, and PSE. Further, we also configured the system so that
accesses to cold records are always from the local partition. Thus,
for partitioned architectures, each transaction accesses two remote
hot records from the hot set and the remaining eight cold records
from the local partition. As a result, the workload is 100% multi-
site in nature as each transaction performs two remote operations.

4.2.1 DL DETECT–architecture interaction

First, we consider the interaction between DL DETECT protocol
and various architectures. As the read-only microbenchmark work-
load has no conflicting data accesses at the logical level, it should
be possible to schedule transactions concurrently and achieve near-
linear increase in throughput. Figure 2 (a) shows the scalability of
the DL DETECT under SE, Delegation, and DORA architectures.

At low thread counts, the SE DL DETECT implementation outper-
forms the rest. This is due to the multi-site transaction overhead
inherent to the partitioned-nature of Delegation and DORA. When
a multi-site transaction tries to access a record from a remote par-
tition, the corresponding client thread has to send a message and
receive a reply from the server thread that owns the data before
the transaction can access the data in case of Delegation. This syn-
chronous request–response interaction is much slower than directly

126

accessing a record in SE at low thread counts. Remote data access
overhead is even higher for DORA due to the fact that fibers have to
be migrated twice during the lifetime of a transaction, once during
transaction execution for acquiring locks and once at commit time
for releasing back the locks. Due to these overheads, Delegation
and DORA lag behind SE at low thread counts.

The second observation from Figure 2 (a) is that the trend of SE
outperforming the rest reverses at high thread counts, as Delega-
tion and DORA outperform SE by 7× and 3× respectively with
72 threads. These three architectures differ only in the physical
synchronization mechanism used. The DL DETECT protocol itself
remains unchanged. The implementation of DL DETECT in SE uses
latches to protect the lock waiters and owners lists. As concur-
rent transactions attempt to add themselves to the lock-owner list
of a few shared records, threads contend for the latches correspond-
ing to these “hot” records leading to poor scalability at the physi-
cal level. These results corroborate recent studies that have shown
that pessimistic deadlock detection protocols fail to scale with the
SE architecture under high contention [36, 43, 47]. Results from
DBX1000, presented in Section 5, show a similar trend.

Delegation and DORA, in contrast, eliminate latching and re-
place it with explicit thread synchronization based on message pass-
ing or fiber migration. Thus, they do not suffer from latch con-
tention and provide better scalability. These results clearly show
the benefit of message passing or fiber migration as physical syn-
chronization mechanisms under high contention. These results also
contradict prevalent wisdom that DL DETECT-based locking proto-
cols cannot scale even under read-intensive, high-contention work-
loads [36, 43], as they show that such lack of scalability is limited
only to SE architecture due to its non-scalable physical synchro-
nization technique.

4.2.2 NO WAIT–architecture interaction

Let us now consider the interaction between NO WAIT protocol
and various architectures. Figure 2 (b) shows the scalability of the
NO WAIT for all three architectures. Comparing Figures 2 (a) and
(b), we can make two important observations.

First, NO WAIT scales much better than DL DETECT in SE. As the
SE NO WAIT implementation is based on VLL [37], it uses atomic
instructions to update a counting semaphore. Thus, it scales better
than the latch-based DL DETECT implementation. But at high thread
counts, multiple threads attempt to update a few counters corre-
sponding to the hot records, and the atomic instructions they use
target a few shared memory words. As a result, the hardware cache
coherence mechanism that provides support for these atomic oper-
ations ends up constantly moving these contended memory words
from one core-local cache to another resulting in lack of scalability.

Second, while Delegation and DORA scale better than SE for
DL DETECT , this is not the case with NO WAIT , as SE clearly outper-
forms Delegation by 1.5× and DORA by 3×. As the overhead of
using message passing and fiber migration is greater than the ben-
efit gained by avoiding atomic instructions, Delegation and DORA
lag behind SE with NO WAIT. This shows that no one architecture is
optimal for all CC protocols.

4.2.3 Best case comparison

So far, we have presented the interaction between NO WAIT and
DL DETECT in various system architectures. Figure 2 (c) shows
the scalability of five CC protocol–system architecture combina-
tions under the microbenchmark. The system architectures listed
here are the best case for each CC protocol. We saw earlier that
NO WAIT works best with SE and DL DETECT works best with Del-
egation. Our SILO implementation in Delegation uses message
passing only during validation phase to acquire locks on records

that are updated. Thus, for the read-only workload, SILO behaves
similarly for Delegation and SE, and we include SE results here.
We also report only the SE result for 2V NO WAIT as the latch-
free SE implementation outperforms Delegation and DORA under
2V NO WAIT due to the overhead of message passing and fiber mi-
gration similarly to NO WAIT. Finally, PSE uses coarse-grained par-
tition locking instead of record-level CC.

Figure 2 (c) shows that when paired with the right system ar-
chitecture, all CC protocols scale, albeit at different rates, for the
high-contention read-only workload. As SILO is an optimistic pro-
tocol, it does not perform any synchronization under this read-
only workload and thus does not suffer from any scalability issues.
With 72 threads, SE NO WAIT and 2V NO WAIT lag behind by 2×
due to contention caused by atomic instructions, and Delegation-
DL DETECT lags behind by 3× due to the overhead of remote data
accesses. PSE is the only architecture that fails to scale under this
workload. This is due to the well-known multi-site transaction exe-
cution overhead that PSE architecture suffers from [23, 42] and we
explore this further next.

Insight: Contention at the physical level can be alleviated using

scalable physical synchronization techniques. Optimistic schemes
have been shown to outperform pessimistic protocols on multi-
cores by 100× under high-contention workloads due to unscal-
able nature of physical synchronization used in the SE architec-
ture [43, 47]. Our analysis shows that combining pessimistic pro-
tocols with architectures that use scalable physical synchronization
techniques, such as message passing or fiber migration, can bridge
the gap between pessimistic and optimistic schemes. For example,
SE-DL DETECT lags behind SILO by a factor of 20, but Delegation-
DL DETECT lags only by a factor of 3.

4.2.4 Sensitivity to multisite transactions

Figure 2 (a)-(c) shows that the throughput of partitioning-based
architectures is sensitive to the presence of multi-site transactions in
the workload. To quantify the overhead of multi-site transactions,
we perform a sensitivity analysis using 72 threads. We modify mi-
crobenchmark so that each transaction reads ten random records
from the whole dataset of 100M records. Thus, there is no con-
tention in the workload. We vary the number of operations that
access records in remote partitions to isolate the impact of multi-
site transactions. We pick a random record from a random remote
partition. Thus, as we increase the number of remote operations,
we also access data from multiple remote partitions.

Figure 2 (d) shows the throughput of various architectures using
the NO WAIT protocol under this low-contention workload as we in-
crease the number of remote accesses from zero to ten. The results
for other protocols are similar as the workload is contention free.
There are several important observations to note. First, let us con-
sider the zero-remote-operations case. This is the best scenario for
partitioned systems as all transactions access records from a single
partition and are hence single-site in nature. All partitioning-based
architectures outperform the SE in this scenario. This is due to
the well-known cache-locality benefits of physical partitioning [23,
42]. PSE outperforms Delegation and DORA due to additional ben-
efits provided by better code locality as PSE does not contain the
logic for fine-grained concurrency control.

Second, we see that simply adding one remote operation to each
transaction results in a drop in throughput for all partitioned archi-
tectures. Note here that all transactions are multi-site although each
transaction performs only one remote operation. The reason for
performance drop is different for PSE compared to Delegation and
DORA. PSE executes transactions serially by having each thread
lock all relevant partitions before executing a transaction. Thus, in

127

a) DL_DETECT b) DL_DETECT c) DL_DETECT w/key-sorting

0

0.2

0.4

0.6

0.8

0 18 36 54 72

T
h

ro
u

g
h

p
u

t
(M

T
p

s)

Number of threads

SE

Delegation

DORA

0

0.5

1

1.5

0 18 36 54 72

A
b

o
rt

 r
a

te

Number of threads

SE

Delegation

DORA

0

0.2

0.4

0.6

0.8

1

0 18 36 54 72

T
h

ro
u

g
h

p
u

t
(M

T
p

s)

Number of threads

SE

Delegation

Figure 3: Behavior of DL DETECT protocol for update workloads: various architectures, abort rates, and with optional key sorting

the presence of one remote operation, each thread locks two parti-
tions before executing a transaction. Thus, in the best case, only 36
threads can execute concurrently. With 72 threads and one remote
operation per thread, half of the threads end up waiting for locks
held by another thread resulting in throughput drop. As the number
of remote operations increases, concurrency plummets resulting in
throughput collapse. Delegation and DORA, on the other hand,
do not use partition locking. Instead, they use concurrency con-
trol protocols, in this case NO WAIT, to perform fine-grained record
locking. When a transaction accesses a record stored in a remote
partition, the client thread that hosts the transaction sends a mes-
sage to the server thread that owns record in case of Delegation, or
the client fiber is migrated to the server thread in case of DORA.
Thus, performance drops due to the overhead of physical synchro-
nization (message passing or fiber migration). Despite this over-
head, Delegation and DORA provide more concurrency than PSE
due to the use of fine-grained locking. This explains why they out-
perform PSE under multi-site workloads.

Third, SE is insensitive to multi-site transactions. When all trans-
actions are multi-site with all operations being remote, SE provides
a 7× improvement over Delegation and DORA, and a nearly 60×
improvement over PSE. This advantage of SE over PSE is well
known [35] and highlights the partitionability-agnostic nature of
SE. What our analysis shows here additionally is how using par-
titioning with fine-grained concurrency control, like Delegation or
DORA, can provide 10× improvement in throughput compared to
coarse-grained locking under such extreme workloads.

4.3 Impact of updates
In this section, we examine the scalability of various architec-

tures under an update-intensive workload. We generate the work-
load using the same microbenchmark as before with the exception
that each transaction updates 10 records instead of reading them.

4.3.1 DL DETECT–architecture interaction

Figure 3 (a) shows the scalability of Delegation, DORA, and SE
architectures when DL DETECT is used as the CC protocol. Com-
paring Figures 2 (a) and 3 (a), we see that the throughput under
the SE architecture is at least an order of magnitude lower in the
update-intensive workload compared to its read-only counterpart.
This is because DL DETECT suffers from three bottlenecks under the
update-intensive workload, namely, aborts due to deadlocks, lock
thrashing even in the absence of deadlocks, and latch contention.

Deadlocks and aborts. As we increase the number of threads,
we also increase the level of logical contention in the workload as
transactions attempt to perform conflicting updates on a few hot
records, leading to deadlocks. In order to preserve serializabil-
ity, DL DETECT aborts deadlocked transactions. Figure 3 (b) shows
the abort rate (#aborts/#commits) for DL DETECT at various thread
counts. At 72 threads, almost all transactions get aborted at least

once irrespective of the architecture. These aborted transactions
result in wasted work and negatively impact scalability.

Latch contention. In addition to the overhead due to aborts,
DL DETECTalso suffers from physical synchronization overhead due
to latch contention (Figure 2 (a)). However, unlike in the read-only
case, Delegation and DORA do little to improve scalability for the
update-intensive workload. At low thread counts, SE outperforms
Delegation and DORA due to the overhead of message passing (in
Delegation) or fiber migration (in DORA). At high thread counts,
DL DETECT has very high abort rates under all architectures. Thus,
even through Delegation and DORA eliminate the physical syn-
chronization bottleneck of SE, they do little to solve the logical
synchronization issues created by DL DETECT.

Lock thrashing. Lock thrashing occurs due to the loss of con-
currency caused by transactions holding locks until commit time,
thereby preventing other transactions from running [4, 47]. This
leads to deterioration in throughput even in the absence of dead-
locks. In order to isolate the impact of lock thrashing, we modify
the update-intensive workload so that transactions acquire locks in
primary key order. Figure 3 (c) shows the scalability of SE and
Delegation under this workload. Comparing Figure 3 (c) and Fig-
ure 3 (a), we see that Delegation helps in improving throughput
under the key-ordering workload. In the absence of aborts due to
deadlocks, the benefit of message passing directly translates into
higher throughput. However, Delegation does little to solve the de-
crease in concurrency caused by lock thrashing.

4.3.2 NO WAIT, 2V NO WAIT and SILO interaction

Figures 4 (a) and (b) show the scalability of NO WAIT and SILO pro-
tocols under various architectures. We do not show the results for
2V NO WAIT as it behaves similarly to NO WAIT. Clearly, both Dele-
gation and DORA do not scale beyond a single thread as just adding
a second thread results in throughput collapsing. This behavior is
different from the read-only case, where Delegation and DORA did
scale well despite lagging behind SE (Figures 2 (b)). The reason be-
hind this behavior can be seen in Figure 4 (c) which shows the abort
count of NO WAIT CC protocol under various architectures for the
update-intensive workload. As can be seen, NO WAIT has at least an
order of magnitude lower abort rate under SE at high thread counts.
Comparing this with with DL DETECT (Figure 3 (b)), we see that
NO WAIT, 2V NO WAIT, and SILO suffer from inflated abort rates for
Delegation and DORA.

Profiling the system revealed that this rapid increase in the abort
rate is due to longer lock hold time under Delegation and DORA.
For instance, at 72 cores, with the NO WAIT CC protocol, the av-
erage commit latency of transactions is 5us under SE, 70us under
Delegation, and 600us under DORA. In contrast, the average la-
tencies under an equivalent low-contention workload, where each
transaction accesses two randomly chosen remote records and eight
local records, was 15us for Delegation and DORA.

128

a) NO_WAIT b) SILO c) NO_WAIT

0

0.2

0.4

0.6

0.8

0 18 36 54 72

T
h

ro
u

g
h

p
u

t
(M

T
p

s)

Number of threads

SE

Delegation

DORA

0

0.2

0.4

0.6

0.8

1

0 18 36 54 72

T
h

ro
u

g
h

p
u

t
(M

T
p

s)

Number of threads

SE

Delegation

0

5

10

15

20

0 18 36 54 72

A
b

o
rt

 r
a

te

Number of threads

SE

Delegation

DORA

Figure 4: Scalability for update workloads: NO WAIT protocol, SILO protocol, and NO WAIT abort rates

Let us consider Delegation to see why this happens. When a
client thread wants to access a remote record, it sends a message
to the server thread requesting the record in update mode. Upon
receiving this request, the server thread updates the record-local
metadata to indicate that the record has been locked in exclusive
mode and grants access to the client. From this point, all other re-
quests to this record will be denied, and all requesting transactions
aborted, until the former client sends a release message unlocking
the record. Under high contention, threads containing hot records
become overloaded as they have to reply to lock requests from other
threads. This load imbalance increases the round-trip time for re-
mote lock requests, which, in turn, increases the duration for which
already-acquired locks are held. While this increased lock hold
duration results in transactions being blocked for longer duration
in DL DETECT, it increases the number of aborts under NO WAIT,
2V NO WAIT and SILO leading to throughput collapse.

Insight: Under update-intensive high-contention workloads, con-

tention at the logical level can reverse the benefit of scalable phys-

ical synchronization techniques. While read-intensive workloads
create contention at the physical level, update-intensive workloads
create contention at both logical and physical level. Our analy-
sis shows that under such workloads, even in the absence of any
physical synchronization overhead, CC protocols still do not scale
due to lock thrashing (DL DETECT) or transaction aborts (NO WAIT,
2V NO WAIT, and SILO). Worse yet, physical synchronization that
improves scalability under read-intensive workload negatively in-
teracts with some CC protocols under update-intensive workloads
leading to poor scalability.

4.3.3 Best case comparison

Figure 5 presents the scalability of the best CC–system archi-
tecture combinations under the update-intensive workload. First,
note that NO WAIT and 2V NO WAIT behave similarly. This is ex-
pected given that the workload is an update-only workload both
NO WAIT and 2V NO WAIT do not permit concurrent updates.

Second, DL DETECT outperforms the rest at thread counts below
18. Figure 5 shows that, in this case, the abort rate of DL DETECT is
much lower than the rest. This is expected given the fact that op-
timistic and deadlock avoidance protocols abort transactions that
can be serialized and committed by DL DETECT [4]. However, at
high thread counts, this trend reverses and DL DETECT lags behind
the rest. Figure 5 shows that at 72 threads, DL DETECT has a higher
abort rate than both SILO and NO WAIT as i) DL DETECT already has
low throughput due to various overheads, and ii) several transac-
tions that are executed get aborted due to actual deadlocks [36,
43]. Thus, a low commit rate and a high abort rate results in
DL DETECT performing poorly.

Third, comparing Figure 5 with the read-only case (Figure 2 (c)),
we see that the trend is reversed again. While all architectures out-
perform PSE under the read-only workload, they lag behind PSE

0

1

2

0 18 36 54 72

T
h

ro
u

g
h

p
u

t
(M

T
p

s)
Number of threads

SILO

NO_WAIT

DL_DETECT

2V_NO_WAIT

PSE

0

1

2

0 18 36 54 72

A
b

o
rt

 r
a

te

Number of threads

SILO

NO_WAIT

DL_DETECT

2V_NO_WAIT

Figure 5: Best-case comparison for update-intensive workload:
throughput and abort rates

in the update-intensive workload. Since PSE uses partition lock-
ing instead of record locking, it is immune to updates in the work-
load. Thus, PSE scales similarly under both read-only and update-
intensive workloads. PSE stops scaling beyond 18 cores due to
contention at both logical level, as threads wait for partition latches,
and physical level, as latch acquisition crosses the socket boundary.
Our PSE implementation acquires all partition locks upfront in a
deterministic order due to which transaction aborts are impossible.
This explains why PSE outperforms other architectures which suf-
fer due to transactional aborts. It is important to note that spreading
out 16 hot records across 16 cores plays an important role in im-
proving PSE throughput. Without this, PSE would offer an order of
magnitude lower throughput due to load imbalance. This suggests
that PSE-based skew handling mechanisms should use fine-grained
data partitioning for improving throughput under high contention.

Insight: Coarse-grained locking based on upfront knowledge of

data accesses helps in improving throughput under high-contention

workloads. Our analysis reveals that despite all transactions be-
ing multi-site in nature, lack of aborts in PSE helps in improving

throughput under high-contention workloads. However, PSE does

not improve scalability as coarse-grained partition locking severely
limits concurrency.

4.4 YCSB Results
In this section, we use YCSB benchmark to evaluate: i) scal-

ability of various CC–architecture combinations, ii) sensitivity to
the degree of contention by varying the theta parameter, and iii)
scalability under mixed read–write workloads.

4.4.1 Readonly scalability

Figure 6 (a) presents the scalability of various CC–system ar-
chitecture combinations under a high-contention, read-only YCSB
workload generated by setting theta = 0.8 [47]. We present only SE
results for NO WAIT, 2V NO WAIT, and SILO, as SE outperformed

129

 a) read-only YCSB b) update-only YCSB c) sensitivity to contention d) mixed YCSB sensitivity

0

1

2

3

4

5

0 18 36 54 72

T
h

ro
u

g
h

p
u

t
(M

T
p

s)

Number of threads

0

1

2

0 18 36 54 72
Number of threads

0

1

2

3

0 0.2 0.4 0.6 0.8 1
Theta

0

1

2

3

4

5

0 18 36 54 72

Number of writers

 DL_DETECT DELEGATION NO_WAIT 2V_NO_WAIT SILO PSE

Figure 6: YCSB experiments: read-only scalability, update-only scalability, sensitivity to contention, and mixed workload sensitivity

Delegation and DORA similarly to the microbenchmark case (Sec-
tion 4.2). For DL DETECT, we present both Delegation and SE.

Comparing these results with the microbenchmark results (Fig-
ure 2) (c), we can observe several differences. First, under the mi-
crobenchmark, scalability under NO WAIT and 2V NO WAIT plateaus
at 54 cores due to lack of scalability of atomic instructions. How-
ever, under YCSB, both scale well. Under this YCSB workload,
10% of the 20M tuples are accessed by 60% of all transactions.
Thus, the level of contention is lower than the microbenchmark,
where all transactions access two records from a hot set of 16. As
a result, atomic instructions used by NO WAIT and 2V NO WAIT do
not pose scalability problems.

Second, under the microbenchmark, Delegation DL DETECT out-
performed SE DL DETECT. However, under YCSB, Delegation only
matches SE DL DETECT at 72 cores and under performs at lower
core counts. Unlike the microbenchmark, where only 2 out of 10
operations were remote, nearly all operations are remote under the
YCSB workload. Thus, partitioning-based architectures like Dele-
gation, DORA, and PSE substantially under perform SE.

Third, unlike the microbenchmark, where SE SILO clearly out-
performed the rest, SILO lags behind NO WAIT and 2V NO WAIT un-
der this YCSB workload. 2PL-based NO WAIT and 2V NO WAIT pro-
tocols do not create a private copy of the record for a read operation.
SILO, in contrast, always creates a private copy of the record due
to its optimistic nature. Under the microbenchmark, the associated
memory copies did not add much overhead as each record is com-
posed of a key and ten 64-bit integers. Under YCSB, however, each
record is much larger due to the use of ten 100-byte strings. Thus,
the memory copy operation adds overhead to SILO.

4.4.2 Updateonly scalability

Figure 6 (b) presents the scalability of the best CC–system archi-
tecture combinations under an update-only high-contention YCSB
workload (theta = 0.8). We only show the SE results for all CC
protocols, as Delegation and DORA fail to scale due to reasons
mentioned in Section 4.3.

Comparing Figure 6 (b) and 5, we see that the behavior of CC
protocols under SE is consistent in both benchmarks; DL DETECT per-
forms the worst due to both logical and physical synchronization
issues, 2V NO WAIT and NO WAIT both lag behind SILO since they
abort more transactions. The main difference is that PSE lags be-
hind NO WAIT, 2V NO WAIT, and SILO by at least 10× under YCSB,
while it outperformed them all under the microbenchmark. This is
because the benefit of avoiding aborts under PSE is overshadowed
by the overhead of multi-site transactions for the YCSB workload.

For partitioning-unfriendly workloads, the difference between
PSE and SE grows further as contention decreases. Figure 6 (c)
shows the throughput of various configurations as we vary the level
of contention in a update-only YCSB workload by increasing theta
from 0 to 0.9. For this experiment, we fix the number of cores at

72. Given that most accesses are to remote partitions in this work-
load, the difference between PSE and the best SE configuration
increases from 5.5× under severe contention at theta = 0.9 to 30×
under very low contention at theta = 0.

4.4.3 Mixed workload sensitivity

So far, we have used read-only and update-only workloads to an-
alyze the interaction between architecture and CC protocols. Due
to the lack of read–write conflicts in these workloads, we saw that
2V NO WAIT behaves identically to NO WAIT in all cases. In this
section, we analyze the performance sensitivity of various configu-
rations under mixed read–write workloads. We only present the
results for SE architecture as no Delegation or DORA configu-
ration outperforms the best SE configuration due to the partition-
unfriendly nature of the workload. Figure 6 (d) shows the through-
put of various configurations under a mixed YCSB workload. For
this experiment, we fix the number of cores at 72 and YCSB theta
value to 0.8. Each thread is affinitized to be either a reader or
a writer. The figure shows throughput as we vary the number of
writer threads from zero (read-only) to 72 (update-only).

Figure 6 (d) highlights the benefit of multi-versioning. In the
best case, 2V NO WAIT provides a 1.35× improvement in through-
put over NO WAIT when the ratio of writers to readers is between
50% (36 threads) and 66% (54 threads). This is expected given
that 2V NO WAIT can schedule multiple readers concurrently with
a writer. PSE, in contrast, is insensitive to workload read–write
ratio. Thus, its performance does not change as we increase logi-
cal contention by adding more writers. However, PSE lags behind
SE due to the partitioning-unfriendly nature of YCSB, and multi-
versioning has the effect of widening the gap between PSE and SE
under mixed workloads.

Insight: Partitioning-based architectures yield marginal returns.

Our evaluation shows that Delegation and DORA improve scala-
bility over SE only when i) DL DETECT is used as the CC protocol
, ii) degree of contention is severely high, and iii) the workload is
read-intensive with few conflicts at the logical level. Given that
NO WAIT and 2V NO WAIT with SE can outperform DL DETECT in
all cases, there is little incentive for using Delegation or DORA on
multi-core servers with cache-coherent shared memory.

Similarly, PSE can improve performance under high-contention
workloads only when i) the workload is partitioning friendly, and
ii) upfront knowledge of data access is used to avoid transactional
aborts. Given that SE outperforms PSE in all other cases, and that
PSE-style coarse-grained locking can also be used with the SE ar-
chitecture, we believe that PSE also provides marginal benefit over
SE with respect to dealing with high-contention workloads.

To summarize, while no architecture–CC protocol combination
works best in all cases, SE architecture is still the best option for
building contention-tolerant, in-memory OLTP engines for modern
multi-socket, multi-core servers.

130

a) DBX read-only b) DBX update-only c) Foedus d) Trireme e) Delegation

0

1

2

3

4

5

6

7

8

9

0 18 36 54 72

T
h

ro
u

g
h

p
u

t
(M

T
p

s)

Num threads

DL_DETECT

NO_WAIT

WAIT_DIE

TICTOC

SILO

OCC

0

0.2

0.4

0.6

0.8

0 18 36 54 72
Num threads

DL_DETECT

NO_WAIT

WAIT_DIE

TICTOC

SILO

OCC

0

0.1

0.2

0.3

0 18 36 54 72
Num threads

2PL

MOCC

OCC

0

1

2

0 18 36 54 72
Num threads

SILO

NO_WAIT

DL_DETECT

PSE

0

0.01

0.02

0.03

0.04

0 18 36 54 72

Num threads

ASYMM

ETRIC
SYMME

TRIC

Figure 7: Scalability of CC protocols in DBX1000 for read-only and update microbenchmarks (a)-(b) and the very high contention case:
Foedus, Trireme, and symmetric and asymmetric Delegation (c)-(e)

5. DISCUSSION
Scalability of other CC protocols. In our analysis, we used

NO WAIT, DL DETECT, and SILO as representatives from each of the
three classes of CC protocols. However, OLTP engines have also
used other CC protocols, and recent analysis has shown that all
popular CC protocols suffer under high-contention workloads [47].
In order to corroborate this, and to validate our claim that NO WAIT,
DL DETECT, and SILO represent the best protocols in their respec-
tive classes, we repeated our experiments using DBX1000, a proto-
type SE OLTP engine that has been used in prior research to evalu-
ate scalability of CC protocols in emerging many-core servers [47].
We changed DBX1000 to support our microbenchmark and de-
ployed it on our server to evaluate the scalability of six protocols–
one pessimistic deadlock detection (DL DETECT), two pessimistic
deadlock avoidance (NO WAIT, WAIT DIE), and three optimistic pro-
tocols (SILO, OCC [26], and TICTOC [48]).

Figure 7 shows the scalability of various CC protocols under
the read-only (a) and update-intensive (b) microbenchmarks. First,
note that SILO and TICTOC, the two optimistic protocols, have iden-
tical performance, and are better than OCC. Similarly, NO WAIT out-
performs WAIT DIE. This validates our claim that the protocols we
implemented in Trireme are the best performing ones in their re-
spective classes. Second, comparing the DBX1000 results with
Trireme, we see similar trends. Optimistic protocols scale well
under the read-only benchmark while pessimistic protocols fail to
scale. All protocols suffer from at least an order of magnitude drop
in throughput under the update-intensive benchmark. The only dif-
ferences are that NO WAIT and DL DETECT scale much better under
Trireme than DBX1000 due to an optimized implementation.

5.1 Implications of our analysis
Scaling up OLTP systems for high-contention workloads has at-

tracted a lot of attention recently. Research proposals in this area
can be broadly classified along three dimensions: i) designing new
concurrency control protocols, ii) developing new system architec-
tures, and iii) exploiting application semantics. We will now dis-
cuss the implications of our analysis on each of these dimensions
and suggest directions for future work.

New CC protocols. Our analysis showed that pessimistic pro-
tocols suffer from physical synchronization overhead even under
read-only workloads. Even our optimized NO WAIT implementation
does not scale as well as SILO due to contention caused by atomic
instructions used in the read-write lock implementation (Figure 2).
Designing scalable, NUMA-aware read-write lock is a topic of in-
tense research in the concurrent programming community [6, 10,

16]. Using such locks to further minimize the impact of physical
synchronization in both pessimistic and optimistic protocols is a
promising direction of future research.

MOCC [43] is a state-of-the-art optimistic protocol proposed
recently and used by Foedus [25], a multi-core-optimized main-
memory OLTP engine. MOCC exploits the fact that OCC proto-
cols delay serializability verification until commit time by main-
taining access statistics for contended records, and using them to
determine if a pessimistic lock should be acquired during the read
phase. Such a selective use of pessimistic locking results in a re-
duction in the number of aborts caused by clobbered reads under
OCC. MOCC uses MQL, a cancellable read-writer lock optimized
for multi-cores, to implement pessimistic locking.

In order to evaluate if the scalability trend changes with such op-
timized CC protocols, we also experimented with MOCC. We use a
simple microbenchmark where each transaction updates ten records
from a single table of 72 records to analyze scalability of MOCC
on our hardware. We used this microbenchmark as it is supported
out of the box in Foedus and has been used in prior research [43].
Figure 7 (c) shows the scalability of 2PL, OCC, and MOCC pro-
tocols as implemented in Foedus under the microbenchmark. This
result corroborates prior work [43] and shows that MOCC clearly
outperforms OCC and 2PL. Figure 7 (d) shows the scalability of
PSE and SE architectures in Trireme under the same microbench-
mark. While absolute throughput numbers in Figures 7 (c) and
(d) are not comparable due to differences in code base, we can
make two important observations. First, NO WAIT 2PL implemen-
tation in Trireme scales much better than MOCC 2PL. The MOCC
2PL implementation (referred to as PCC in [43]) delays lock ac-
quisition until commit time compared to NO WAIT 2PL in Trireme
which acquires locks before updates can be performed. As a result,
NO WAIT 2PL will have fewer aborts than PCC. Second, PSE still
outperforms other architectures due to lack of aborts. These results
suggest that there is still room for optimization.

New system architectures. Recently, several researchers have
recently developed scale-out OLTP engines that exploit knowledge
of read–write sets to scale distributed transactions under high con-
tention [8, 29, 41]. Thus, an interesting direction of future work
would be to examine the applicability of these techniques for avoid-
ing synchronization bottlenecks in the context of a single, scale-
up, multi-core server. Orthrus [36] is one such scale-up OLTP
engine that combines message passing from Delegation and func-
tional partition from Staged databases [13, 32] with pre-execution-
based transaction scheduling. Orthrus divides threads into two types,
namely, a set of concurrency control threads that manage the lock
table, and a set of transaction executors that run application logic.

131

The execution threads communicate with the concurrency control
threads via explicit message passing. Transactions are pre-executed
to identify the read-write sets. Using this information, Orthrus de-
termines an optimal schedule for transaction execution with the
goal of minimizing conflicts.

Given the combination of features in Orthrus, it is unclear as
to how much each aspect contributes to overall performance. Our
analysis already shows that thread-to-data assignment or message
passing in isolation do not necessarily improve scalability for update-
intensive workloads, as exemplified by our DORA and Delegation
results. In order to understand if functional partitioning plays a
crucial role in improving performance, we modified the Trireme
code base to approximate Orthrus by dedicating one set of threads
as servers which serve data requests without hosting transactions
and the remainder as clients which run actual transactions. We re-
fer to this as the Asymmetric-Delegation, as the normal Delegation
configuration uses a single thread to perform both transaction exe-
cution and concurrency control. Figure 7 (e) shows the scalability
of both approaches for the 72-record, single-table microbenchmark
as before using NO WAIT as the CC protocol.

These results show the benefit of functional partitioning as asym-
metric Delegation outperforms symmetric Delegation. However,
comparing Figures 7 (d) and (e), we see that both symmetric and
asymmetric Delegation lag behind SILO and NO WAIT with SE and
PSE by at least 10×. This shows that of all the techniques used by
Orthrus, pre-execution plays the most important role, as without it,
both functional partitioning and message passing scale poorly for
high-conflict workloads.

Exploiting application semantics. While pre-execution tries to
identify records read and written by transactions without any appli-
cation semantics, recent work has also shown the benefit of using
application semantics explicitly to modify transaction run time with
the goal of minimizing, or even avoiding, conflicting operations [3,
30, 38, 44, 46]. Given that all CC protocols suffer under high-
conflict workloads, such techniques, if applicable, will definitely
assist in improving the scalability of all architectures. Our analy-
sis focuses on the scalability behavior of CC protocols and system
architectures when such techniques are not applicable.

6. RELATED WORK
Delegation. Calciu et al. [5] present several message passing-

based concurrent data structures and show that they can outperform
their lock-based counterparts under high contention. CPHash [28]
is a concurrent hash map that uses asynchronous message passing
to scale throughput under high contention. Remote Core Lock-
ing [27] replaces latch acquisition with an explicit message to a
dedicated server thread that mediates accesses to critical sections.
Our analysis shows that message passing is also useful in OLTP as
long as the workload is conflict free. In the presence of conflicts,
message passing increases the lock-hold duration and causes an
amplification of concurrency-control-enforced transactional aborts.

Non-partitioned OLTP engines. Several studies focus on scal-
ing traditional disk-based OLTP engines on multi-cores by elimi-
nating scalability bottlenecks caused by global latching on central-
ized data structures [15, 17, 18, 19, 20, 22]. As modern main-
memory OLTP engines [11, 23, 24] avoid such overheads by de-
sign, they scale much better than their disk-based counterparts.

Recent research has shown that pessimistic locking protocols
suffer from scalability issues under high contention due to the use
of latching or atomics [43, 47]. In contrast, we show that op-
timized physical synchronization techniques can help in bridging
the gap between pessimistic and optimistic protocols. Similarly to
our read-write lock, VLL also proposed replacing lock lists with a
counting semaphore for physical synchronization [37]. We showed

that, even though such an approach performs better than a vanilla
NO WAIT implementation, it still does not scale as well as optimistic
protocols (like SILO) under read-intensive workloads due to the
contention caused by atomic instructions. VLL did not experience
this effect due to the use of selective contention analysis which re-
lies on upfront knowledge of transaction read/write sets.

PSE engines. Research on PSE engines has focused on reduc-
ing multi-site transactions by using workload-driven static parti-
tioning [9, 33], or adaptive repartitioning [34]. Jones et al. [21]
showed that introducing concurrency control to a distributed PSE
engine helps in improving overall throughput in the presence of
multi-site transactions. We showed that Delegation provides simi-
lar benefits over PSE within a single server.

Other system architectures. DORA [31] logically partitions
data across threads and executes a transaction by assigning ac-
tions to threads based on the data they access. PLP [32] extends
DORA by physically partitioning the index and even shared buffer
pool pages. Both DORA and PLP were implemented in Shore-
MT [19], a disk-based OLTP engine. In this paper, we revisit the
data-oriented architecture in the main-memory OLTP context.

Multimed [40] treats a multi-core like a distributed system by
running multiple database instances on separate cores with replica-
tion. Porobic et al. [35] investigate the impact of deploying exist-
ing SE engines in various granularities on multi-socket multi-cores.
Our analysis, in contrast, focuses on understanding architectural as-
pects that play a key role in designing main-memory OLTP engines.

7. CONCLUSION
In this paper, we perform a thorough analysis of the impact of

system architecture on scalability of main-memory OLTP engines
under high-contention workloads. We implement four system ar-
chitectures (SE, DORA, PSE, and Delegation) and three CC pro-
tocols in Trireme–a main-memory OLTP engine testbed. Using
Trireme, we analyze the scalability of each architecture and the
interaction between the CC protocols and the architectures. Our
results both corroborate and refute prevalent wisdom.

As expected, optimistic protocols scale better than pessimistic
ones under read-intensive workloads. However, unlike prevalent
wisdom, we showed that pessimistic protocols are not inherently
unscalable. Using the right physical synchronization techniques,
it is possible to implement pessimistic protocols that scale well
under read-intensive workloads even under high contention. As
shown by prior research [2, 5, 28, 36], message passing is a promis-
ing technique to avoid physical synchronization bottlenecks in the
presence of contention. However, we showed that under update-
intensive workloads, message passing amplifies the negative effect
of transaction aborts due to increase in lock-hold time, resulting in
throughput collapse. The tradeoffs between PSE and SE with re-
spect to multi-site transactions is well known. However, we showed
that despite low concurrency due to coarse-grained locking, PSE
can outperform all other architectures under partitioning-friendly,
update-intensive, high-contention workloads due to the ability to
avoid transactional aborts. Finally, we discussed the implications
of our analysis on a few recent solutions and highlighted directions
for future work.

ACKNOWLEDGMENTS

We would like to thank Eliezer Levy, Shay Goikhman, the anony-
mous reviewers, and the DIAS lab members for their constructive
feedback. This work is funded by the an industrial-academic col-
laboration between the DIAS laboratory and Huawei Central Soft-
ware Institute (CSI), and the Swiss National Science Foundation
(Grant FNXCore No. 200021 146407/1).

132

8. REFERENCES
[1] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R.

Douceur. Cooperative task management without manual
stack management. In USENIX ATC, pages 289–302, 2002.

[2] R. Appuswamy, M. Karpathiotakis, D. Porobic, and
A. Ailamaki. The Case for Heterogeneous HTAP. In CIDR,
2017.

[3] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Coordination avoidance in
database systems. PVLDB, 8(3):185–196, 2014.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database systems.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1987.

[5] I. Calciu, D. Dice, T. Harris, M. Herlihy, A. Kogan,
V. Marathe, and M. Moir. Message passing or shared
memory: Evaluating the delegation abstraction for
multicores. In OPODIS, pages 83–97, 2013.

[6] I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and
N. Shavit. Numa-aware reader-writer locks. In PPoPP, pages
157–166, 2013.

[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with ycsb. In
SOCC, pages 143–154, 2010.

[8] J. Cowling and B. Liskov. Granola: Low-overhead
distributed transaction coordination. In USENIX ATC, pages
21–21, 2012.

[9] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: A
workload-driven approach to database replication and
partitioning. PVLDB, 3(1-2):48–57, 2010.

[10] T. David, R. Guerraoui, and V. Trigonakis. Everything you
always wanted to know about synchronization but were
afraid to ask. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, pages 33–48,
2013.

[11] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: SQL
Server’s Memory-optimized OLTP Engine. In SIGMOD,
pages 1243–1254, 2013.

[12] V. Gasiunas, D. Dominguez-Sal, R. Acker, A. Avitzur,
I. Bronshtein, R. Chen, E. Ginot, N. Martinez-Bazan,
M. Muller, A. Nozdrin, W. Ou, N. Pachter, D. Sivov, and
E. Levy. Fiber-based architecture for nfv cloud databases.
PVLDB, 10(12):1682–1693, 2017.

[13] S. Harizopoulos and A. Ailamaki. A case for staged database
systems. IEEE Data Eng. Bull., 28(2):11–16, 2005.

[14] J. M. Hellerstein, M. Stonebraker, and J. Hamilton.
Architecture of a database system. Found. Trends databases,
1(2):141–259, 2007.

[15] T. Horikawa. Latch-free data structures for dbms: Design,
implementation, and evaluation. In SIGMOD, pages
409–420, 2013.

[16] W. C. Hsieh and W. E. Weihl. Scalable reader-writer locks
for parallel systems. In ICPP, pages 656–659, 1992.

[17] R. Johnson, I. Pandis, and A. Ailamaki. Critical sections:
Re-emerging scalability concerns for database storage
engines. In DaMoN, 2008.

[18] R. Johnson, I. Pandis, and A. Ailamaki. Improving OLTP
scalability using speculative lock inheritance. PVLDB,
2(1):479–489, 2009.

[19] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and

B. Falsafi. Shore-MT: a scalable storage manager for the
multicore era. In EDBT, pages 24–35, 2009.

[20] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and
A. Ailamaki. Aether: a scalable approach to logging.
PVLDB, 3(1-2):681–692, 2010.

[21] E. Jones, D. J. Abadi, and S. Madden. Low overhead
concurrency control for partitioned main memory databases.
In SIGMOD, pages 603–614, 2010.

[22] H. Jung, H. Han, A. D. Fekete, G. Heiser, and H. Y. Yeom. A
scalable lock manager for multicores. In SIGMOD, pages
73–84, 2013.

[23] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker,
Y. Zhang, J. Hugg, and D. J. Abadi. H-store: A
high-performance, distributed main memory transaction
processing system. PVLDB, 1(2):1496–1499, 2008.

[24] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap
main memory database system based on virtual memory
snapshots. In ICDE, pages 195–206, 2011.

[25] H. Kimura. Foedus: Oltp engine for a thousand cores and
nvram. In SIGMOD, pages 691–706, 2015.

[26] H. T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. TODS, 6(2):213–226, 1981.

[27] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller.
Remote core locking: Migrating critical-section execution to
improve the performance of multithreaded applications. In
USENIX ATC, 2012.

[28] Z. Metreveli, N. Zeldovich, and M. F. Kaashoek. Cphash: A
cache-partitioned hash table. In PPoPP, pages 319–320,
2012.

[29] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting
more concurrency from distributed transactions. In OSDI,
pages 479–494, 2014.

[30] N. Narula, C. Cutler, E. Kohler, and R. Morris. Phase
reconciliation for contended in-memory transactions. In
OSDI, pages 511–524, 2014.

[31] I. Pandis, P. Tözün, M. Branco, D. Karampinas, D. Porobic,
R. Johnson, and A. Ailamaki. A data-oriented transaction
execution engine and supporting tools. In SIGMOD, pages
1237–1240, 2011.

[32] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki. PLP: Page
Latch-free Shared-everything OLTP. PVLDB,
4(10):610–621, 2011.

[33] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic
database partitioning in shared-nothing, parallel oltp
systems. In SIGMOD, pages 61–72, 2012.

[34] D. Porobic, E. Liarou, P. Tözün, and A. Ailamaki. ATraPos:
Adaptive Transaction Processing on Hardware Islands. In
ICDE, 2014.

[35] D. Porobic, I. Pandis, M. Branco, P. Tözün, and A. Ailamaki.
OLTP on Hardware Islands. PVLDB, 5(11):1447–1458,
2012.

[36] K. Ren, J. M. Faleiro, and D. J. Abadi. Design principles for
scaling multi-core oltp under high contention. In SIGMOD,
pages 1583–1598, 2016.

[37] K. Ren, A. Thomson, and D. J. Abadi. Lightweight locking
for main memory database systems. PVLDB, 6(2):145–156,
2012.

[38] S. Roy, L. Kot, G. Bender, B. Ding, H. Hojjat, C. Koch,
N. Foster, and J. Gehrke. The homeostasis protocol:
Avoiding transaction coordination through program analysis.
In SIGMOD, pages 1311–1326, 2015.

133

[39] M. Sadoghi, M. Canim, B. Bhattacharjee, F. Nagel, and
K. A. Ross. Reducing database locking contention through
multi-version concurrency. PVLDB, 7(13):1331–1342, 2014.

[40] T.-I. Salomie, I. E. Subasu, J. Giceva, and G. Alonso.
Database engines on multicores, why parallelize when you
can distribute? In EuroSys, pages 17–30, 2011.

[41] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and
D. J. Abadi. Calvin: Fast distributed transactions for
partitioned database systems. In SIGMOD, pages 1–12, 2012.

[42] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy Transactions in Multicore In-memory Databases. In
SOSP, pages 18–32, 2013.

[43] T. Wang and H. Kimura. Mostly-optimistic concurrency
control for highly contended dynamic workloads on a
thousand cores. PVLDB, 10(2):49–60, 2016.

[44] Z. Wang, S. Mu, Y. Cui, H. Yi, H. Chen, and J. Li. Scaling
multicore databases via constrained parallel execution. In
SIGMOD, pages 1643–1658, 2016.

[45] Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo. An empirical
evaluation of in-memory multi-version concurrency control.
PVLDB, 10(7):781–792, 2017.

[46] Y. Wu, C.-Y. Chan, and K.-L. Tan. Transaction healing:
Scaling optimistic concurrency control on multicores. In
SIGMOD, pages 1689–1704, 2016.

[47] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker.
Staring into the abyss: An evaluation of concurrency control
with one thousand cores. PVLDB, 8(3):209–220, 2014.

[48] X. Yu, A. Pavlo, D. Sanchez, and S. Devadas. Tictoc: Time
traveling optimistic concurrency control. In SIGMOD, pages
1629–1642, 2016.

134

	Introduction
	Background
	Shared Everything
	Partitioned Serial Execution
	Delegation
	Data-Oriented Architecture

	Trireme OLTP Engine Testbed
	CC protocols
	SE Implementation
	PSE Implementation
	Delegation Implementation
	DORA Implementation

	Evaluation
	Benchmarks & Methodology
	Isolating physical synchronization
	DL_DETECT–architecture interaction
	NO_WAIT–architecture interaction
	Best case comparison
	Sensitivity to multi-site transactions

	Impact of updates
	DL_DETECT–architecture interaction
	NO_WAIT, 2V_NO_WAIT and SILO interaction
	Best case comparison

	YCSB Results
	Read-only scalability
	Update-only scalability
	Mixed workload sensitivity

	Discussion
	Implications of our analysis

	Related Work
	Conclusion
	References

