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Abstract: Fly ash (FA)-based geopolymer concrete is considered as an alternative 12 

system with potentially lower environmental impact than Portland cement mixes. 13 

However, the prediction accuracy of compressive strength still needs to be improved. 14 

This study demonstrated the feasibility of predicting the 28-day strength of geopolymer 15 

concrete through mix proportions and pre-curing conditions by using three machine 16 

learning algorithms (backpropagation neural network (BPNN), support vector machine 17 

(SVM) and extreme learning machine (ELM)) and provided a comparison of their 18 

differences, highlighting variations in prediction accuracy. As a part of the evaluation 19 

of model performance and error analysis, the prediction accuracy differences of these 20 

three models in training, validation and testing sets were discussed, and the influence 21 

weight of each input parameter on results was analyzed by permutation feature 22 

importance (PFI) index. Results showed that all models revealed good prediction 23 

performance for the overall database. BPNN model had the largest number of instances 24 

where the error percentage was within ±20%. SVM model showed the highest 25 

generalization capability and most stable prediction accuracy among all three. Out of 26 

different variables investigated, SiO2 content in FA had the highest influence on 27 

strength, followed by Al2O3 content and activator content/concentration. These 28 

outcomes can enable reductions in experimental time, labor, materials and costs; and 29 

facilitate the adoption of alternative binders in the concrete industry. 30 

 31 
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1. Introduction 35 

 36 

Portland cement (PC), the most frequently used cementitious material for concrete 37 

worldwide, is associated with a large energy consumption and heavy carbon dioxide 38 

(CO2) emissions due to the procedures involved in its production. About 4 billion tons 39 

of CO2 are emitted by PC production every year, accounting for 5-7% of total 40 

anthropogenic CO2 emissions [1-4]. Owing to the increasing concerns for 41 

environmental protection and climate change, many initiatives have been taken to 42 

reduce impacts associated with cement production and use. These include the 43 

incorporation of supplementary cementitious materials (SCMs) such as fly ash (FA), 44 

limestone powder (LP) and ground granulated blast furnace slag (GGBS) into cement 45 

mixes and the recycling of industrial solid wastes to reduce the reliance on PC in new 46 

and existing structures [5-9]. However, the proportions of these SCMs used as a 47 

replacement for PC are often restricted. Taking FA as an example, although FA 48 

demonstrates pozzolanic effects during the different stages of cement hydration, it does 49 

not have a major role in strength development in the early stages [10-13]. The addition 50 

of FA can reduce the early hydration rate and prolong the setting time of composite 51 

pastes [14-16], which can limit its use in large contents. 52 

 53 

Obtaining more environmentally friendly cementitious binders by means of alkali 54 

activation is one of the most frequently investigated routes for the complete 55 

replacement of PC [17]. Alkali-activated materials (AAMs) do not involve the high-56 

temperature and energy intensive calcination process adopted in the production of PC 57 

clinker. AAMs such as geopolymers are polymeric aluminosilicate cementitious 58 

materials with three-dimensional spatial network structures that involve industrial 59 

wastes (e.g. FA) as the main binder under the action of an alkaline activator (e.g. NaOH, 60 

Na2SiO3) [18-21]. Geopolymers can demonstrate favorable mechanical properties and 61 

durability due to their unique chemical structure. From an environmental standpoint, 62 

the reuse of industrial wastes as the main binder component makes these systems 63 

attractive in comparison to PC-based mixes [22]. 64 

 65 

FA-based geopolymer concrete not only has comparable mechanical properties to PC-66 

based concrete [23, 24], but also shows improved durability such as high temperature 67 

resistance [25], sulfate resistance [26] and chloride penetration resistance [27]. 68 

Different compressive strength prediction models for FA-based geopolymer concrete 69 

are presented in the literature. Zhang et al. [28] analyzed the residual compressive 70 

strength test points of low calcium FA-based geopolymer concrete after exposure to 71 

high temperatures. The corresponding coefficients in Gaussian-based mathematical 72 

model were calculated in MATLAB to get two prediction equations. The results showed 73 

that the experimental strengths were usually larger than the predicted counterparts. 74 

Cong et al. [29] established a constitutive model to predict the engineering properties 75 

of alkali-activated GGBS/FA concrete according to its stress-strain relationship and 76 

elastic modulus under different compression and tension loads. However, the dynamic 77 

increase factor obtained from the constitutive model presented in this study was not 78 



consistent with the experimental results. Le et al. [30] used the modified Feret and De 79 

Larrard models to predict the compressive strength of FA-based geopolymer recycled 80 

aggregate concrete. Compared with Feret’s model, which requires a modification that 81 

replace the parameter for cement (C) with the parameter for binder (B) to ensure 82 

reasonable prediction accuracy, De Larrard’s model only needs to determine the 83 

parameters of natural and recycled aggregates in advance to get satisfactory prediction 84 

results. One of the most significant disadvantages of using constitutive or other 85 

empirical models to predict the mechanical properties of concrete is that the expression 86 

of function is solidified in the calculation process. Although the regression function 87 

itself has many undetermined parameters, the solidification of the function expression 88 

still hinders the possibility of further optimizing the prediction accuracy. 89 

 90 

The application of artificial intelligence in concrete mix design and performance 91 

prediction has gained increased attention in the last few years [31, 32]. The most 92 

distinctive advantage of using machine learning as opposed to empirical models in the 93 

prediction of the mechanical properties of concrete mixes is its ability to fully consider 94 

the nonlinear relationship between independent variables and dependent variables, as 95 

well as the influence of various factors on the results. Nonlinearity is the most 96 

remarkable characteristic of machine learning (i.e. especially for artificial neural 97 

network (ANN)) [33]. Most machine learning algorithms usually divide the database 98 

into training set and testing set [34, 35]. If the results of the testing set are not ideal, the 99 

algorithm will automatically iterate until the prediction accuracy meets the 100 

requirements. In contrast, the empirical model can only iterate once, resulting in an 101 

output of fitting parameters, which can explain why simple regression results cannot 102 

achieve the desired effect. Some of the most frequently used machine learning models 103 

in the analysis of concrete properties include ANN [36-39] and support vector machine 104 

(SVM) [40, 41]. These algorithms provide a good support for the optimization of 105 

concrete mix design and performance. 106 

 107 

Accordingly, the purpose of this study is to demonstrate the feasibility of predicting the 108 

strength of geopolymer concrete by using a recently emerging popular algorithm (i.e. 109 

extreme learning machine (ELM)) and provide a comparison with two traditional 110 

approaches (i.e. backpropagation neural network (BPNN) and support vector machine 111 

(SVM)) to highlight their differences and variations in prediction accuracy. Although 112 

there are several studies on concrete performance prediction based on machine learning, 113 

few studies focus on the prediction of the strength of geopolymer concrete by using 114 

different algorithms. Aiming to fill this gap, this paper presents a detailed analysis 115 

involving the use of these three algorithms to predict the 28-day compressive strength 116 

of geopolymer concrete according to the chemical composition of the main binder 117 

component, mix proportions and pre-curing conditions. Moreover, this paper analyzes 118 

the influence of each parameter on the mechanical performance and characterizes the 119 

influence weight of each feature parameter by using the permutation feature importance 120 

(PFI) index and sensitivity analysis, thereby providing a theoretical basis for optimizing 121 

the mechanical properties of geopolymer concrete. 122 



 123 

 124 

2. Machine learning approaches and performance evaluation 125 

 126 

2.1 Machine learning models 127 

 128 

BPNN and SVM are two commonly used algorithms in neural network prediction. 129 

Among them, BPNN belongs to multilayer feedforward neural network and uses the 130 

difference between the actual outputs and expected outputs to correct the network 131 

parameters of each layer from back to front, thereby iteratively optimizing biases and 132 

weights, and maximizing the prediction accuracy (Fig. 1(a)). Alternatively, SVM is 133 

considered as a generalized linear classifier for binary data classification based on 134 

supervised learning. As shown in Fig. 1(b), the goal of this algorithm is to maximize 135 

the distance from the hyperplane to the nearest support vectors of each category. It is 136 

worth noting that SVM can be used for both classification and parameter prediction. 137 

The method used in this study is support vector regression (SVR). 138 

 139 

ELM is an advanced machine learning algorithm proposed by Huang et al. [42]. For 140 

single hidden layer neural networks, ELM can initialize the input weights and biases 141 

randomly and obtain the corresponding output parameters (Fig. 1(c)). According to its 142 

operation principle, it is considered as an improvement of the backpropagation 143 

algorithm in BPNN. The weights and biases from the input layer to the hidden layer of 144 

ELM are set randomly, and there is no need to make constant reverse adjustments to 145 

the weights and biases like BPNN. This results in a significant reduction in the amount 146 

of computation. Moreover, the connection weights βjk between the hidden layer and the 147 

output layer of ELM are determined by solving the equations at one time. Similar to 148 

BPNN, ELM also only needs one hidden layer to meet the requirement of prediction 149 

accuracy. 150 

 151 

 152 

 153 

Fig. 1 Graphical representation of different machine learning models (modified from 154 

[31] and [8]) 155 



 156 

 157 

2.2 Training process and evaluation of machine learning models 158 

 159 

Fig. 2 shows the unified calculation process of three machine learning algorithms used 160 

in this study. Firstly, the collected data was arranged in random order. In order to 161 

eliminate the possible impact of various characteristic indicators on the results due to 162 

their different dimensions, all input parameters were preprocessed by the same 163 

normalization algorithm to unify their dimensions, improve the speed of model training 164 

and prevent the decline of prediction accuracy or the failure of algorithm convergence 165 

(e.g. for BPNN). The mathematical equation used for data normalization is shown in 166 

Eq. (1), where ymax and ymin are 1 and -1 by default, and xmax and xmin are the maximum 167 

and minimum values of input parameters, respectively [43]. After normalization, all 168 

input parameters were in the range of -1 to 1. Finally, the prediction data were 169 

denormalized to get the final output data. All the algorithms were implemented in 170 

MATLAB 2016a platform. 171 

 172 

 173 

 174 

Fig. 2 Construction and data prediction process of machine learning models 175 

 176 

 177 

 178 

𝑦 =
(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) × (𝑥 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
+ 𝑦𝑚𝑖𝑛                                      (1) 179 

 180 

The hyperparameters of BPNN, SVM and ELM used in this study are presented in Table 181 

1. The activation functions of BPNN and ELM adopted the default sigmoid function, 182 

which is shown in Eq. (2). 183 

 184 

𝑠(𝑥) =
1

1 + 𝑒−𝑥
                                                               (2) 185 

 186 

The number of nodes in the hidden layer was determined by the calculation accuracy 187 

of validation data. In the training process of BPNN and ELM, results showed that when 188 

the hidden layer was set to 18 and 20, respectively, the goodness of fit reached the 189 

maximum and the calculation error was the lowest. The kernel function of SVM was 190 

RBF function. In order to enhance the generalization ability, the K-fold cross validation 191 

method is mainly utilized in SVM due to the presence of several hyperparameters. As 192 

BPNN and ELM involve a limited number of hyperparameters, they mainly optimize 193 

their hyperparameters according to the prediction outcomes of the training set. All 194 

algorithms divided the data into training set, validation set and testing set in line with 195 



the proportion of 70%, 15% and 15%, respectively. 196 

 197 

Table 1 Hyperparameters of machine learning models 198 

 199 

Machine learning algorithms Hyperparameters Values/categories 

BPNN 

Activation function Sigmoid 

Hidden layer numbers 1 

Number of hidden layer nodes 18 

SVM 

SVM type e-SVR 

Kernel function RBF 

Tolerance 0.001 

epsilon 0.1 

Shrinking True 

ELM 

Hidden layer nodes 20 

Activation function Sigmoid 

Mode Regression 

 200 

In order to evaluate the deviation between the predicted value and measured value for 201 

a single sample, error and error percentage were used to characterize their similarity, as 202 

shown in Eq. (3) and (4), where yi' is the predicted value and yi is the actual value. 203 

 204 

𝐸𝑟𝑟𝑜𝑟 = 𝑦′
𝑖

− 𝑦𝑖                                                              (3) 205 

𝐸𝑟𝑟𝑜𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑦′

𝑖
− 𝑦𝑖

𝑦𝑖
                                                  (4) 206 

 207 

As the above evaluation criteria were only for a single sample, in order to further 208 

quantify the comprehensive prediction results, various statistical methods were used. 209 

This led to the evaluation of the performance of given models, including coefficient of 210 

determination (R2), mean square error (MSE), root mean square error (RMSE) and mean 211 

absolute error (MAE). These parameters can not only quantify the prediction accuracy 212 

of a single algorithm, but also compare the performance of different models, identifying 213 

the most suitable model with the highest applicability for the specific database. The 214 

expressions of these evaluation indexes are shown in Eq. (5)-(8). 215 

 216 

𝑅2 = 1 −
∑ (𝑦′

𝑖
− 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

                                                           (5) 217 

𝑀𝑆𝐸 =
∑ (𝑦′

𝑖
− 𝑦𝑖)

2𝑛
𝑖=1

𝑛
                                                            (6) 218 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦′

𝑖
− 𝑦𝑖)2𝑛

𝑖=1

𝑛
                                                         (7) 219 



𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦′

𝑖
− 𝑦𝑖|

𝑛

𝑖=1
                                                     (8) 220 

 221 

3. Data collection 222 

 223 

The data used in this study were gathered from 8 different references [44-51], resulting 224 

in a total of 110 mix proportions. Table 2 shows a representative mix proportion, which 225 

comprehensively considers the influence of FA, coarse and fine aggregates, alkaline 226 

activator, water and chemical admixture. Alkaline activators were mainly composed of 227 

sodium hydroxide (NaOH) and sodium silicate (Na2SiO3). In addition to their dosage, 228 

the molar concentrations of these activators used in the solutions were considered. 229 

Polycarboxylate superplasticizer (PCE) is commonly used as a chemical admixture in 230 

these formulations. Among the relevant studies used for the main source of data, some 231 

mixed water and the alkaline activator together before mixing with powder, while 232 

others calculated the mass of water separately. In order to obtain a uniform content of 233 

water across different mixes, the total mass of water, shown in Table 2, was obtained 234 

by adding up the mass of water in NaOH and Na2SiO3 solutions and added water. 235 

 236 

Table 2 A sample mix proportion of FA-based geopolymer concrete representing 237 

those used this study 238 

 239 

FA 

(kg/

m3) 

Coarse 

aggreg

ate 

(kg/m3

) 

Fine 

aggreg

ate 

(kg/m3

) 

NaO

H 

soluti

on 

(kg/

m3) 

NaO

H 

(M) 

Na2Si

O3 

soluti

on 

(kg/m
3) 

Na2SiO3/N

aOH 

AA/

FA 

Wate

r 

(kg/

m3) 

PCE 

(kg/

m3) 

400 875 875 40 16 100 2.5 0.35 112.

4 

10.5 

 240 

 241 

Another factor that was considered in the analysis was the variation in the chemical 242 

compositions of FA used across different studies (Table 3). In line with the findings of 243 

previous studies [22, 52, 53], where the key roles of Si and Al contents in FA on the 244 

strength development of FA-based mixes were reported, the analysis presented in this 245 

study also incorporated the SiO2 and Al2O3 contents in FA as input parameters. Other 246 

than the binder component, aggregate characteristics such as composition and physical 247 

properties (e.g. particle size), as shown in Table 4, were also involved in the analysis. 248 

Owing to its difficulty of being quantified as a parameter, the influence of aggregate 249 

size distribution on strength was not considered in the presented analysis. In addition, 250 

the high temperature pre-curing regimes usually employed to accelerate the early 251 

hydration rate of FA-based mixes were also considered. The combination of these 252 

approaches led to the identification of 14 factors as input variables. However, it should 253 

be noted that all the input variables must be independent. While the analysis involves 3 254 



variables that are related to the incorporation of NaOH, they all have an independent 255 

impact on the final results. Accordingly, mix proportions can change solely on the 256 

content of NaOH solution, while keeping the molar concentration of NaOH constant, 257 

indicating that they can be regarded as mutually independent variables [44]. The 258 

relatively large range of each parameter, as listed in Table 5, could indicate the 259 

applicability of the prediction model. 260 

 261 

 262 

Table 3 Chemical composition of FA obtained from different sources 263 

 264 

Reference SiO2 Al2O3 CaO SO3 Fe2O3 MgO LOI 

[44]  71.50 9.20 6.72 2.40 2.37 0.60 3.67 

[45]  61.89 28.05 0.87 1.32 4.11 0.38 0.49 

[46]  49 31 5 - 3 3 - 

[47]  62.30 28.10 0.5 0.40 2.10 1.00 2.50 

[48] 

Type I 47.87 28.0 3.81 0.27 14.09 0.93 0.43 

Type II 49.37 31.25 4.80 0.24 4.47 1.28 0.51 

Type III 53.82 29.95 1.03 0.34 9.24 0.58 0.63 

[49]  53.71 27.20 1.90 0.30 11.17 - 0.68 

[50]  45.23 19.95 15.51 - 13.15 - - 

[51]  31.32 13.96 25.79 3.29 15.64 2.94 1.30 

LOI = Loss on ignition 265 

 266 

 267 

Table 4 Particle size parameters of coarse and fine aggregates obtained from different 268 

sources 269 

 270 

Reference 

Coarse aggregates Fine aggregates 

Raw materials 
Size range 

(mm) 
Raw materials 

Size 

range 

(mm) 

Fineness 

modulus 

[44] - 9.5-12.5 River sand - 2.35 

[45] - 6.3-20 Graded river sand ＜4.75 - 

[46] 
Crushed bluestone 

gravel 
7 Graded sand < 0.4 - 



[47] Pink limestone 1.18-9.5 
Natural siliceous 

sand 

0.075-

4.75 
2.45 

[48] 
Crushed basalt 

aggregate 
7-10 

Uncrushed river 

sand 
- 3.0 

[49] Crushed granite 7-20 Sand - 1.97 

[50] Limestone 20 River sand - 2.90 

[51] Crushed limestone 7-16 River sand - 2.20 

 271 

 272 

Table 5 Mean, standard deviation and range of input/output parameters 273 

 274 

Notation Input parameter Mean/count 
Standard 

deviation 
Range/categories 

X1 FA (kg/m3) 396.63 44.29 250-523 

X2 SiO2 (%) 56.34 15.93 31.32-71.5 

X3 Al2O3 (%) 16.55 8.01 9.2-31.25 

X4 Coarse aggregate (kg/m3) 1196.76 155.86 840-1567 

X5 Fine aggregate (kg/m3) 582.25 127.59 320-910 

X6 NaOH (kg/m3) 71.96 28.35 11.78-118 

X7 NaOH (M) 13.32 3.01 8-20 

X8 Na2SiO3 (kg/m3) 116.72 34.12 29.51-292 

X9 Na2SiO3/NaOH 1.84 0.71 1-4.5 

X10 AA/FA 0.48 0.13 0.09-0.86 

X11 Water (kg/m3) 119.76 23.29 52.5-197.23 

X12 PCE (kg/m3) 2.36 3.41 0-10.5 

X13 Temperature (℃) 0/50/60/80 - 4 

X14 Duration (h) 0/24/48 - 3 

 275 

 276 

4. Results and Discussion 277 

 278 

4.1 Performances of machine learning models 279 

 280 

Figs. 3-5 show the machine learning prediction results of the 28-day compressive 281 

strength of FA-based geopolymer concrete mixes. The red points in each figure 282 

represent the predicted values, while the blue points are measured values. The gray 283 

histogram below these values corresponds to their errors. For all the three algorithms, 284 

the predicted and measured values of the training set were relatively close. However, 285 

several errors calculated by SVM and BPNN were more than 10 MPa. The analysis of 286 

the testing set revealed that some predictive points of SVM and ELM deviated greatly 287 

from the actual compressive strength values, while BPNN maintained relatively stable 288 

prediction results. 289 

 290 
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(a) Training set 292 
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(b) Validation set 294 

0 5 10 15
-30

-20

-10

0

10

20

30

40

50

60

C
o
m

p
re

ss
iv

e 
st

re
n

g
th

 (
M

P
a
)

Sample

 Actual value

 Predictive value

-20

-10

0

10

20

30

40

50

60

E
rr

o
rs

 Error

 295 

(c) Testing set 296 

Fig. 3 Target and predicted compressive strength calculated by SVM 297 

 298 
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(a) Training set 300 

0 5 10 15
-30

-20

-10

0

10

20

30

40

50

60

70

80

C
o
m

p
r
e
ss

iv
e
 s

tr
e
n

g
th

 (
M

P
a
)

Sample

 Actual value

 Predictive value

-20

-10

0

10

20

30

40

50

60

E
r
r
o
r
s

 Error

 301 

(b) Validation set 302 
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(c) Testing set 304 

Fig. 4 Target and predicted compressive strength calculated by BPNN 305 
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(a) Training set 308 
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(b) Validation set 310 
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(c) Testing set 312 

 313 

Fig. 5 Target and predicted compressive strength calculated by ELM 314 



 315 

4.2 Comparison of different models 316 

 317 

Table 6 lists the evaluation parameters obtained by the three models, which revealed 318 

similar changing trends. In general, the accuracy of BPNN, characterized by the R2 of 319 

the total database, was the highest among all three algorithms (see the “All” column in 320 

Table 6). However, when the prediction performance of different sets was compared, 321 

the R2 of BPNN validation set was 0.8221, which was far lower than that of the training 322 

and testing sets. Meanwhile, the R2 of ELM testing set was only 0.7032, showing that 323 

although ELM could predict the function relationship of a given database, it does not 324 

have good generalization ability. Other evaluation parameters (MSE, RMSE and MAE) 325 

also verified this over fitting phenomenon. When compared to BPNN and ELM, SVM 326 

revealed a more stable prediction accuracy in all three sets, as reflected in Fig. 6. 327 

 328 

Table 6 Precision of three machine learning algorithms for the 28-day compressive 329 

strength of FA-based geopolymer concrete 330 

 331 

 SVM BPNN ELM 

 
Training 

set 

Validation 

set 

Testing 

set 
All 

Training 

set 

Validation 

set 

Testing 

set 
All 

Training 

set 

Validation 

set 

Testing 

set 
All 

R2 0.9038 0.9200 0.9559 0.9148 0.9472 0.8221 0.9156 0.9323 0.9224 0.8936 0.9042 0.9146 

MSE 12.16 12.60 6.41 11.39 6.26 13.54 3.80 6.83 9.81 16.75 13.91 11.41 

RMSE 3.49 3.55 2.53 3.37 2.5 3.68 1.95 2.61 3.13 4.09 3.73 3.38 

MAE 2.28 2.68 2.04 2.30 1.48 2.92 1.59 1.61 2.41 3.07 2.85 2.57 

SVM BPNN ELM
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Fig. 6 Coefficient of determination (R2) of three machine learning algorithms 333 



 334 

Fig. 7 shows the results of predicted and experimental compressive strength obtained 335 

by SVM, BPNN and ELM. Most of the data points produced by the three algorithms 336 

were very close to the center line and were basically located in the area within an error 337 

range of 20%. Across all models, a small part of the errors between the actual and 338 

predicted values were more than 20%. The higher number of testing data points outside 339 

the error boundary of ±20% shown in Fig. 7(c) was an indication of the low 340 

performance of ELM in the testing set in comparison to other models. 341 

 342 

Fig. 8 shows the error percentages based on different machine learning algorithms and 343 

their number of instances in the corresponding range. Considering that relative error 344 

could reflect the credibility of measurement better, error percentage instead of error was 345 

calculated to fit normal distribution. When the actual compressive strength of a certain 346 

mix proportion was relatively small, a sample with the same absolute error showed a 347 

greater deviation than a sample with a large compressive strength. The use of error 348 

percentage could avoid this situation. According to the fitting results and percentage 349 

distributions, the average percentages of three algorithms were all close to zero. By 350 

contrast, there were more samples within the error range of -20% and 20% for BPNN, 351 

resulting in the steepest fitting curve. Considering that the most ideal error percentage 352 

distribution scenario involved minimizing of all errors by bringing them as close to 0% 353 

as possible, BPNN demonstrated the most concentrated distribution among the three 354 

algorithms. Furthermore, it can be seen from Figs. 7 and 8 that although the number of 355 

samples in the -20% to 20% range was higher in BPNN than SVM, the prediction result 356 

obtained by SVM was closer to the actual result (i.e. more sample points were 357 

concentrated near the black line shown in Fig. 7). These outcomes support the earlier 358 

observations on the higher prediction accuracy of SVM. 359 

 360 

 361 

 362 

 363 

 364 

 365 
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(a) SVM 367 
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(b) BPNN 369 
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(c) ELM 371 

 372 

Fig. 7 Measured value vs. predicted value of three machine learning algorithms 373 



 374 

(a) SVM 375 

 376 

(b) BPNN 377 

 378 
(c) ELM 379 

 380 

Fig. 8 Error percentage distribution and normal distribution fitting of models 381 



 382 

4.3 Effects of different input parameters 383 

 384 

Fig. 9 shows the effect of different mix design variables on the compressive strength of 385 

FA-based geopolymer concrete. The presented results revealed the lack of any 386 

significant positive or negative relationship between any of the variables and 387 

compressive strength, which may be due to the large number of variables and their wide 388 

ranges adopted in this study, resulting in a small influence weight of any single factor 389 

on the results. However, some potential trends could still be identified through the 390 

relationship between some independent variables and dependent variables. For instance, 391 

the results of SiO2 and Al2O3 contents highlighted the existence of an optimal 392 

SiO2/Al2O3 ratio, which enhanced the contribution of FA to compressive strength. The 393 

content and molar concentration of NaOH and Na2SiO3 also affected compressive 394 

strength. Accordingly, an increase in the molar concentration of NaOH solution 395 

generally improved the overall compressive strength, especially when the NaOH molar 396 

concentration was over 12 M. Alternatively, an increase in the water content beyond 397 

100 kg/m3 reduced strength. The contents of coarse and fine aggregates did not seem to 398 

have a significant effect on strength. This trend was in line with the findings of previous 399 

studies, where it was reported that the interface transition zone (ITZ), morphology and 400 

particle size distribution of the aggregates was more influential in strength development 401 

than their contents [30, 54]. Finally, Table 7 elucidates the effect of pre-curing on the 402 

compressive strength of FA-based geopolymer concrete, revealing the role pre-curing 403 

plays in improving the minimum, average and maximum strength values of all data sets. 404 

 405 

 406 



 407 

Fig. 9 Correlation between mix design variables and compressive strength 408 

 409 

Table 7 Effect of pre-curing on the 28-day compressive strength of FA-based 410 

geopolymer concrete 411 

 412 

Curing condition No pre-curing 
With pre-curing (up to 80℃ and 

48h) 

Compressive 

strength (MPa) 

Min Max Ave. Min Max Ave. 

7.6 46.7 21.4 18.0 54.4 35.7 

 413 

In addition to understanding the potential impact of each input parameter (i.e. feature) 414 

on the prediction results, it is also necessary to compare their importance for the result 415 

influence. This approach can enable the identification of certain features that have a 416 

greater impact on the final results, and also reveal those with relatively small impacts. 417 

A common method to measure the influence of different features on the results is 418 

permutation feature importance (PFI) [55]. The core idea of PFI is that if a certain input 419 

variable (Xi) has a great influence on the result, the prediction accuracy will 420 

significantly decrease by randomly arranging Xi, during which the order of other 421 

variables is unchanged. According to this definition, the calculation expression of the 422 

PFI value for a specific variable obtained by using MAE as error measurement function 423 

is shown in Eq. (9), where MAEperm and MAEorig are mean absolute error before and 424 

after randomly adjusting Xi sequence, respectively. 425 

 426 

𝑃𝐹𝐼 = 𝑀𝐴𝐸𝑝𝑒𝑟𝑚 − 𝑀𝐴𝐸𝑜𝑟𝑖𝑔                        (9) 427 

 428 

In line with this approach, when the PFI value was close to zero, changing a certain 429 

feature had a lower influence on the output value; whereas when PFI was large, the 430 

influence of the feature on the output value was significant. Table 8 shows the feature 431 



importance of 14 input variables obtained by the SVM algorithm. The PFI values 432 

presented in the last column indicated that the SiO2 and Al2O3 contents in FA has 433 

significant effects on the strength results. This is due to the fact that the overall degree 434 

and rate of hydration determines the mechanical properties of cement-based mixes. In 435 

this respect, the chemical composition of FA will directly affect the hydration process 436 

and the formation of hydration products, thus playing a key role in strength 437 

development [56, 57]. These were followed by the activator contents/ratios and PCE 438 

content introduced in the initial mix design. In contrast, other parameters such as FA, 439 

coarse and fine aggregate and water contents; as well as pre-curing conditions revealed 440 

lower PFI values. Although PFI index can represent the influence of a single 441 

influencing factor on the final result, it can only reveal the relationship between input 442 

parameters and output parameters from the perspective of single correspondence 443 

because the final compressive strength of concrete is often caused by the 444 

comprehensive action of several factors. 445 

 446 

Table 8 PFI values of different input parameters 447 

 448 

Notation Input parameter MAEperm PFI 

X1 FA (kg/m3) 2.33 0.03 

X2 SiO2 (%) 3.01 0.71 

X3 Al2O3 (%) 2.31 0.21 

X4 Coarse aggregate (kg/m3) 2.33 0.03 

X5 Fine aggregate (kg/m3) 2.32 0.02 

X6 NaOH (kg/m3) 2.38 0.08 

X7 NaOH (M) 2.55 0.25 

X8 Na2SiO3 (kg/m3) 2.6 0.30 

X9 Na2SiO3/NaOH 2.42 0.12 

X10 AA/FA 2.36 0.06 

X11 Water (kg/m3) 2.39 0.09 

X12 PCE (kg/m3) 2.56 0.26 

X13 Temperature (℃) 2.37 0.07 

X14 Duration (h) 2.39 0.09 

 449 

According to the findings of the preceding investigation, the impact of 450 

different input factors on the ultimate compressive strength varies. Accordingly, 451 

changing some of these parameters may considerably increase or decrease the strength 452 

of concrete, while altering other parameters has minimal influence. Based on the PFI 453 

parameter analysis presented above, it is clear that the chemical composition of FA 454 

(particularly the SiO2 content), molar concentration of NaOH and mass fraction of 455 

Na2SiO3 solution all have significant effect weights. Considering that machine learning 456 

methods cannot provide an exact equation between input and output variables, a 457 

sensitivity analysis can be utilized to analyze and evaluate the probable changes in 458 

compressive strength when ideally only one single parameter value is changed [58, 59]. 459 

Fig. 10 depicts the variance in compressive strength derived by using the BPNN model 460 



and the abovementioned three input parameters. It can be seen from Fig. 10 that when 461 

the SiO2 content in FA increases over a certain value, the compressive strength steadily 462 

decreases. Alternatively, increasing the concentration of NaOH and the content of 463 

Na2SiO3 solution improves the compressive strength, within the ranges presented in 464 

this study. These observed trends are consistent with the results proposed by previous 465 

relevant studies [44, 47]. 466 

 467 

 468 

Fig. 10 Sensitivity analysis of feature parameters based on BPNN model 469 

 470 

 471 

5. Conclusions 472 

 473 

In this study, three different machine learning algorithms (BPNN, SVM and ELM) were 474 

used to predict the 28-day compressive strength of FA-based geopolymer concrete. 475 

Through a detailed literature search, 110 groups of mix proportion data were collected. 476 

The collected data included 14 different variables such as FA content and composition 477 

(i.e. SiO2 and Al2O3 contents), coarse and fine aggregate contents, NaOH and Na2SiO3 478 

content and ratio, AA/FA ratio, water and PCE contents, pre-curing temperature and 479 

duration. The performance of each algorithm was evaluated by R2, MSE, RMSE and 480 

MAE. The prediction performance of the three models and the influence weight of 481 

different input parameters on the results were compared. The following conclusions 482 

were drawn from the obtained results: 483 

 484 

1. BPNN, SVM and ELM all revealed good prediction performance. The predicted 485 

values based on the three models were close to the actual values, and their error ranges 486 

were generally within 20%. 487 

 488 

2. For the total data sets, the R2 order of three algorithms from high to low was BPNN > 489 

ELM > SVM. However, the analysis of different sets (i.e. training set, validation set 490 

and testing set) revealed that the R2 of validation set calculated by BPNN was 0.8221, 491 

while the R2 of testing set obtained by ELM was only 0.7032, indicating that the 492 

generalization abilities of BPNN and ELM were weak. In all the three sets, SVM 493 

achieved the most stable prediction ability. Compared with the other two models, the 494 

error percentage of BPNN was more concentrated in the range of -20% to 20%, 495 

supported by a steep fitted normal distribution curve. 496 



 497 

3. Through the influence analysis of single feature on compressive strength, it was 498 

found that the SiO2 and Al2O3 contents in FA had a direct influence on the compressive 499 

strength of geopolymer concrete. The content and concentration of the alkaline 500 

activator also contributed to the enhancement of compressive strength, while the 501 

increase of water content beyond a certain value reduced the strength, and the aggregate 502 

contents were not as influential on strength development as these other mix design 503 

variables. Furthermore, the use of PFI index revealed the influence of each individual 504 

feature on the output value. Among them, the SiO2 content in FA had the most 505 

significant effect on the strength prediction results, followed by Al2O3 content in FA, 506 

and activator and PCE contents, which further verified the results of single feature 507 

analysis. 508 

 509 

Using machine learning to predict the mechanical properties of FA-based geopolymer 510 

concrete can support the traditional empirical models by revealing the prediction results 511 

more quickly and conveniently, enabling the prediction of the performance of concrete 512 

with an unknown mix proportion through deep learning. This approach can facilitate 513 

reductions in experimental workload, and labor and material consumption; improve 514 

time efficiency; and provide a theoretical and practical guidance for optimizing 515 

concrete mix proportions. These initiatives can accelerate the development and 516 

application of sustainable concrete formulations involving alternative binders (e.g. 517 

geopolymers) with minimum operational costs and environmental impact. 518 

 519 

 520 
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List of Tables: 

 

 

Table 1 Hyperparameters of machine learning models 

 

Machine learning algorithms Hyperparameters Values/categories 

BPNN 

Activation function Sigmoid 

Hidden layer numbers 1 

Number of hidden layer nodes 18 

SVM 

SVM type e-SVR 

Kernel function RBF 

Tolerance 0.001 

epsilon 0.1 

Shrinking True 

ELM 

Hidden layer nodes 20 

Activation function Sigmoid 

Mode Regression 

  



Table 2 A sample mix proportion of FA-based geopolymer concrete representing 

those used this study 

 

FA 

(kg/m3) 

Coarse 

aggregate 

(kg/m3) 

Fine 

aggregate 

(kg/m3) 

NaOH 

solution 

(kg/m3) 

NaOH 

(M) 

Na2SiO3 

solution 

(kg/m3) 

Na2SiO3/NaOH AA/FA Water 

(kg/m3) 

PCE 

(kg/m3) 

400 875 875 40 16 100 2.5 0.35 112.4 10.5 

  



Table 3 Chemical composition of FA obtained from different sources 

 

Reference SiO2 Al2O3 CaO SO3 Fe2O3 MgO LOI 

[44]  71.50 9.20 6.72 2.40 2.37 0.60 3.67 

[45]  61.89 28.05 0.87 1.32 4.11 0.38 0.49 

[46]  49 31 5 - 3 3 - 

[47]  62.30 28.10 0.5 0.40 2.10 1.00 2.50 

[48] 

Type I 47.87 28.0 3.81 0.27 14.09 0.93 0.43 

Type II 49.37 31.25 4.80 0.24 4.47 1.28 0.51 

Type III 53.82 29.95 1.03 0.34 9.24 0.58 0.63 

[49]  53.71 27.20 1.90 0.30 11.17 - 0.68 

[50]  45.23 19.95 15.51 - 13.15 - - 

[51]  31.32 13.96 25.79 3.29 15.64 2.94 1.30 

LOI = Loss on ignition 

  



Table 4 Particle size parameters of coarse and fine aggregates obtained from different 

sources 

 

Reference 

Coarse aggregates Fine aggregates 

Raw materials 
Size range 

(mm) 
Raw materials 

Size 

range 

(mm) 

Fineness 

modulus 

[44] - 9.5-12.5 River sand - 2.35 

[45] - 6.3-20 Graded river sand ＜4.75 - 

[46] 
Crushed bluestone 

gravel 
7 Graded sand < 0.4 - 

[47] Pink limestone 1.18-9.5 
Natural siliceous 

sand 

0.075-

4.75 
2.45 

[48] 
Crushed basalt 

aggregate 
7-10 

Uncrushed river 

sand 
- 3.0 

[49] Crushed granite 7-20 Sand - 1.97 

[50] Limestone 20 River sand - 2.90 

[51] Crushed limestone 7-16 River sand - 2.20 

 

  



Table 5 Mean, standard deviation and range of input/output parameters 

 

Notation Input parameter Mean/count 
Standard 

deviation 
Range/categories 

X1 FA (kg/m3) 396.63 44.29 250-523 

X2 SiO2 (%) 56.34 15.93 31.32-71.5 

X3 Al2O3 (%) 16.55 8.01 9.2-31.25 

X4 Coarse aggregate (kg/m3) 1196.76 155.86 840-1567 

X5 Fine aggregate (kg/m3) 582.25 127.59 320-910 

X6 NaOH (kg/m3) 71.96 28.35 11.78-118 

X7 NaOH (M) 13.32 3.01 8-20 

X8 Na2SiO3 (kg/m3) 116.72 34.12 29.51-292 

X9 Na2SiO3/NaOH 1.84 0.71 1-4.5 

X10 AA/FA 0.48 0.13 0.09-0.86 

X11 Water (kg/m3) 119.76 23.29 52.5-197.23 

X12 PCE (kg/m3) 2.36 3.41 0-10.5 

X13 Temperature (℃) 0/50/60/80 - 4 

X14 Duration (h) 0/24/48 - 3 

  



Table 6 Precision of three machine learning algorithms for the 28-day compressive 

strength of FA-based geopolymer concrete 

  

 SVM BPNN ELM 

 
Training 

set 

Validation 

set 

Testing 

set 
All 

Training 

set 

Validation 

set 

Testing 

set 
All 

Training 

set 

Validation 

set 

Testing 

set 
All 

R2 0.9038 0.9200 0.9559 0.9148 0.9472 0.8221 0.9156 0.9323 0.9224 0.8936 0.9042 0.9146 

MSE 12.16 12.60 6.41 11.39 6.26 13.54 3.80 6.83 9.81 16.75 13.91 11.41 

RMSE 3.49 3.55 2.53 3.37 2.5 3.68 1.95 2.61 3.13 4.09 3.73 3.38 

MAE 2.28 2.68 2.04 2.30 1.48 2.92 1.59 1.61 2.41 3.07 2.85 2.57 

  



Table 7 Effect of pre-curing on the 28-day compressive strength of FA-based 

geopolymer concrete 

 

Curing condition No pre-curing 
With pre-curing (up to 80℃ and 

48h) 

Compressive 

strength (MPa) 

Min Max Ave. Min Max Ave. 

7.6 46.7 21.4 18.0 54.4 35.7 

  



Table 8 PFI values of different input parameters 

 

Notation Input parameter MAEperm PFI 

X1 FA (kg/m3) 2.33 0.03 

X2 SiO2 (%) 3.01 0.71 

X3 Al2O3 (%) 2.31 0.21 

X4 Coarse aggregate (kg/m3) 2.33 0.03 

X5 Fine aggregate (kg/m3) 2.32 0.02 

X6 NaOH (kg/m3) 2.38 0.08 

X7 NaOH (M) 2.55 0.25 

X8 Na2SiO3 (kg/m3) 2.6 0.30 

X9 Na2SiO3/NaOH 2.42 0.12 

X10 AA/FA 2.36 0.06 

X11 Water (kg/m3) 2.39 0.09 

X12 PCE (kg/m3) 2.56 0.26 

X13 Temperature (℃) 2.37 0.07 

X14 Duration (h) 2.39 0.09 

 



List of Figures: 

 

 

 

 

Fig. 1 Graphical representation of different machine learning models (modified from 

[31] and [8]) 

  



 

 

Fig. 2 Construction and data prediction process of machine learning models 
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(b) Validation set 
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(c) Testing set 

Fig. 3 Target and predicted compressive strength calculated by SVM 
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(b) Validation set 
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(c) Testing set 

Fig. 4 Target and predicted compressive strength calculated by BPNN 



0 10 20 30 40 50 60 70
-30

-20

-10

0

10

20

30

40

50

60

C
o
m

p
re

ss
iv

e 
st

re
n

g
th

 (
M

P
a
)

Sample

 Actual value

 Predictive value

-20

0

20

40

60

E
rr

o
r

 Error
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(b) Validation set 
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(c) Testing set 

 

Fig. 5 Target and predicted compressive strength calculated by ELM 
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Fig. 6 Coefficient of determination (R2) of three machine learning algorithms 
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(a) SVM 
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(b) BPNN 
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(c) ELM 

 

Fig. 7 Measured value vs. predicted value of three machine learning algorithms 



 

(a) SVM 

 

(b) BPNN 

 
(c) ELM 

Fig. 8 Error percentage distribution and normal distribution fitting of models 



 

 

 

Fig. 9 Correlation between mix design variables and compressive strength 

  



 

 

Fig. 10 Sensitivity analysis of feature parameters based on BPNN model 
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